
Vec-Tac-Toe Calculus
The following assumes very little prerequisite knowledge except partial derivatives and elementary

integration, but does assume that you learn fast.

1 Vectors

We need to distinguish vectors from scalars : the latter are quantities that only have a sense of

magnitude (temperature, mass, pressure. . . ), whereas the former have both a sense of magnitude

and of direction (velocity, force, acceleration. . . ). Notationally, we’ll distinguish vectors from scalars

by an arrow atop the symbol.

The following is then assumed to hold:

1. Scalars form a ring , a, b ∈ R: they can be added and subtracted as usual, and they can be

multiplied (but we do not necessarily need to know how to divide one scalar by another, nor

does there necessarily have to exist a unit with respect to multiplication).

2. Any linear combination, i.e., algebraic sum, a ~A+b ~B, of any two vectors, ~A, ~B, is again a

vector, for any a, b ∈ R, and the multiplication of vectors by scalars has to be distributive

with respect to addition of both scalars and of vectors:

(a+b) ~A+(a+b) ~B = (a+b)( ~A+ ~B) = a( ~A+ ~B) + b( ~A+ ~B) . (1.1)

In general, it behooves us to distinguish types of vectors (specified in a coordinate system where

i, j = 1, 2, 3 label/count the independent coordinates):

1. Covariant: such as (~∇′)i =
∂

∂x′i =
∂xj

∂x′i
∂

∂xj
=

∂xj

∂x′i (
~∇)j, and

2. Contravariant: such as (d~r ′)i = dx′i =
∂x′i

∂xj
dxj =

∂x′i

∂xj
(d~r)j,

where we used the Einstein summation convention: whenever an index appears exactly twice,

precisely once as a subscript (as in dxj) and precisely once as a superscript (as in ∂
∂xj ), the summation

symbol (
∑3

j=1) will be omitted, but implied. Note that the index i is used here to indicate the

summation given explicitly within the parentheses) and is thus fully “used up”: it’s values are not

free to be chosen at will; they are akin to a variable that has been integrated over and replaced with

the limits of integration. Such indices are called dummy , and they may be renamed at will—as long

as that will incur no confusion.

Note that co- and contra-variant vectors transform under a change of coordinates by being

multiplied by mutually inverse transformation matrices, ∂xj

∂x′i and ∂x′i

∂xj , respectively: ∂xj

∂x′i
∂x′i

∂xk = ∂xj

∂xk ,

which equals 1 if j = k and 0 otherwise. Exceptionally , when x′i are obtained from xj by rotation,
∂xj

∂x′i = ∂x′i

∂xj (verify this). Since Cartesian coordinate systems can only be rotated one into another,

the two types of vectors are indistinguishable if we restrict to Cartesian systems only , and we need

not distinguish between sub- and super-scripts.
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To specify vectors, we may choose a particular coordinate system, i.e., a system of reference

with a (complete) set of possible independent unit-vectors1, {êi,∀i}, so:

~A := Ai êi (:= A1 ê1 + A2 ê2 + A3 ê3) , Ai ∈ R . (1.2)

Cartesian coordinates will be used throughout for which êx, êy, êz are constant unit-vectors in

the “usual” x, y, z (forward, to the left, upward) directions of the (real, 3-dimensional vector) space,

respectively. We will also write x1≡x, x2≡y, x3≡z and ê1≡êx, ê2≡êy, ê3≡êz.

2 Products

Given the êi’s, we can form a scalar product :

êi·êj = δij :=

1 if i = j ,

0 if i 6= j ,
(2.1)

since every êi is orthogonal to every other êj, and the length,
√

(êi·êi) = 1 for each êi, as they are

unit vectors. Notice that the value of êi·êi is a scalar , so the assigned values make sense. We will

also need

δij :=

1 if i = j ,

0 if i 6= j ,
(2.2)

We can also form a vector product :

êi×êj =
3∑

k=1

εijkêk , where εijk :=


+1 if i, j, k an even permutation of 1,2,3,

−1 if i, j, k an odd permutation of 1,2,3,

0 otherwise,

(2.3)

since its result is a vector. Notice that, according to the strict Einstein summation convention, the

k-summation must be explicitly written here, as the (strict) Einstein summation convention does

not apply: both occurrences of the index k have it as a subscript! Alternatively, we could have

introduced the unit vectors:

êi := δij êj , (2.4)

and then write

êi×êj = εijk êk = εijk δkl êl . (2.5)

Using (2.2), we can now also define:

εijk := δil δjm δkn εlmn . (2.6)

That is, the Kronecker symbols, δij and δij, may be used (in Cartesian coordinate systems only!)

to raise and lower indices.

1See below for the definition of unit vectors.
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Furthermore, notice that in both equations, the indices i, j are free: their values are free to be

chosen at will; they are not being summed over, but they are akin to a variable of a function. If

renamed, free indices must be consistently renamed throughout the expression and equation.

The Kronecker symbol, δij, and the Levi-Civita symbol, εijk, are related through the identity:

εijkεlmn ≡ δilδjmδkn − δilδjnδkm + δinδjlδkm − δinδjmδkl + δimδjnδkl − δimδjlδkn . (2.7)

From this, it follows that

3∑
k=1

εijkεlmk ≡
3∑

k=1

εijkεklm ≡ δilδjm − δimδjl , and
3∑

j,k=1

εijkεljk ≡ δil . (2.8)

It then also follows (work this out yourself!) that:

êx×êy = êz êy×êz = êx êz×êx = êy , (2.9)

(notice the cyclicity of the second batch of relations).

— ? —

For general vectors then:

~A· ~B = (Ai êi)·(Bj êj) = Ai Bj(êi·êj) = Ai Bj δij =
∑
i=1

Ai Bi = Ai Bi = Ai B
i , (2.10)

and

~A× ~B = (Ai êi)×(Bj êj) = Ai Bj(êi×êj) = Ai Bj

3∑
k=1

εijk êk =
∑
k=1

(Ai Bj εijk) êk ,

= Ai Bj εijk δkl êl = Ai Bj εijk êj . (2.11)

We will also write ( ~A× ~B)k = AiBjεijk for the kth component of the vector ~A× ~B.

Let’s examine these two calculations:

1. It should be clear that

~A· ~A =
3∑

i=1

(Ai)2 ≥ 0 , since Ai ∈ R, i = 1, 2, 3 . (2.12)

Thus, we define the length of ~A to be

| ~A| :=
√

~A· ~A , (2.13)

and it is then clear that |êi| = 1, i = 1, 2, 3, so that êi are indeed unit vectors—vetors of unit

length.

2. It should also be clear that

~A · ~B = + ~B · ~A , but ~A× ~B = − ~B × ~A . (2.14)
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3. Also:

~A·
(
~B×~C

)
= ~A·

∣∣∣∣∣∣
êx êy êz

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ , (2.15)

and so, as determinants stay the same if rows are permuted cyclicly,

~A·
(
~B×~C

)
= ~B·

(
~C× ~A

)
= ~C·

(
~A× ~B

)
. (2.16)

Now, careful with those parentheses! For example, ( ~A· ~B)×~C simply makes no sense whatsoever!

(The scalar product ( ~A· ~B) is a scalar, so one cannot put it in a vector product with the vector ~C.)

A little less dramatic, but still important:

~A×
(
~B×~C

)
6=

(
~A× ~B

)
×~C . (2.17)

For one thing, the left-hand-side must be perpendicular to ~A (why?), while the right-hand-side must

be perpendicular to ~C; so, if the two sides were equal, the result would have to be along the unique

normal to the plane spanned by ~A, ~C—regardless of which way ~B points! Another quick way to see

that these cannot be the same (except in very special cases), is to evaluate the magnitudes of the

cross products as:

| ~A|| ~B||~C| sin θB,C sin θA,BC 6= | ~A|| ~B||~C| sin θA,B sin θAB,C , (2.18)

where θA,B is the angle between ~A and ~B, and where θAB,C is the angle between ( ~A× ~B) and ~C. So,

it should now be (perhaps a little more) clear that, in general

sin θB,C sin θA,BC 6= sin θA,B sin θAB,C , (2.19)

although there will be special cases where this is true.

3 Derivatives

Given that ∂
∂x

, ∂
∂y

, ∂
∂z

are partial derivatives with respect to Cartesian coordinates x, y, z, we define
~∇ := êx

∂
∂x

+ êy
∂
∂y

+ êz
∂
∂z

, the vector-derivative operator.

Given the scalar function f = f(x, y, z) and the vector function

~A = ~A(x, y, z) = Aiêi = Axêx + Ay êy + Az êz , (3.1)

the possible derivatives are:

1. ~∇f ; there is only one way to multiply the vector ~∇ with a scalar function, so:

~∇f =
3∑

i=1

êi
∂f

∂xi
= êx

∂f

∂x
+ êy

∂f

∂y
+ êy

∂f

∂y
, (3.2)

the result of which is a vector function called the gradient of f .

There are two ways to multiply the vector ~∇ with a vector function, so. . .
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2. ~∇· ~A uses the scalar product:

~∇· ~A =
∂Ai

∂xi
=

∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
, (3.3)

the result of which is a scalar function called the divergence of ~A.

3. ~∇× ~A uses the vector product:

(~∇× ~A) =
3∑

j,k=1

εijk
∂Ai

∂xj
êk =

∣∣∣∣∣∣∣
êx êy êz

∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣∣ ,

= êx

(∂Ay

∂z
− ∂Az

∂y

)
+ êy

(∂Az

∂x
− ∂Ax

∂z

)
+ êz

(∂Ax

∂y
− ∂Ay

∂x

)
.

(3.4)

the result of which is a vector function called the curl of ~A.

— ? —

Taking the results of the preceding first order derivatives, we can form second order derivatives

by iteration:

4. (~∇·(~∇f )) = (~∇2f):

~∇2f =
3∑

i=1

∂2f

∂xi∂xi
=

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
, (3.5)

the result of which is a scalar function called the Laplacian of f . Note that by the same token,

~∇2 ~A =
3∑

i=1

∂2 ~A

∂xi∂xi
=

3∑
i=1

∂2(Aj êj)

∂xi∂xi
=

∂2 ~A

∂x2
+

∂2 ~A

∂y2
+

∂2 ~A

∂z2
(3.6)

is a vector function called the Laplacian of ~A.

5. ~∇×(~∇f):

~∇×(~∇f) =
3∑

i,j,k=1

εijk
∂2f

∂xi∂xj
êk = εijk ∂2f

∂xi∂xj
êk =

∣∣∣∣∣∣∣
êx êy êz

∂
∂x

∂
∂y

∂
∂z

∂f
∂x

∂f
∂y

∂f
∂z

∣∣∣∣∣∣∣ , (3.7)

vanishes for any f (easily seen on straightforward expansion, and noting that partial derivatives

commute by definition); in the index notation, this should be clear since

3∑
i,j=1

εijk
∂2

∂xi∂xj
=

3∑
i,j=1

(−εjik)
∂2

∂xi∂xj
= −

3∑
j′,i′=1

εi′j′k
∂2

∂xj′∂xi′

= −
3∑

j′,i′=1

εi′j′k
∂2

∂xi′∂xj′ = −
3∑

j,i=1

εijk
∂2

∂xi∂xj
, (3.8)

where in the first equality we used that εijk = −εjik, obtained the third expression by renaming

i, j → j′, i′, then using that the order of taking partial derivatives does not matter, ∂2

∂xj′∂xi′ =
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∂2

∂xi′∂xj′ , and finally we dropped the primes from the names of the dummy indices. This proves

that the 2nd order derivative operator in Eq. (3.7) equals its own negative—and so must be zero.

6. ~∇(~∇· ~A):

~∇(~∇· ~A) =
3∑

i=1

êi
∂(~∇· ~A)

∂xi
= êi ∂

∂xi

(∂Aj

∂xj

)
= êx

∂(~∇· ~A)

∂x
+ êy

∂(~∇· ~A)

∂y
+ êy

∂(~∇· ~A)

∂y
,

= êx

∂(∂A1

∂x
+ ∂A2

∂y
+ ∂A3

∂z
)

∂x
+ êy

∂(∂A1

∂x
+ ∂A2

∂y
+ ∂A3

∂z
)

∂y
+ êy

∂(∂A1

∂x
+ ∂A2

∂y
+ ∂A3

∂z
)

∂y
.

(3.9)

7. (~∇·(~∇× ~A)):

(~∇·(~∇× ~A)) = εijk ∂2Ak

∂xi∂xj
=

∣∣∣∣∣∣∣
∂
∂x

∂
∂y

∂
∂z

∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣∣ , (3.10)

vanishes for any ~A (easily seen on straightforward expansion, and noting that partial derivatives

commute by definition); in the index notation, it is clear that this vanishes for the same reason

that (3.8) does.

8. (~∇×(~∇× ~A)):

(~∇×(~∇× ~A)) = (~∇(~∇· ~A))− (~∇2 ~A) . (3.11)

This a straightforward application of the “BAC−CAB” rule. However, one must keep the object

of differentiation, ~A always on the far right so the derivatives would keep on acting on it as they

do in the original expression. In the index notation, this merits a little more detail:

(~∇×(~∇× ~A)) =
3∑

i,j,k=1

εijk ∂

∂xi

(
~∇× ~A

)
j
êk =

3∑
i,j,k=1

εjki ∂

∂xi

( 3∑
l=1

εlmj ∂

∂xl
Am

)
êk (3.12)

=
3∑

i,k,l=1

( 3∑
j=1

εjkiεlmj
) ∂

∂xi

∂

∂xl
Am êk =

3∑
i,k,l=1

(
δklδim − δkmδil

) ∂

∂xi

∂

∂xl
Am êk (3.13)

=
3∑

i,k,l=1

δklδim ∂

∂xi

∂

∂xl
Am êk −

3∑
i,k,l=1

δkmδil ∂

∂xi

∂

∂xl
Am êk (3.14)

=
3∑

k=1

∂

∂xi

∂

∂xl
Ai êl −

3∑
i=1

∂

∂xi

∂

∂xi
Ak êk =

3∑
k=1

êl ∂

∂xl

(∂Ai

∂xi

)
−

3∑
i=1

∂2(Ak êk

)
∂xi∂xi

(3.15)

= ~∇
(
~∇· ~A

)
− ~∇2 ~A . (3.16)

(3.17)

Here, in the first row, we iteratively wrote out the curls in the index notation (and substituted

εijk = εjki); in the second, we regrouped the factors in the summands and used the first of the

identities (2.8); in the third, we simply wrote the two summands separately; in the fourth, we

used that, e.g., δkl = 0 unless in fact l = k, whereby dropping the zero terms in which l 6= k

and so also the independent k-summation (and the same for the m-summation), and then we

regrouped the remaining terms; in the fifth row we just rewrote the result in the arrow-notation.
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4 Integration

As for integration, we’ll have to deal with line- surface- and volume-integration. Any recipe for

integration calls for three ingredients:

1. an integration domain, the region over which the relevant variables are varied;

2. an integration element, the infinitesimal portion of the integration domain;

3. an integrand, the function to be integrated.

Thereafter, integration means “sample the integrand point-by-point over the domain, multiply each

sample with the integration element, add up the results”.

— ? —

4.1 1

Line- or contour-integration is 1-dimensional, the domain is a line (curve, contour), often denoted

C. The integration- or line-element is an infinitesimal vector along the line, denoted d~̀; in Cartesian

coordinates, d~̀ = êxdx + êydy + êzdz. Given a scalar or a vector integrand, there are three possible

line-integrals: ∫
C

d~̀ f ,

∫
C

d~̀· ~A , and

∫
C

d~̀× ~A , (4.1)

the results of which are: a vector, a scalar and a vector, respectively.

4.2 2

Area- or surface-integration is 2-dimensional, the domain is a surface, often denoted S. The

integration,- area- or surface-element is an infinitesimal vector perpendicular to the surface (the

direction is conventional), denoted d2~σ. Recalling the geometrical interpretation of the vector prod-

uct, one example of a surface element (for a surface in the x, y-plane) is, using (2.3),

d2~σ = (êxdx)×(êydy) = êz dx dy ; (4.2)

more generally, d2~σ = êx dydz + êy dzdx + êz dxdy. Given a scalar or a vector integrand, there are

three possible surface-integrals:∫
S

d2~σ f ,

∫
S

d2~σ· ~A , and

∫
S

d2~σ× ~A , (4.3)

the results of which are: a vector, a scalar and a vector, respectively.

4.3 3

Volume-integration is 3-dimensional, the domain is a volume, often denoted V . The integration- or

volume-element is an infinitesimal scalar, denoted dτ , or more often d3~r2. Recalling the geometrical

2Yes, this is very agreeably confusing, as d3~r looks like a vector; but it isn’t. However, dτ looks 1-
dimensional and dV (for volume) may be confusing since V is also used for the electrostatic potential
(voltage), the potential energy, and sometimes to denote a vector. . .
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interpretation of the mixed product, the volume element in Cartesian coordinates can be written

as, using (2.3) and (2.1),

d3~r = (êxdx)·
[
(êydy)×(êzdz)

]
= dx dy dz . (4.4)

Given a scalar or a vector integral, there are two possible volume-integrals:∫
V

d3~r f , and

∫
V

d3~r ~A , (4.5)

the results of which are: a scalar and a vector, respectively.

5 Reduction of the order of integration

The so-called fundamental theorem of calculus should be well known for the case of single-variable

functions: ∫ b

a

dx
df

dx
= f(b)− f(a) . (5.1)

While this may look trivial at the moment, let us examine this a little bit further. The left-hand

side is an integral of a derivative, while the right-hand-side is simply an evaluation of the function—

the integration and the derivative cancel each other in a sense. Note however, that the function

is evaluated at the endpoints of the integration interval, and that the endpoints are the boundary

points of the interval. Note that we may consider the evaluation of the function at the points

a, b as an integration over the 0-dimensional domain consisting of the two points and where the

point-integration-element is “1”; silly as it may look, this does satisfy the basic integration recipe.

— ? —

We now wish to find generalizations of this “integration-order-reduction” formula for (at least

some cases of) the above integrals.

Generally speaking, a line-integral of a derivative should become some simple evaluation; a

surface-integral of a derivative should become some line-integral; a volume integral of a derivative

should become some surface-integral. In addition, the lower-order integral should range over the

boundary of the higher-order integral. We will use the symbol ∂ in place of writing “the boundary

of”. Next, note that the boundary is closed, i.e., has no boundary of its own: this is trivial for the two

endpoints of an interval, since the boundary of these (0-dimensional) endpoints would have to be−1-

dimensional. In higher dimensions, this is no longer so trivial, but is nevertheless straightforward:

the boundary ∂X of some space X by definition contains all limit points of (Cauchy) sequences

within X, which are not in X. If ∂X had a boundary, it would consist of points which are limit

points of sequences within ∂X which are not in ∂X. But such limit points would also be limit

points of sequences in X, and would therefore have to have been in ∂X in the first place, hence

contradiction. Integrals over closed surfaces will be written
∮

instead of
∫

.

5.1 One-to-zero

Start with a simple generalization of (5.1):∫ b

a

d~̀·~∇f = f(b)− f(a) = f
∣∣∣b
a

, (5.2)
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where f
∣∣b
a

is read “f evaluated in the limits b, a”. This can also be written as∫
C

d~̀·~∇f = f
∣∣∣
∂C

, (5.3)

where ∂C = {a, b} is the boundary of the curve C connecting the points a, b. Besides the hinted

analogy with (5.1), this can be proven rather easily by cutting up the curve C into sufficiently

many pieces such that each looks fairly straight, and then applying (5.1) piece by piece (changing

integration variables for each piece to be aligned with the piece of C). The pieces in between cancel

upon summation and only the end-point contributions remain.

Now, given a vector ~A, the derivative ~A·~∇ is easily seen to be a derivative in the direction of
~A, called the directional derivative. In the above integral, d~̀·~∇ is the directional derivative in the

direction of the line-element, i.e., along the integration contour C.

By the same token, replacing the scalar function above with a vector:∫
C

d~̀·~∇ ~A =

∫
C

(
dx

∂ ~A

∂x
+ dy

∂ ~A

∂y
+ dz

∂ ~A

∂z

)
= ~A

∣∣∣
∂C

, (5.4)

and a proof can be written pretty much along the same line as above, except it would have to be

written out separately for the x, the y and the z component of ~A.

Rather more formally, we note that the left-hand-side of (5.3) is a scalar. Dropping the order

of integration by one, and the derivative operator, we remain with the scalar function itself. Its

values on the two points of ∂C are of course also scalars, so the formula makes sense. Furthermore,

the formula holds because quite simply, there’s nothing else to be written down so as to cancel the

derivative against the integral and have both sides be scalars. Indeed, the alternate candidates for

the left-hand-side: ∫
C

d~̀ (~∇· ~A) ,

∫
C

d~̀×(~∇× ~A) and

∫
C

(d~̀×~∇)× ~A (5.5)

could not have possibly contributed to the left-hand-side of (5.4): in all three, the direction of the

resulting vector depends on the direction of d~̀ along contour, whereas the intended right-hand-side,
~A|∂C is independent of it. In fact, we may well write this as an equality of operators:∫

C

d~̀·~∇ [ · · · ] = [ · · · ]
∣∣∣
∂C

. (5.6)

5.2 Two-to-one

Now consider possible formulas relating surface- to line-integrals. For the left-hand-side, the surface

integration, we have two vectors, d2~σ and ~∇. Given then a scalar function, we can either form a

scalar, d2~σ·(~∇f), or a vector, d2~σ×(~∇f). Consider a possible integration-order-reduction formula:∫
S

d2~σ·~∇f
?
=

∮
∂S

d~̀ f (5.7)

cannot possibly be correct, since the left-hand-side is a scalar, and one cannot make a scalar on the

right-hand-side. So then try ∫
S

d2~σ×~∇f =

∮
∂S

d~̀ f , (5.8)
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which in fact must be correct, since there is no other way to make a vector from a surface integral

of the gradient of the scalar function f on the left-hand-side, and from a line integral of the scalar f

on the right hand side. So, we have obtained our first “trivially proven” integration-order-reduction

formula.

Given a vector function, there is again a unique way to make a surface integral of a derivative

of a vector such that the result would be a scalar:∫
S

d2~σ·(~∇× ~A) ≡
∫

S

(d2~σ×~∇)· ~A =

∮
∂S

d~̀· ~A , (5.9)

which must again be true, since both sides are unique scalar expressions with the correct number of

derivatives and integrations. This, in fact is the well-known “Stokes’ formula”, or the “fundamental

theorem of curls”.

The third formula ∫
S

(d2~σ×~∇)× ~A =

∮
∂S

d~̀× ~A , (5.10)

is harder to pinpoint: while the right-hand-side is the unique vector made from the line element d~̀

and ~A, the left-hand-side is not unique. By far the easiest way to prove by substituting ~A → ~A×~P

in (5.9), where ~P is a constant vector. Upon using the cyclic property of the mixed product (2.16)

(twice in the left-hand-side and once on the right hand side):

~P ·
∫

S

(d2~σ×~∇)× ~A = ~P ·
∮

∂S

d~̀× ~A . (5.11)

So, since the constant vector ~P is arbitrary, this must be true even if ~P · is “stripped off”, whence (5.10)

follows.

A neat way to remember that the right-hand-side of (5.10) contains (d2~σ×~∇)× ~A rather than

d2~σ×(~∇× ~A) is that the derivative will cancel one of the two integrations in
∫

d2~σ, so that the

cross-product between d2~σ and ~∇ is the first to be evaluated, and the resulting integration operator

is the applied to ~A.

5.3 Three-to-two

Finally, we come to volume integration. This time, we have the scalar volume element d3~r, the

derivative ~∇ and either a scalar or a vector. Given a scalar f , both left and right-hand-sides of∫
V

d3~r
(
~∇f

)
=

∮
∂V

d2~σ f (5.12)

are unique, whence the formula must hold. Similarly, given a vector ~A, there is a unique scalar on

both left and right-hand-sides of ∫
V

d3~r
(
~∇· ~A

)
=

∮
∂V

d2~σ· ~A , (5.13)

and also there is a unique vector on both left and right-hand-sides of∫
V

d3~r
(
~∇× ~A

)
=

∮
∂V

d2~σ× ~A . (5.14)

Therefore, Eqs. (5.12)– (5.14) are all “trivially true”. The second of these is known as “Gauss’s

law” or the “fundamental theorem of divergences”; all such formulas however fall under the general

category of “Stokes’ formulae”.
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6 All together now...

To summarize, we find that the formulae (5.3), (5.4), (5.8), (5.9), (5.10), (5.12), (5.13) and (5.14)

must hold, simply because it is not possible to write anything else on either side of the equation.

The “fundamental theorems of gradients, curls and divergences”, Eqs. (5.3), (5.9) and (5.13), proven

herein “trivially” (by virtue solely of not being able to write down anything else sensible), tend to

occur more often in physics applications than the other ones, so one tends to remember them better

after some practice. In all cases, however, it is possible to extract an operatorial identity in the

manner of Eq. (5.6), and we do this at the bottom of the following table.

One-to-Zero Two-to-One Three-to-Two∫
C

d~̀·~∇f = f
∣∣∣
∂C

∫
S
(d2~σ×~∇)f =

∮
∂S

d~̀ f
∫

V
d3~r ~∇f =

∮
∂V

d2~σ f∫
C

d~̀·~∇ ~A = ~A
∣∣∣
∂C

∫
S
(d2~σ×~∇)· ~A =

∮
∂S

d~̀· ~A
∫

V
d3~r ~∇· ~A =

∮
∂V

d2~σ· ~A∫
S
(d2~σ×~∇)× ~A =

∮
∂S

d~̀× ~A
∫

V
d3~r ~∇× ~A =

∮
∂V

d2~σ× ~A∫
C

d~̀·~∇ [ · · · ] = [ · · · ]
∣∣∣
∂C

∫
S
(d2~σ×~∇)[ · · · ] =

∮
∂S

d~̀ [ · · · ]
∫

V
d3~r ~∇ [ · · · ] =

∮
∂V

d2~σ [ · · · ]

Note that the arguments used here do not fix the relative sign; that is, any one of the above

formulae argued herein could have, in principle, a “−” in front of the right-hand-side. However,

the sign is straightforward to determine by substituting particularly simple functions, f or ~A as the

case may be, and calculating directly. In any case, recall that these signs are mostly conventional

(right-hand-rule), regarding the relative orientations of the integration elements in the interior of

the domain and on the boundary.
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