Mathematical Methods I

Midterm 1: 2010, Oct. 4.
Student: \qquad
This is an "open Textbook (Arfken \& Webber), open lecture notes" in-class exam. For full credit, show all your work. The part of your solutions completed in class staple to the question sheet; then complete the rest of the Exam and hand it in by Friday, $\mathbf{1 0} / \mathbf{0 8} / \mathbf{1 0}, \mathbf{5 : 0 0} \mathbf{~ p m}$, in the Main Office, for $2 / 3$ of the indicated credit. Budget your time: do first what you are sure you know how; use shortcuts (but be prepared to explain them afterwards).

1. Given a vector $\vec{A}=\sin (\varphi) \hat{\mathrm{e}}_{z}$, so specified in cylindrical coordinates,
a. Calculate $\vec{\nabla} \cdot \vec{A}$. [=5pt]
b. Calculate $\vec{\nabla} \times \vec{A}$. [=5pt]
c. Calculate the three components of $\vec{\nabla}^{2} \vec{A}$. $\quad[=20 p t]$
2. Calculate $\oint_{S} \mathrm{~d} \vec{\sigma} \times\left(\hat{z}\left(x^{2}+y^{2}\right)^{n}\right)$ for $n \in \mathbb{Z}$, where S is a pill-box of radius R and height H, body-centered at the origin:
\boldsymbol{a}. by performing the surface integral directly;
[=10pt]
b. upon applying an appropriate integration/derivative identity. [=10pt]
c. Is any value of n exceptional? Explain.
[=5pt]
(Hint: changing into cylindrical coordinates first should simplify calculations significantly.)
3. Consider a (generalized) coordinate system (ξ, η, ζ) which is related to the Cartesian system (x, y, z) through the relations

$$
x=\xi \eta, \quad y=\frac{1}{2}\left(\eta^{2}-\xi^{2}\right), \quad z=\zeta .
$$

a. Calculate the (inverse) transformation matrix $\mathbb{J}=\frac{\partial(x, y, z)}{\partial(\xi, \eta, \zeta)}$.
b. Calculate the metric, $g_{i j}(\xi, \eta, \zeta)$, for the (ξ, η, ζ) coordinate system.
\boldsymbol{c}. Determine if the (ξ, η, ζ) system is orthogonal or not. Explain. [=10pt]
d. State the relationship between \mathbb{J} and the matrix $\left[g_{i j}(\xi, \eta, \zeta)\right]$.
[=5pt]
4. For $i, j=1,2,3, A_{i}, B^{j}$ are components of a covariant and a contravariant vector, and $C^{k l}$ are the components of a type- $(2,0)$ tensor.
\boldsymbol{a}. Determine the (tensorial) transformation properties of $\left(A_{i} C^{i j} B^{k}\right)$. [=5pt]
b. Determine the (tensorial) transformation properties of $\varepsilon^{i j k} A_{i}\left(\frac{\partial B^{m}}{\partial x^{j}}\right)$ with respect to general coordinate changes.
[$=5 p t$]
c. Write down two algebraically independent general coordinate transformation scalars (invariants) constructed only from the components A_{i}, B^{j} and $C^{k l}$. [=10pt]
d. How many independent components does the set of quantities $\varepsilon_{i j k} B^{i} C^{j \ell} A_{\ell}$ represent? [=10pt]
(Note: the Einstein (implicit) summation convention is in effect: indices that are repeated once as a subscript and once as a superscript are being summed over.)

