Department of Physics and Astronomy (202)-806-6245 (Main Office) (202)-806-5830 (fax)	WASHINGTON, DC 20059		2355 SIXTH ST., NW, TKH RM.213 thubsch@howard.edu (202)-806-6267
Mathematical Methods I Midterm 1: 2010, Oct. 4.		Student:	

HOWARD UNIVERSITY

This is an "open Textbook (Arfken & Webber), open lecture notes" in-class exam. For full credit, show all your work. The part of your solutions completed in class staple to the question sheet; then complete the *rest* of the Exam and hand it in **by Friday**, **10/08/10**, **5:00 pm**, **in the Main Office**, for 2/3 of the indicated credit. **Budget your time:** do first what you are sure you know how; use shortcuts (but be prepared to explain them afterwards).

1. Given a vector $\vec{A} = \sin(\varphi) \hat{\mathbf{e}}_z$, so specified in cylindrical coordinates,

a. Calculate $\nabla \cdot A$.	[=5pt]

b. Calculate $\nabla \times A$. [=5pt]

[=20pt]

[=5pt]

c. Calculate the three components of $\vec{\nabla}^2 \vec{A}$.

2. Calculate $\oint_S d\vec{\sigma} \times (\hat{z} (x^2 + y^2)^n)$ for $n \in \mathbb{Z}$, where S is a pill-box of radius R and height H, body-centered at the origin:

- a. by performing the surface integral directly; [=10pt]
- **b.** upon applying an appropriate integration/derivative identity. [=10pt]
- c. Is any value of n exceptional? Explain.

(Hint: changing into cylindrical coordinates first should simplify calculations significantly.)

3. Consider a (generalized) coordinate system (ξ, η, ζ) which is related to the Cartesian system (x, y, z) through the relations

$$x = \xi \eta, \quad y = \frac{1}{2}(\eta^2 - \xi^2), \quad z = \zeta.$$

- **a.** Calculate the (inverse) transformation matrix $\mathbb{J} = \frac{\partial(x,y,z)}{\partial(\xi,\eta,\zeta)}$. [=10*pt*]
- **b.** Calculate the metric, $g_{ij}(\xi, \eta, \zeta)$, for the (ξ, η, ζ) coordinate system. [=10*pt*]
- c. Determine if the (ξ, η, ζ) system is orthogonal or not. Explain. [=10*pt*]
- **d.** State the relationship between \mathbb{J} and the matrix $[g_{ij}(\xi, \eta, \zeta)]$. [=5*pt*]

4. For $i, j = 1, 2, 3, A_i, B^j$ are components of a covariant and a contravariant vector, and C^{kl} are the components of a type-(2, 0) tensor.

a. Determine the (tensorial) transformation properties of $(A_i C^{ij} B^k)$. [=5*pt*]

b. Determine the (tensorial) transformation properties of $\varepsilon^{ijk}A_i\left(\frac{\partial B^m}{\partial x^j}\right)$ with respect to general coordinate changes. [=5pt]

c. Write down two *algebraically* independent general coordinate transformation scalars (invariants) constructed only from the components A_i, B^j and C^{kl} . [=10*pt*]

d. How many independent components does the set of quantities $\varepsilon_{ijk}B^iC^{j\ell}A_\ell$ represent? [=10*pt*] (Note: the Einstein (implicit) summation convention is in effect: indices that are repeated once as a subscript and once as a superscript are being summed over.)