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Preface
Although we frequently use Cartesian coordinates, other so-called generalized coordinates are often bet-
ter suited to describe a particular coordinate system—not infrequently, because of the geometry of the
boundaries or (twisted) periodicity conditions.

For example, the description of the vertical vibrations of a taut string, such as on a horizontally held
guitar, is readily accomplished using Cartesian coordinates. However, the use of circular polar coordinates
is much better suited for describing the (vertical) vibrations of a horizontally held circular drumhead since
the boundary conditions (the drumhead does not move at the circular rim) is straightforward therein,
but unnecessarily arduous in Cartesian coordinates. In turn, the configuration space of a double planar
pendulum (idealized so the first pendulum may rotate freely in a plane, and the second one freely about
the bead of the first, permitting their otherwise rigid support cranks to pass through each other if need
be) is a torus. Thus, while the configuration of the double planar pendulum can be described in terms of
the Cartesian coordinates of the plane, the use of a two-angular coordinate system simplifies the problem
tremendously. In addition, the geometry of this doubly periodic space of the two angles, (φ1, φ2) permits
the introduction of a complex coordinate z = φ1 + iφ2, which allows us to use the powerful techniques
of complex analysis and geometry. A little further thought then reveals that the configuration space of an
n-fold similarly idealized spherical pendulum is

(S2)×n = S2 × · · · × S2︸ ︷︷ ︸
n times

= (CP1)×n, S2 :=
{

(x, y, z) ∈ R3 : x2 + y2 + z2 = R2
}
, (0.1)

and benefits similarly from the use of complex geometry. In general, CPn is recursively defined for all
n ∈ N as: “Cn with CPn−1 glued in at infinity”, and where CP0 is a point. So, CP1 is C1 (the complex
plane1 ) with a point glued at infinity, i.e., where “all points at infinity” are identified; CP1 ' S2. Generally,
a generalized coordinate may well turn out to be an arbitrarily complicated function of relative positions
of the constituents of the physical system being described, their velocities, and possibly also their higher
derivatives. Also, generalized coordinates may have arbitrary physical units.

Our approach then is “from ground up” (inductive)—in the pragmatic manner of a practicing physi-
cist/engineer, rather than “from top down” (axiomatic-deductive)—as often done in the mathematical
literature. In this spirit, the material is uncovered by examining worked-out examples and generalizing
from there. Nevertheless, one hopes, no real loss of rigor has been committed. Finally, the Reader should
be cautioned that the material presented herein is conceptually not as difficult as the variety of notational
standards in the literature makes it appear; only practice, however, makes it familiar.

* This document is meant to complement/supplement Refs. [1,2,3,4,5,6,7,8], not to supplant them.
1 This is isomorphic to the 2-dimensional real plane, R2, equipped with a “complex structure”, meaning a choice

of a linear map i : R2 → R2 that squares to multiplication by −1.
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1 Basics

We will need to recall two most basic rules in calculus:

product rule:
d

dx

(
f(x)g(x)

)
=
(d f(x)

dx

)
g(x) + f(x)

(d g(x)

dx

)
, (1.1)

chain rule:
d

dx

(
f
(
g(x)

))
=
(d f(g)

dg

)(d g(x)

dx

)
, (1.2)

and their multi-variable calculus generalizations:

product rule:
∂

∂ξi
(
f(ξ)g(ξ)

)
=
(∂f(ξ)

∂ξi

)
g(ξ) + f(ξ)

(∂g(ξ)

∂ξi

)
, (1.3)

chain rule:
∂

∂ξi

(
ηj
(
ζ(ξ)

))
=
(∂ηj
∂ζk

)(∂ζk
∂ξi

)
. (1.4)

These formulae hold within a “coordinate chart”—an n-dimensional region isomorphic to Rn

(perhaps with an additional complex or other structure) within (possibly all of) the space of
interest2 . Not infrequently, the space of interest cannot be covered completely by a single chart:
a 2-sphere, S2, requires at least two such charts. Then, the space of interest, X, is to be covered
by an atlas of such charts, A := {Ui, i = 1, 2, . . . }, such that: (1) ∪iUi = X, and (2) we know how
to transform the coordinates specified for Ui into those specified for Uj wherever Ui ∩ Uj 6= ∅.
Without loss of generality then, we restrict to such a coordinate chart, and furthermore use the
fact that Rn is a vector space over the ground field of real numbers.

— ? —

For a given n-dimensional vector space, we will choose a reference frame within which
the n-tuple of coordinates (ξ1, · · · , ξn) can represent any point ~r in the given space. In typi-
cal physics/engineering applications, we will need to compute with an assortment of quantities,
many of which are vectors ( ~A, ~B, . . . ) in the physics/engineering sense; see definition 1.2 on
page 5. Since we may equally well choose a different reference frame, with an n-tuple (η1, · · · , ηn)

representing the same point (vector), it is important to be able to change ξ → η and back η → ξ.
Indeed, most of the subsequent material is introduced with this notion in mind. This application-
motivated approach is pragmatic and realistic: vector spaces are collections of concrete objects
(such as the red, green and blue quark; the modes of oscillation of a guitar string; stationary
states in the Hydrogen atom; . . . ) the specification of which is subject to routine redefinitions
(coordinate changes, e.g., the easier to compute), rather than an abstract axiomatic structure. The
latter, of course, does exist; it merely is not as compelling a framework from which to start—with
an ultimate physics application, and a typical physics prerequisite education in mind.

Note that Rn being a vector space implies that each coordinate chart admits a choice of
coordinates (ξ1, · · · , ξn) which satisfy the vector space axioms, so that if all n-tuples (ξ1, · · · , ξn)

2 Physical applications include the configuration space, momentum space and phase space in classical physics, space
of extrinsic variables in statistical physics, parameter spaces in various branches of physics, the Hilbert space of states
in quantum physics, the space of normal modes of dynamics of spatially extended bodies (the latter two of which,
admittedly, are most often infinite-dimensional, so that some of the results presented herein simply do not apply
therein), etc.. . .
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represent points in the coordinate chart, so do all real linear combinations αiξi + βiξ
i, αi, βi ∈ R.

However, we are by no means mandated to use such coordinates, and nonlinear transformations
ξi → ηi = ηi(ξ) are perfectly welcome—often even indispensable. For example, ~r1+~r2 in the usual
3-dimensional space is indeed a linear combination in the Cartesian coordinate representation
of ~r1, ~r2, but is well known not to be the case in the spherical coordinates. (It makes even no
physical sense to form linear combinations of radii and the two types of angles measured in two
different ways.) This may then be seen as a consequence of the nonlinearity of the coordinate
transformation (x, y, z)↔ (r, θ, φ).

1.1 Vector Variations

In many typical physics/engineering considerations, we compute with an assortment of quanti-
ties, some of which are vectors. Intuitively understood as quantities that in addition to “magni-
tude” also have a “sense of direction”—which is woefully imprecise for an actual definition, these
vectors turn out to be a specific special case of what mathematicians call so.

The math-formal notion of vectors turns out to be very useful—in fact, ubiquitous throughout
physics/engineering—and is as follows:

Definition 1.1 Given a ground field3 of scalars , k (such as R,C), a (linear) vector space V

(over the field k) is a collection of objects, ~v, such that∑
i

ci~vi ∈ V, for all ci ∈ k, ~vi ∈ V. (1.5)

That is, vectors form a closed set under k-linear superposition.

Remark 1.1: The use of the word superposition is not at all accidental: one might say that these
“math-formal vectors are quantities that are superposable,” and in turn, any set of superposable
quantities are math-formal vectors. In particular, the physics/engineering notion of vectors sat-
isfies this definition, thus justifying the name. However, this math-formal notion of vectors is
vastly more general: all matrices of a given p × q size are superposable and so vectors, so are all
quaternions, all spin-1

2
wave-functions satisfying a pre-selected Schrödinger equation, so are all

binary numbers (with the ground field reduced to {0, 1}), etc.

It will behoove us therefore to provide a more precise definition, one that singles out the
physics/engineering vectors (forces, velocities, accelerations, electric/magnetic fields, etc.). Many
of these physics/engineering quantities that are vectors may well be depicted within our “real” 3-
dimensional space, and graphed/plotted in it. One should be careful, however, not to identify the
two: Clearly, any n-tuple of arbitrary generalized coordinates (as the notion is carefully defined
within classical mechanics) will in general depend nonlinearly on, say, Cartesian coordinates of
the 3-dimensional space. Therefore, an n-tuple of generalized coordinates (ξ1, · · · , ξn) will hardly
ever be a vector in the sense of the definition 1.1. Nevertheless, certain derived quantities such

3 “Field” here is meant in the mathematical sense of the word: A field is a collection of elements equipped with
two binary operations, an ‘addition’ and a ‘multiplication’ with respect to both of which the elements of a field form a
group, except that “0” (the ‘additive’ unit) does not have a multiplicative inverse; furthermore, these two operations
must satisfy the usual distributive laws.
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as the n-tuple of appropriately scaled differentials (h1dξ
1, · · · , h1dξn) and of appropriately scaled

derivatives
(
h−11

∂
∂ξ1
, · · · , h−1n ∂

∂ξn

)
always are vectors with a suitable choice of scaling functions

(h1, · · · , hn), and we now turn to some of these; we return to this issue in section 1.1.3.
— ? —

Given the rules for changing coordinates, standard rules of calculus imply that:

dξi =
( ∂ξi
∂ηj

)
dηj, (1.6a)

∂

∂ξi
=
(∂ηk
∂ξi

) ∂

∂ηk
. (1.6b)

In particular, note that with respect to the change of variables ξi 7→ ξi(η), the quantity dξi,
the ith component of the differential d~r in the ξ-coordinates, transforms inversely from ∂

∂ξi
, the

ith component of the derivative operator ~∇ in the ξ-coordinates. Whereas it is irrelevant whether
we superscript coordinates (as done herein, consistently), or subscript them, it is important that
we do distinguish the relatively inverse nature of the two transformation rules (1.6a)–(1.6b), and
that we do distinguish them one from another:

Definition 1.2 Any n-tuple of quantities that transform akin to the components of d~r, as
specified in (1.6a):

Ai(ξ) =
( ∂ξi
∂ηj

)
Aj(η), (1.7)

will be called contravariant vectors and will be superscripted, just as coordinates are. Any
n-tuple of quantities that transform akin to the components of ~∇, as specified in (1.6b):

Bi(ξ) =
(∂ηk
∂ξi

)
Bj(η), (1.8)

will be called covariant vectors and will be subscripted, opposite from how coordinates are
indexed.

Remark 1.2: The nonlinearity (curvilinearity) of the coordinates (ξ1, · · · , ξn) in no way prevents
forming superpositions of the differentials dξi on one hand, and/or superpositions of the partial
derivatives ∂

∂ξi
on the other. In concrete applications, this most often violates a separate fact—that

the generalized coordinates, and so also their differentials and partial derivatives with respect
to them, have definite and distinct physics/engineering units/dimensions. At the moment, we
are concerned with the quantities such as (1.6a)–(1.6b) regardless of additional properties that
might stem from their application in physics/engineering; those additional properties can always
be included subsequently.

In turn, one can also define the superposition to involve coefficients that themselves have ap-
propriate physics/engineering units/dimensions, thus permitting us to form a linear combination
of physically disparate objects, such as:

dz + ` sin θ dφ, dE +mc dv +mf da, etc., (1.9)
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where z is the vertical coordinate, θ, φ the spherical angles, ` a constant of the units/dimensions
of length, E,m, v, f, a the energy, mass, speed, frequency and acceleration, respectively, and c

denotes the speed of light in vacuum.

By linearity of the defining differential conditions, the twin definition 1.2 specifies two vec-
tor spaces over any given field, k, since any k-linear superposition of covariant vectors is still
covariant, and similarly, any k-linear combination of contravariant vectors is still contravariant.

— ? —

Note that there will definitely exist quantities that do not transform at all with respect to a
change of coordinates ξi 7→ ηi(ξ): those are invariants and are also called scalars. In turn, there
exist quantities that transform, but unlike either of the two rules (1.6a)–(1.6b): we’ll see later
what some of those might be.

WoE 1.1 (the exterior derivative) : The quantity d := dξi ∂
∂ξi

does not transform at all:

dξi
∂

∂ξi
= dηj

∂ξi

∂ηj
∂ηk

∂ξi
∂

∂ηk
= dηj δkj

∂

∂ηk
= dηj

∂

∂ηj
, (1.10)

since
∂ξi

∂ηj
∂ηk

∂ξi
=
∂ξi

∂ηj
∂

∂ξi
ηk
∗
=

∂

∂ηj
ηk =

∂ηk

∂ηj
= δkj , (1.11)

where ∗= follows on using the “chain rule” backwards.

Remark 1.3: The invariant pairing (1.10) of these co- and contra-variant vector components is
closely related to the duality between any given vector space V and its formal dual, V ∗. Here, if
dξi ∈ V , then ∂

∂ξi
∈ V ∗.

1.1.1 The Kronecker δ-Symbol

Let ξi denote the ith coordinate in a system (ξ1, · · · , ξn) of independent coordinates. Then:

∂ξi

∂ξj
=: δij :=

{
1, if i = j,

0, if i 6= j.
(1.12)

We pause here to observe that the indices i, j are free: one can freely substitute any of their
possible values in their place. Also, we will adhere to the convention that the index (counter)
of the coordinates is written as a superscript. This definition of the Kronecker δ-symbol (1.12) is
simply a reflection of what we mean by independent variables and partial derivatives.

This statement of linear independence defines an immensely important quantity (1.12):

WoE 1.2 (The Kronecker δ-Symbol) : The quantity δij as defined in (1.12) is invariant with respect to all
invertible coordinate changes. The proof of this in fact requires no actual computation, merely the obser-
vation that Eq. (1.12) asserts the mutual independence of the coordinates (ξ1, · · · , ξn) and the maximality
of the collection that forms a basis. All invertible changes of coordinates must then result in a system of
coordinates which must be mutually independent just the same.
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Nevertheless, consider the transformation of δij with respect to the coordinate change4 , ξi 7→ ξi(η):

δij =
∂ξi

∂ξj
7→
(∂ηl
∂ξj

∂(ξi)

∂ηl

)
=
(∂ηl
∂ξj

∂ηk

∂ηl
∂ξi

∂ηk

)
∗
=
(∂ηl
∂ξj

δkl
∂ξi

∂ηk

)
=
(∂ηk
∂ξj

∂ξi

∂ηk

)
=
∂ξi

∂ξj
= δij , (1.13)

where ∗= follows using that ∂η
k

∂ηl
= δkl since the coordinates ηi are independent from each other; colors were

used to help tracking the use of the ‘chain rule’ in changing variables: red and blue initially, and green
when using the ‘chain rule’ backwards.

Conversely, we can also write:

∂ξi

∂ξj
= [δ(ξ)]

i

j
7→ ∂ηi

∂ξk
[δ(ξ)]

k

l

∂ξl

∂ηj
=
∂ηi

∂ξk
∂ξk

∂ηj
=
∂ηi

∂ηj
= [δ(η)]

i

j
, (1.14)

which shows that the δij stating the independence of the ξ-coordinates simply transforms into the δij stating
the independence of the η-coordinates.

WoE 1.3 (The Kronecker δ-Symbol, Again) : Consider changing coordinates ξ → η:

δij =
∂ξi

∂ξj
=
∂ηk

∂ξj
∂ξi

∂ηk
(1.15)

and multiply this by ∂ξj

∂ηm from the left, and by ∂ηn

∂ξi
from the right to obtain:

∂ξj

∂ηm
δij
∂ηn

∂ξi
=

∂ξj

∂ηm
∂ηk

∂ξj
∂ξi

∂ηk
∂ηn

∂ξi

∂ξj

∂ηm
∂ηn

∂ξj
=
∂ηn

∂ηm
=
∂ηk

∂ηm
∂ηn

∂ηk
. (1.16)

In the first row, we used that ξ → η is an invertible change of variables, so that the matrix [ ∂ξ
i

∂ηj
] is invertible.

The last equality states that the matrix [ ∂η
n

∂ηm ] is idempotent (it squares to itself) and so is a projection matrix.
We must assume that this matrix is also of maximum rank (equivalently, it has a nonzero determinant)—
were it not, the collection η1, · · · , ηn would turn out linearly dependent. Since the only projection matrix
the rank of which equals its size is the identity matrix, it follows that

∂ηn

∂ηm
= δnm. (1.17)

That implies:
δij(ξ) = δij(η) (1.18)

is invariant with respect to the general coordinate transformation ξ → η.

The definition (1.12) and the result (1.16) imply (separately):

Corollary 1.1 The Kronecker symbol satisifes:

δij δ
j
k = δik, δii = n. (1.19)

4 Here and hereafter, we use the Einstein convention, according to which—unless otherwise stated—we sum over
each pair of repeated indices; thus: Xi

jY
j
k :=

∑n
j=1X

i
jY

j
k , etc., for any Xi

j and any Y j
k .
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Using δij, we can construct other invariant objects, by means of linear algebra, i.e., by Carte-
sian products and (anti)symmetrization:

δ ik[jl] = δ
[ik]
jl := 1

2!

(
δij δ

k
l − δil δkj

)
, (antisymmetrized) (1.20a)

δ ik(jl) = δ
(ik)
jl := 1

2!

(
δij δ

k
l + δil δ

k
j

)
, (symmetrized) (1.20b)

δ ikm[jln] = δ
[ikm]
jln := 1

3!

(
δij δ

k
l δ

m
n − δil δkj δmn + δil δ

k
n δ

m
j − δin δkl δmj + δin δ

k
j δ

m
l − δij δkn δml

)
, (1.20c)

δ ikm(jln) = δ
(ikm)
jln := 1

3!

(
δij δ

k
l δ

m
n + δil δ

k
j δ

m
n + δil δ

k
n δ

m
j + δin δ

k
l δ

m
j + δin δ

k
j δ

m
l + δij δ

k
n δ

m
l

)
, (1.20d)

δ ikm[jl]n := δ ik[jl] δ
m
n − δikm[jln],

= 1
3!

(
2δij δ

k
l δ

m
n − 2δil δ

k
j δ

m
n − δil δkn δmj + δin δ

k
l δ

m
j − δin δkj δml + δij δ

k
n δ

m
l

)
, (1.20e)

δi kmj[ln] := δij δ
km
[ln] − δikm[jln],

= 1
3!

(
2δij δ

k
l δ

m
n + δil δ

k
j δ

m
n − δil δkn δmj + δin δ

k
l δ

m
j − δin δkj δml − 2δij δ

k
n δ

m
l

)
, (1.20f)

δ ikm
(jl)n := δ ik(jl) δ

m
n − δikm(jln),

= 1
3!

(
2δij δ

k
l δ

m
n + 2δil δ

k
j δ

m
n − δil δkn δmj − δin δkl δmj − δin δkj δml − δij δkn δml

)
, (1.20g)

and so on, indefinitely; the normalizations are included for computational convenience.

WoE 1.4 (Kronecker Identities) : Note that

δ ik[jl] + δ ik(jl) = δij δ
k
l ; δji δ

ik
[jl] = 0; δji δ

ik
(jl) = δkl ; (1.21)

δ ik[jl]δ
j l

(mn) = 0; (1.22)

δ ik[jl]δ
m
n = 1

3!(3δ
i
j δ

k
l − 3δil δ

k
j )δmn ± 1

3!(δ
i
l δ
k
n δ

m
j − δin δkl δ

µ
j + δin δ

k
j δ

m
l − δij δkn δ

µ
l ),

= 1
3!

(
δij δ

k
l δ

m
n − δil δkj δmn + δil δ

k
n δ

m
j − δin δkl δmj + δin δ

k
j δ

m
l − δij δkn δml

)
+ 1

3!

(
2δij δ

k
l δ

m
n − 2δil δ

k
j δ

m
n − δil δkn δmj + δin δ

k
l δ

m
j − δin δkj δml + δij δ

k
n δ

m
l

)
= δikm[jln] + δikm[jl]n; (1.23)

δ ik[jl]δ
jm

(np) = 1
2!

(
δij δ

k
l − δil δkj

)
1
2!

(
δjn δ

m
p + δjp δ

m
n

)
,

= 1
4

(
δij δ

k
l δ

j
n δ

m
p − δil δkj δjn δmp + δij δ

k
l δ

j
p δ

m
n − δil δkj δjp δmn

)
,

= 1
4

(
δin δ

k
l δ

m
p − δil δkn δmp + δip δ

k
l δ

m
n − δil δkp δmn

)
,

= 1
2

(
δ ik[nl] δ

m
p + δ ik[pl] δ

m
n

)
,

= 1
2

(
δ ikm[nl]p + δ ikm[nlp] + δ ikm[pl]n + δ ikm[pln]

)
,

= 1
2

(
δ ikm[nl]p + δ ikm[pl]n

)
; (1.24)

δ ikm[jl]n + δ ikm[ln]j + δ ikm[nj]l = 0, (1.25)

since: = 1
3!

(
2δij δ

k
l δ

m
n − 2δil δ

k
j δ

m
n − δil δkn δmj + δin δ

k
l δ

m
j − δin δkj δml + δij δ

k
n δ

m
l

)
+ 1

3!

(
− δij δkl δmn + δil δ

k
j δ

m
n + 2δil δ

k
n δ

m
j − 2δin δ

k
l δ

m
j − δin δkj δml + δij δ

k
n δ

m
l

)
+ 1

3!

(
− δij δkl δmn + δil δ

k
j δ

m
n − δil δkn δmj + δin δ

k
l δ

m
j + 2δin δ

k
j δ

m
l − 2δij δ

k
n δ

m
l

)
;

but, then also:

δ ikm[jl]n + δ ikm[ln]j + δ ikm[nj]l = δ ik[jl] δ
m
n + δ ik[ln] δ

m
j + δ ik[nj] δ

m
l − 3δikm[jln], implying that

δikm[jln] = 1
3

(
δ ik[jl] δ

m
n + δ ik[ln] δ

m
j + δ ik[nj] δ

m
l

)
. (1.26)

This clearly just barely starts the combinatorial avalanche of such identities.

8



1.1.2 Levi-Civita

Let (ξ1, · · · , ξn) and (η1, · · · , ηn) be two coordinate systems. Assuming that both systems equally
well describe all of the space they are intended to describe, a change of variables ηi 7→ ξi = ξi(η)

must be invertible, which implies that:

ξi = ξi(η)

ηj = ηj(ξ)

}
⇒

∣∣∣∂ξ
∂η

∣∣∣ := det

[
∂(ξ1, · · · , ξn)

∂(η1, · · · , ηn)

]
:= det


∂ξ1

∂η1
· · · ∂ξ1

∂ηn

... . . . ...
∂ξn

∂η1
· · · ∂ξn

∂ηn

 6= 0. (1.27)

Note that the elements of this matrix—and so also its determinant, called the Jacobian (matrix)
of the transformation, can be arbitrarily varying functions. The invertibility condition is then
supposed to hold at every point in the space described by (ξ1, · · · , ξn), i.e., (η1, · · · , ηn)—that is,
for all permissible values of the ξ- and η-variables, i.e., for all points (vectors) in this vector space.

Writing out the determinant (1.27) in some detail reveals another immensely useful quantity:∣∣∣∂ξ
∂η

∣∣∣ =
∂ξ1

∂η1

(
∂ξ2

∂η2

(
· · ·
(∂ξn−1
∂ηn−1

∂ξn

∂ηn
− ∂ξn−1

∂ηn
∂ξn

∂ηn−1

)
· · ·
))

− ∂ξ1

∂η2

(
∂ξ2

∂η1

(
· · ·
(∂ξn−1
∂ηn−1

∂ξn

∂ηn
− ∂ξn−1

∂ηn
∂ξn

∂ηn−1

)
· · ·
))

...

+ (−1)n
∂ξ1

∂ηn

(
∂ξ2

∂η1

(
· · ·
(∂ξn−1
∂ηn−2

∂ξn

∂ηn−1
− ∂ξn−1

∂ηn−1
∂ξn

∂ηn−2

)
· · ·
))

= εij···kl
∂ξ1

∂ηi
∂ξ2

∂ηj
· · · ∂ξ

n−1

∂ηk
∂ξn

∂ηl
= εij···kl

∂ξi

∂η1
∂ξj

∂η2
· · · ∂ξ

k

∂ηn−1
∂ξl

∂ηn
. (1.28)

A little experimentation5 should convince the diligent Reader that the Levi-Civita permutation
symbols εij···kl and εij···kl—defined implicitly by their alternative occurrence in the expansion of
the determinant (1.28)—may also be specified as follows:

εi1 ··· in =


+1 for i1, · · · , in = even permutation of 1, · · · , n;

−1 for i1, · · · , in = odd permutation of 1, · · · , n;

0 for all other cases;
(1.29)

and identically for εi1···in.

WoE 1.5 (Levi-Civita) : For example, when n = 2:

ε12 = 1 = −ε21, ε11 = 0 = ε22; (1.30)

and when n = 3:

ε123 = ε231 = ε312 = 1,

ε132 = ε321 = ε213 = −1,

ε111 = ε222 = ε333 = 0,

ε112 = ε121 = ε211 = ε122 = ε212 = ε221 = 0,

ε113 = ε131 = ε311 = ε133 = ε313 = ε331 = 0,

ε223 = ε232 = ε322 = ε233 = ε323 = ε332 = 0;

(1.31)

5 Start with n = 2, 3, not n = 213. . . please.
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and so on, for n = 4, 5 . . .

The definition (1.28)–(1.29) has an immediate consequence:

Corollary 1.2 The Levi-Civita symbol is totally antisymmetric. That is, it changes sign upon
swapping any two if its indices:

ε···i···j··· = −ε···j···i···. (1.32)

Upon defining the covariant Levi-Civita symbol, εij···kl, to have the same values as its con-
travariant cousin (1.29), a little low-n experimentation and mathematical induction proves:

Proposition 1.1 The Levi-Civita symbol satisfies:

εi1i2···in−1inεj1j2···jn−1jn = n! δ i1···in
[j1···jn] = δi1j1δ

i2
j2
· · · δin−1

jn−1
δinjn − δ

i1
j1
δi2j2 · · · δ

in−1

jn
δinjn−1

+ · · ·
− δi1j2δ

i2
j1
· · · δin−1

jn−1
δinjn + δi1j2δ

i2
j1
· · · δin−1

jn
δinjn−1

− · · ·
. . . (a total of n! terms, in all permutations). (1.33)

WoE 1.6: For n = 2, we have:

εijεkl = 2! δ ij[kl] = δikδ
j
l − δ

i
lδ
j
k, ⇒ εijεkj = δik, ⇒ εijεij = 2; (1.34)

where the latter two equations are obtained from the first one, like so:

δlj

(
εijεkl

)
= δlj

(
δikδ

j
l − δ

i
lδ
j
k

)
,

εij
(
δljεkl

)
= δik

(
δljδ

j
l

)
−
(
δljδ

i
l

)
δjk,

εijεkj = δik
(
δjj
)
−
(
δij
)
δjk = δik

(
2
)
− δik = (2− 1)δik = δik, (1.35)

and
δki
(
εijεkj

)
= δki

(
δik
)

⇒ εijεij = δii = 2. (1.36)

For n = 3, we have:

εijkεlmn = 3! δ i j k[lmn] = δilδ
j
mδ

k
n − δilδjnδkm + δinδ

j
l δ
k
m − δinδjmδkl + δimδ

j
nδ
k
l − δimδ

j
l δ
k
n, (1.37a)

⇒ εijkεlmk = 2! δ i j[lm] = δilδ
j
m − δimδ

j
l , (1.37b)

⇒ εijkεljk = 2 δil , (1.37c)

⇒ εijkεijk = 3! = 6. (1.37d)

and so on, for n = 4, 5 . . .

1.1.3 Linearization Owing to Infinitesimality

A cautionary note is in order: we have insisted that we are in fact considering general invertible
changes of variables ξi → ηi = ηi(ξ). On the other hand, the erudite Reader will realize that the
transformation rules (1.6a)–(1.6b) are examples of linear transformations. Surely, we have not
blundered using linear transformations but calling them “general invertible”.
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To clear up a confusing bit of terminology, recall that what is called “a linear transformation”
of an n-tuple (x1, · · · , xn) may be written:

xi → yi = aij x
j + bi, i.e.,

x
1

...
xn

→
y

1

...
yn

 =

a
1
1 · · · a1n

... . . . ...
an1 · · · ann


x

1

...
xn

+

b
1

...
bn

 . (1.38)

The simplest example of this is the very well known n = 1 case: x→ y = ax+ b, and indeed, it is
standard to call y(x) = ax+ b a “linear function.”

On the other hand, the term “linear operator/operation” is subject to the more formal

Definition 1.3 An operator (operation) L over (on elements of) a vector space (as per defi-
nition 1.1) is called linear if

L
(∑

i

ci~vi

)
=
∑
i

ci L (~vi). (1.39)

In turn, if an operator (operation) A over (on elements of) a vector space (as per defini-
tion 1.1) satisfies

A
(∑

i ci~vi

)
=
∑

i c
∗
i A (~vi) for ci ∈ C,

or, less often, A
(∑

i ci~vi

)
= −

∑
i ci A (~vi),

(1.40)

it is called anti-linear. (The latter choice is standard within quantum theory.)

Somewhat confusingly, the linear transformation (1.38) is not a linear operation in the sense
of definition 1.3:

L (x) = ax+ b, then L (cx+ c′x′) = a(cx+ c′x′) + b = acx+ ac′x′ + b, (1.41)

which is equal to

cL (x) + c′L (x′) = c(ax+ b) + c′(ax′ + b) = acx+ ac′x′ + (c+ c′)b (1.42)

only if b = 0. The analogous observation applies to the full, n-tuple linear transformation (1.38).

The additive terms bi in (1.38) are called inhomogeneities or translations, and may be thought
of as an obstruction for Eq. (1.38) to be linear in the sense of the definition 1.3. In turn, the
homogeneous linear transformation

xi → yi = aij x
j, i.e.,

x
1

...
xn

→
y

1

...
yn

 =

a
1
1 · · · a1n

... . . . ...
an1 · · · ann


x

1

...
xn

 (1.43)

is also linear in the sense of definition 1.3.

Finally, examining the transformation rules (1.6a)–(1.6b), which we may write akin to (1.43):
dη1

...

dηn

 =


∂η1

∂ξ1
· · · ∂η1

∂ξn

... . . . ...
∂ηn

∂ξ1
· · · ∂ηn

∂ξn




dξ1

...

dξn

 and


∂
∂η1

...
∂
∂ηn

 =


∂ξ1

∂η1
· · · ∂ξn

∂η1

... . . . ...
∂ξ1

∂ηn
· · · ∂ξn

∂ηn




∂
∂ξ1

...
∂
∂ξn

 , (1.44)
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we see that they are indeed homogeneous linear transformations as defined in (1.43).

The matrices
[
∂ηi

∂ξj

]
and

[
∂ξi

∂ηj

]
are far from constant, in general: for a general invertible trans-

formation ξi → ηi = ηi(ξ), they will be appropriate non-trivial functions. However, the equa-
tions (1.44) are linear in the n-tuples of differentials and partial derivatives, respectively. We
refer to the homogeneous linear transformations (1.44) as the linearization of the general invert-
ible transformation ξi → ηi = ηi(ξ), which itself is nonlinear in general.

WoE 1.7: Consider the nonlinear change of variables

η1 = ξ1ξ2, η2 =
ξ1

ξ2
; ξ1 =

√
η1η2, ξ2 =

√
η1

η2
. (1.45)

Then, having in mind WoE 1.1, we have[
dη1 dη2

]
=

[
dξ1 dξ2

] [
ξ2 1

ξ2

ξ1 − ξ1

(ξ2)2

]
and

[
∂
∂η1
∂
∂η2

]
=

[
1

2ξ2
1

2ξ1

1
2ξ

2 − (ξ2)2

2ξ1

][
∂
∂ξ1
∂
∂ξ2

]
, (1.46)

are both non-constant, homogeneous linear transformations (dξ1, dξ2) → (dη1,dη2) and
(
∂
∂ξ1

, ∂
∂ξ2

)
→(

∂
∂η1

, ∂
∂η2

)
, respectively. Note that[

ξ2 1
ξ2

ξ1 − ξ1

(ξ2)2

][
1

2ξ2
1

2ξ1

1
2ξ

2 − (ξ2)2

2ξ1

]
=

[
1 0

0 1

]
=

[
1

2ξ2
1

2ξ1

1
2ξ

2 − (ξ2)2

2ξ2

][
ξ2 1

ξ2

ξ1 − ξ1

(ξ2)2

]
(1.47)

verifies that ∂η1∂ξ1
∂η1

∂ξ2

∂η2

∂ξ1
∂η2

∂ξ1

 =

 ∂ξ1∂η1
∂ξ1

∂η2

∂ξ2

∂η1
∂ξ2

∂η2

−1 , so

[
dη1 dη2

] [
∂
∂η1
∂
∂η2

]
=

[
dξ1 dξ2

] [
∂
∂ξ1
∂
∂ξ2

]
. (1.48)

In fact, this is also easily verified by explicitly writing out the product of the two matrices of partials.

Thus, the n-tuples (dξ1, · · · , dξn) and (dη1, · · · , dηn) may serve as two (contravariant) bases,
whereas

(
∂
∂ξ1
, · · · , ∂

∂ξn

)
and

(
∂
∂η1
, · · · , ∂

∂ηn

)
may serve as two (covariant) bases. In fact, in any

general coordinate system, d~r defines a contravariant basis for an n-dimensional vector space,
and ~∇ a covariant basis for a dual n-dimensional vector space6 .

One last remark is in order: In typical applications in physics, the generalized coordinates
may well not have the same physical dimensions, and neither will then have their differentials
or partial derivatives. For example, in spherical coordinates, r and dr have dimensions of length
and ∂

∂r
of length−1, while θ, dθ, ∂

∂θ
are all dimension-less. Thus, for (dr, dθ, dφ) to form a basis for

a vector space, this physics consideration forces us to re-scale the differentials by scaling factors.
To this end alone, the basis (dr, rdθ, rdφ) on one hand and ( ∂

∂r
, 1
r
∂
∂θ
, 1
r
∂
∂φ

) on the other would per-
fectly suffice, since all basis elements indeed have the same dimensions. However, examining the
detailed decomposition of d~r in spherical coordinates, we see that the triple (dr, rdθ, r sin(θ)dφ)

is appropriate, to which ( ∂
∂r
, 1
r
∂
∂θ
, 1
r sin(θ)

∂
∂φ

) is the dual basis. Here, we have used elementary ge-
ometry to determine the scaling factors (1, r, r sin(θ)) in spherical coordinate; see Eq. (1.112) for
a definition of the proper scaling functions in the general case.

6 The vector space obtained using the basis of d~r is called the cotangent space, and the vector space obtained using
the basis of ~∇ is called the tangent space.
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1.1.4 Products of Vectors

Motivated by the result of WoE 1.1, we have

Definition 1.4 Given two vectors, ~A specified in terms of a covariant basis (with contravari-
ant coefficients Ai) and ~B specified in terms of a contravariant basis (with covariant coeffi-
cients Bj),

scalar product: ~A · ~B := AiBi. (1.49)

Two vectors are said to be orthogonal if ~A · ~B = 0.

WoE 1.8 (General invariance of the scalar product) : The scalar product of a covariant and a contravariant
vector is invariant with respect to general invertible transformations:

AiBi → A′ iB′i =
(∂ηi
∂ξj

Aj
)(∂ξk

∂ηi
Bk

)
= Aj

∂ηi

∂ξj
∂ξk

∂ηi
Bk = Aj

∂ξk

∂ξj
Bk = Aj δkj Bk = AjBj . (1.50)

We recall that the Jacobian (determinant) of a transformation ξi → ηi occurs in the transfor-
mation of the volume differential:

dη1 · · · dηn =
∣∣∣∂η
∂ξ

∣∣∣ dξ1 · · · dξn, (1.51a)

= εij···kl
∂ηi

∂ξ1
∂ηj

∂ξ2
· · · ∂η

k

∂ξn−1
∂ηl

∂ξn
dξ1 · · · dξn, (1.51b)

= εij···kl
∂ηi

∂ξm
∂ηj

∂ξn
· · · ∂η

k

∂ξp
∂ηl

∂ξq
1
n!
δmn···pq[r s ··· tu] dξ

rdξs · · · dξtdξu, (1.51c)

= εij···kl
∂ηi

∂ξm
∂ηj

∂ξn
· · · ∂η

k

∂ξp
∂ηl

∂ξq
1
n!
εmn···pq︸ ︷︷ ︸ 1

n!
εrs···tu dξrdξs · · · dξtdξu︸ ︷︷ ︸ . (1.51d)

WoE 1.9 (Antisymmetry of dξi) : The expressions (1.51b)–(1.51d) imply that the product of the coordinate
differentials is antisymmetric. At first, this may seem odd: “Shouldn’t it be irrelevant whether we first
integrate over dx and then over dy or the other way around?” However, the antisymmetry of this product
has little to do with integration methods and all to do with the chosen orientation of the coordinate system.

As a simple illustration, consider the (x, y)-plane. One writes a surface integral as
∫

dx dy
[
· · ·
]
.

With suitable integrands and limits (domains in the (x, y)-plane), this may well be computed integrating
either first “over dy” and then “over dx,” or the other way around—and the results of course must be
independent of this order. Note, however, that the coordinate system of the (x, y)-plane is chosen typically
so that the positive x-direction precedes the positive y-direction by 90◦, viewing the (x, y)-plane “from
above” and regarding the counter-clockwise direction of rotations as positive. This is the familiar “right-
handed” coordinate system.

The left-handed coordinate system would order the positive directions of the x- and y-axes in the op-
posite order, and the change from the left-handed to the right-handed coordinate system is easily obtained
by performing the formal coordinate substitution (x, y)→ (y, x).

As with any coordinate substitution, the integration element must be computed:[
x

y

]
→

[
ξ

η

]
=

[
0 1

1 0

][
x

y

]
, (1.52)
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dx dy → dξ dη = det

[
0 1

1 0

]
dx dy = −dx dy, (1.53)

which is precisely the indication that the antisymmetric product of the (lexicographically ordered) coordi-
nate differentials encodes the standard choice of the right-handed coordinate system.

Identifying the Jacobian (determinant) of the transformation:∣∣∣∂η
∂ξ

∣∣∣ = det
[∂η
∂ξ

]
= 1

n!
εij···kl

∂ηi

∂ξm
∂ηj

∂ξn
· · · ∂η

k

∂ξp
∂ηl

∂ξq
εmn···pq, (1.54)

and motivated by the form of (1.51), we define

Definition 1.5 Given n vectors ~A1, · · · , ~An, we define their

determinant product: det
[
~A1, . . . , ~An

]
:=

{
εi1···in A

i1
1 · · ·Ainn ,

εi1···in A1,i1 · · ·An,in
, (1.55)

depending on whether the contravariant or the covariant components have been supplied.

Remark 1.4: By comparison with (1.51b), the determinant product may be identified with the
determinant of the matrix formed by stacking the n-tuples ~Ai in the ith row. This makes it clear
that det

[
~A1, . . . , ~An

]
vanishes unless the n vectors ~A1, · · · , ~An are all linearly independent.

WoE 1.10 (Volume product transformation) : The determinant product of n contravariantly specified vectors
transforms:

det
[
~A′1, . . . ,

~A′n
]

contr. = εi1···in A
′
1
i1 · · ·A′nin = εi1···in

(∂ηi1
∂ξj1

Aj11

)
· · ·
(∂ηin
∂ξjn

Ajnn

)
, (1.56a)

= εi1···in
∂ηi1

∂ξj1
· · · ∂η

in

∂ξjn

(
Aj11 · · ·A

jn
n

)
, (1.56b)

= εi1···in
∂ηi1

∂ξj1
· · · ∂η

in

∂ξjn
δ
[j1···jn]
k1···kn

(
Ak11 · · ·A

kn
n

)
, (1.56c)

= εi1···in
∂ηi1

∂ξj1
· · · ∂η

in

∂ξjn
εj1···jn 1

n!︸ ︷︷ ︸ εk1···kn
(
Ak11 · · ·A

kn
n

)︸ ︷︷ ︸, (1.56d)

det
[
~A′1, . . . , ~A

′
n

]
contr. =

∣∣∣∂η
∂ξ

∣∣∣ det
[
~A1, . . . , ~An

]
contr. (1.56e)

with an overall factor of the Jacobian (determinant) of the general invertible coordinate change. The
Reader should have no difficulty proving that

det
[
~A′1, . . . , ~A

′
n

]
cov. =

∣∣∣∂ξ
∂η

∣∣∣ det
[
~A1, . . . , ~An

]
cov. (1.56f)

The result (1.56) proves:

Proposition 1.2 The determinant product det
[
~A1, . . . , ~An

]
is invariant with respect to coor-

dinate transformations of unit Jacobian determinant, called “volume-preserving transforma-
tions” owing to the well-known result (1.51a).
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1.1.5 Vector Squares and the Metric

How do we square a vector? ~A2 = AiA
i is invariant under general transformations—as per

Eq. (1.4)—but it requires two n-plets of components—(A1, · · · , An) and (A1, · · · , An)—represen-
ting one and the same vector. Surely, there must exist a more economical way; after all, with
the Ai’s and the Ai’s both representing the same vector, there must exist a (homogeneous) linear
relationship between the two, presumably of the form Ai = (something)ijA

j.

We are now after determining that “(something)ij.”

A second glance at the definitions 1.2 and 1.4 and WoE 1.8 confirms that the scalar prod-
uct (1.49) is defined only as a product of a covariant and a contravariant vector. In particular, it
applies neither to a product of two n-ples of covariant vector components nor to a product of two
n-ples of contravariant ones. Nevertheless, we clearly do have such a thing, to wit:

ds2 = dx2 + dy2 + dz2 + · · · = d~r · d~r (1.57)

is well-known to be the square of the infinitesimal line element in Euclidean geometry (where the
Pythagorean theorem holds as usual). Writing this, however, in the more formal way:

Euclidean/Pythagorean line element: ds2 =
n∑
i=1

(dxi)2 = dxi δij dxj (1.58)

reveals the implicit use of

δij :=

{
1, if i = j,

0, if i 6= j.
(1.59)

This object δij is deceptively similar to δij, defined in Eq. (1.12), but they are not the same!

WoE 1.11: By contrast to this generally invariant δij and motivated by (1.58), consider the quantity
δij , needed in (1.58) and with values as in Eq. (1.59) but specified while referring to some general ξ-
coordinates. Then change to some other, also general η-coordinates:

[δ(ξ)]ij 7→ [δ(η)]ij =
∂ξk

∂ηi
[δ(ξ)]kl

∂ξl

∂ηj
=
∑
k

∂ξk

∂ηi
∂ξk

∂ηj
, (1.60)

which does not simplify any further—certainly not for general initial ξ-coordinates and a general, invertible
change into some other, general η-coordinates. This implies that the δij quantity certainly does not stay
invariant when changing coordinates in general—even if the initial ξ-coordinates had in fact been Cartesian
coordinates!

We wish, however, to use the very useful Euclidean/Pythagorean square (1.58), and so
we track how it varies when changing from Cartesian x-coordinates into some other, general
ξ-coordinates:

ds2 = dxi δij dxj =
(∂xi
∂ξk

dξk
)
δij

(∂xj
∂ξl

dξl
)
,

= dξk
[
∂xi

∂ξk
δij

∂xj

∂ξl

]
dξl =: dξk gkl(ξ) dξl

(1.61)
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where we recognize the δij-like quantity:

the metric: gkl(ξ) :=
[
∂xi

∂ξk
δij

∂xj

∂ξl

]
, (1.62)

which, for use in general ξ-coordinates, replaces the δij used in the Cartesian coordinates to define
the square of the line element (1.58). The metric (1.62) thereby permits us to measure distances
in an Euclidean/Pythagorean fashion also in ξ-coordinates, and so is the key quantity in doing
geometry in general coordinates.

Definition 1.6 A coordinate system (ξ1, · · · , ξn) is said to be orthogonal if its metric is diag-
onal: gij(ξ) = 0 for i 6= j.

WoE 1.12: Consider the coordinates (ξ1, ξ2) specified in terms of the Cartesian ones as

ξ1 = x1x2, ξ2 =
x1

x2
; x1 =

√
ξ1ξ2, x2 =

√
ξ1

ξ2
. (1.63)

Then ∣∣∣∂x
∂ξ

∣∣∣ = det

∂x1∂ξ1
∂x1

∂ξ2

∂x2

∂ξ1
∂x2

∂ξ2

 = det

 1
2

√
ξ2

ξ1
1
2

√
ξ1

ξ2

1

2
√
ξ1ξ2

−1
2

√
ξ1

(ξ2)3

 = − 1

2ξ2
(1.64)

is the Jacobian (determinant) of the coordinate transformation (x1, x2)→ (ξ1, ξ2), so that

dx1dx2 = − 1

2ξ2
dξ1dξ2, (1.65)

and

g11(ξ) =
∂x1

∂ξ1
∂x1

∂ξ1
+
∂x2

∂ξ1
∂x2

∂ξ1
=

1 + (ξ2)2

4ξ1ξ2
, (1.66)

g12(ξ) =
∂x1

∂ξ1
∂x1

∂ξ2
+
∂x2

∂ξ1
∂x2

∂ξ2
=

1

4
− 1

4(ξ2)2
= g21(ξ), (1.67)

g22(ξ) =
∂x1

∂ξ2
∂x1

∂ξ2
+
∂x2

∂ξ2
∂x2

∂ξ2
=
ξ1(1 + (ξ2)2)

4(ξ2)3
, (1.68)

so that [
gij(ξ)

]
=

 1+(ξ2)2

4ξ1ξ2
1
4 −

1
4(ξ2)2

1
4 −

1
4(ξ2)2

ξ1(1+(ξ2)2)
4(ξ2)3

 (1.69)

is the metric in the (ξ1, ξ2) coordinate system. Then

ds2 = (dx1)2 + (dx2)2, (1.70a)

=
1 + (ξ2)2

4ξ1ξ2
(dξ1)2 +

(1

2
− 1

2(ξ2)2

)
dξ1dξ2 +

(ξ1(1 + (ξ2)2)

4(ξ2)3

)
(dξ2)2. (1.70b)

Note that the multiplication of differentials in the line element—unlike in the volume element (1.65), and
more generally (1.51)—is symmetric.
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Upon comparing Eq. (1.58) and the end result in the derivation (1.61), we conclude in
hindsight that

δij is the metric in Cartesian coordinates. (1.71)

This reveals the tremendous simplicity—and so speciality—of geometry in Cartesian coordinates:
just consider (1.70).

One might complain that the definition (1.62) still relies on Cartesian coordinates. In some
sense, this is correct: given that we know the (extremely simple!) metric in Cartesian coordinates,
we use (1.62) to compute metrics in other coordinates designed to describe the same space.
However, if we happen to be given (by any means) the metric in any general η-coordinate system,
gij(η), from this we can compute the metric in any other, general ξ-coordinate system describing
the same space:

gkl(ξ) =

[
∂ηi

∂ξk
gij(η)

∂ηj

∂ξl

]
. (1.72)

Remark 1.5: The formula (1.72), generalizing (1.62), in fact tells how gij transforms from one
coordinate system to another. By comparing with (1.6b), we see that gij is covariant—in fact,
twice so, since it picks up two ∂η

∂ξ
-factors when changing coordinates η → ξ. We will return to this

below.

Remark 1.6: Eqs. (1.62) and (1.72) imply that gij(ξ) = gji(ξ), so that the components of a metric,
gij(ξ), form a symmetric matrix. We will write gkl(ξ) for the matrix-inverse of the metric:

gij(ξ) : gij(ξ) gjk(ξ) = δik = gkj(ξ) g
ji(ξ). (1.73)

Clearly, gij(ξ) = gji(ξ) also.

Remark 1.7: Finally, comparing the results (1.27), (1.28) and (1.72), we see that

g(ξ) := det
[
gij(ξ)

]
=
∣∣∣∂η
∂ξ

∣∣∣2 det
[
gij(η)

]
=
∣∣∣∂η
∂ξ

∣∣∣2 g(η) (1.74)

This allows us to re-define the determinant product so it is invariant:

Definition 1.7 Given n vectors ~A1, · · · , ~An, we define their

volume product: 〈 ~A1, . . . , ~An〉 :=

{ √
g εi1···in A

i1
1 · · ·Ainn ,

1√
g
εi1···in A1,i1 · · ·An,in ,

(1.75)

depending on whether their contravariant or covariant components are provided; clearly,
Eqs. (1.82) and (1.79), below, can always be employed to adapt a ragtag specification.

Remark 1.8: The transformation of the
√
g pre-factor precisely balances the transformation of the

“bare” volume-product (1.55). We therefore also have that

Corollary 1.3 For a general coordinate system (ξ1, · · · , ξn), we have the

invariant volume element: dn~r := 1
n!

√
g(ξ) εi1···in dξi1 · · · dξin =

√
g(ξ) dξ1 · · · dξn. (1.76)

The parenthetical 1
n!

pre-factor is conventional, so that the reduction to the Cartesian case
would turn out to coincide precisely with the usual dx1 · · · dxn.
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1.1.6 Raising, Lowering and Contracting

The fundamental purpose—and definition—of the metric is so that one would be able to define
the infinitesimal line element for a curve specified in general ξ-coordinates:

ds :=
√
gij(ξ) dξi dξj, (1.77)

but that is not all this quantity can do.

For, suppose we specify a vector in terms of its contravariant components, (A1(ξ), · · · , An(ξ)).
Then we have that

Ai(ξ) 7→ Ai(η) =
∂ηi

∂ξj
Aj(ξ), (1.78)

but

Ai(ξ) := gij(ξ)A
j(ξ), (1.79)

gij(ξ)A
j(ξ) 7→ gij(η)Aj(η) =

(∂ξk
∂ηi

∂ξl

∂ηj
gκl(ξ)

)( ∂ηj
∂ξm

Am(ξ)
)
,

=
∂ξk

∂ηi
∂ξl

∂ηj
∂ηj

∂ξm
gκl(ξ)A

m(ξ) =
∂ξk

∂ηi
∂ξl

∂ξm
gκl(ξ)A

m(ξ),

=
∂ξk

∂ηi
δlm gκl(ξ)A

m(ξ) =
∂ξk

∂ηi
(
gkl(ξ)A

l(ξ)
)
. (1.80)

That is, whereas {Ai, i = 1, · · · , n} are contravariant vector components, {(gijAj), i = 1, · · · , n}
transform as covariant components: contraction with the metric has effectively lowered7 the
index. More to the point, this demonstrates that for every vector of which the contravariant
components are specified, we can construct the corresponding covariant(ized) components, and
vice versa.

Conversely, given the covariant vector components, (Bi(ξ), · · · , Bn(ξ)), we have that

Bi(ξ) 7→ Bi(η) =
∂ξj

∂ηi
Bj(ξ), (1.81)

but

Bi(ξ) := gij(ξ)Bj(ξ), (1.82)

gij(ξ)Bj(ξ) 7→ gij(η)Bj(η) =
(∂ηi
∂ξk

∂ηj

∂ξl
gκl(ξ)

)(∂ξm
∂ηj

Bm(ξ)
)
,

=
∂ηi

∂ξk
∂ηj

∂ξl
∂ξm

∂ηj
gkl(ξ)Bm(ξ) =

∂ηi

∂ξk
∂ξm

∂ξl
gkl(ξ)Bm(ξ),

=
∂ηi

∂ξk
δml g

kl(ξ)Bm(ξ) =
∂ηi

∂ξk
(
gkl(ξ)Bl(ξ)

)
. (1.83)

7 This then is referred to as the musical isomorphism flat, and denoted: ( ~A [)|i = (gijA
j).
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That is, whereas {Bi, i = 1, · · · , n} are covariant vector components, {(gijBj), i = 1, · · · , n} trans-
form as components of a contravariant one: contraction with the inverse metric has effectively
raised8 the index.

Thus, declaring a vector itself as covariant or contravariant depends on the choice of how
the components have been specified—and so is not an invariant property. However, the relative
difference between the transformation properties of d~r and ~∇—within the same framework and
system of conventions—is an invariant property: Within the framework and conventions where
the components of d~r are naturally contravariant, those of ~∇ are naturally covariant. It is of
course possible to define

d~r : dξi 7→ dξi := gij(ξ) dξj covariant(ized) d~r components, (1.84)

~∇ :
∂

∂ξi
7→ ∂

∂ξi
:= gij(ξ)

∂

∂ξj
contravariant(ized) ~∇ components, (1.85)

but it is plain that this redefinition requires the use of the metric. Another indication that d~r

and ~∇ are naturally dual to each other is the intrinsic invariance of the exterior derivative (1.10)
in WoE 1.1 and its formal analogue (1.49), defined without the use of the metric and so requiring
no knowledge thereof.

To summarize: had we decided to index coordinates by a subscript instead, all index posi-
tions would be reversed throughout—but would not change the relative inverseness of the two
definitions 1.2. It is standard to pick one convention (dξi to be called contravariant), and under-
stand all definitions to be relative to this choice. Given this preferred choice, we will say that a
vector itself is contra- or co-variant, depending on how its components transform—as defined,
without using the metric to raise or lower indices, and with respect to such a preferred choice.

— ? —

Using the metric, it is possible to generalize the definition 1.4:

Definition 1.8 Given two vectors, ~A and ~B, and the metric gij we define:

scalar product: ~A · ~B := AiBi := Ai gij B
j := Ai g

ij Bj, (1.86)

by defining

Ai := gij A
j = Aj gij = Aj gji, index-lowering, (1.87a)

Bj := Bi g
ij = gij Bi = gjiBi, index-raising, (1.87b)

having used, respectively, the “musical isomorphisms” (1.79) and (1.82).

Remark 1.9: Whereas “being able to do geometry analytically” presumes the knowledge of the
metric and so warrants the extended definition 1.8 and (1.86), the explicit writing of the metric
in these formulae reminds us of this. In turn, no metric was required in the definition 1.4, as mo-
tivated by the exterior derivative WoE 1.1. Therefore, the scalar product d~r ·~∇ = dξi ∂

∂ξi
is simpler

8 This then is referred to as the musical isomorphism sharp, and denoted: ( ~B ])|i = (gijBj).
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(more primitive) than, say, d~r ·d~r = dξi gij dξj, which requires the additional knowledge of a met-
ric. Scalar products such as d~r ·~∇ are often referred to as natural or canonical—foremost because
the two factors naturally transform oppositely, and no knowledge of any metric is needed. In turn,
upon providing the additional information of a chosen metric, the “musical isomorphisms” (1.87)
permit the components of any vector to be expressed as covariant as easily as contravariant, thus
blurring the distinction.

— ? —

We pause to point out a singular opportunity in n = 3: Since it now takes three vectors
to form an volume product a derivative of this product by the components of one of the factors
defines a product of the remaining two vectors such that this product must transform inversely to
the vector with respect to which we took the derivative! Or, put differently, we may define the kth

component of this vector product:

n = 3 vector product:

{
( ~A× ~B)k := 〈 ~A, ~B, 〉k =

√
g εijk A

iBj,

( ~A× ~B)k := 〈 ~A, ~B, 〉k = 1√
g
εijk AiBj,

(1.88)

Remark 1.10: The contravariant components of ~A, ~B used in this formula are easily obtained
by (1.82), should the covariant components have been given instead. Also, the intermediate,
defining, expression (1.88) shows that ~A × ~B may be thought of as the functional which when
evaluated on the vector ~C produces the (ground field k-valued) volume product, 〈 ~A, ~B, ~C〉. Fi-
nally, comparison of (1.88), (1.86) and (1.75) implies straightforwardly that

〈 ~A, ~B, ~C〉 =
(
~A× ~B

)
· ~C, (1.89)

from which follows the “infinitesimal volume element” formula given in most other texts.

Remark 1.11: More generally (not requiring n = 3), the quantity

〈 ~A1, ~A2, · · · , ~An−1, 〉 (1.90)

still defines a (volume-dual) vector product of n−1 vectors ~A1, · · · , ~An−1. As the so-implied,
so-called “n−1-ary multiplication structures” turn out to be rather both less well studied in math-
ematics and less applied in physics and engineering, we will not devote this any more time.

While we’re at it, we might as well define the extreme opposite of (1.88):

the Hodge-dual of a vector:

{
∗ ~A|i1,··· ,in−1 =

√
g εi1,··· ,in−1,in A

in ,

∗ ~A|i1,··· ,in−1 = 1√
g
εi1,··· ,in−1,in Ain .

(1.91)

1.2 More Building Blocks

Comparing the formula (1.72) with those in definition (1.2), we see that the formula (1.72)
provides a generalization of the notion of a co- and contra-variant vector: whereas the trans-
formation of a vector involves the occurrence of a single factor ∂ξ

∂η
or its inverse—as specified

in (1.6a)–(1.6b), the metric requires two such factors (1.72). It is then clear how to generalize
this:
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Definition 1.9 (Tensor) An array of quantities, T i1···ipj1···jq (ξ), specified as functions in the ξ-
coordinate system, are elements of a (p, q)-tensor, T, precisely if they transform like:

T
i1···ip
j1···jq (ξ) 7→ T

i1···ip
j1···jq (η) =

∂ηi1

∂ξk1
· · · ∂η

ip

∂ξkp
∂ξl1

∂ηj1
· · · ∂ξ

lp

∂ηjq
T
k1··· kp
l1 ··· lq (ξ). (1.92)

We say that its rank is p+q, and its type is (p, q).

Remark 1.12: A covariant vector is thus a (0, 1)-tensor, a contravariant vector is a (1, 0)-tensor, a
scalar is a (0, 0)-tensor, the metric, gij(ξ), is a (0, 2)-tensor, and δij is a (1, 1)-tensor.

It is also true, completely generally, that a Cartesian product of a (p, q)-tensor and an (r, s)-
tensor is a ((p+r), (q+s))-tensor; see the Lexicon B. Thus, from a contravariant vector, i.e., a
(1, 0)-tensor and the metric (0, 2)-tensor, we can construct the Cartesian product

{Ai, i = 1, · · · , n } × { gjk, j, k = 1, · · · , n } −→ {Ai gjk, i, j, k = 1, · · · , n }, (1.93)

of which Eq. (1.80) considers the contraction:

gij A
j := gij A

j = δjk gij A
k, = Ai. (1.94)

Similarly, Eq. (1.83) considers the contraction:

gij Bj := gij Bj = δkj g
ij Bk, = Bi. (1.95)

We have already seen that δij does not change at all when we change from the initial, general
ξ-coordinates to any other, general η-coordinates. It was also used in defining contractions of
tensors: see Eqs. (1.94)–(1.95) and the Lexicon B entry. And, since δij is a (1, 1)-tensor, the
contraction maps a (p, q)-tensor into a ((p−1), (q−1))-tensor. That is, to contract a (p, q)-tensor, it
must be that p, q > 0.

A few more examples are as follows:

WoE 1.13 (Contractions) : Let Aij , Bijk, Cijkl be tensors of rank-2, -3 and -4, respectively, and type-(0, 2),
-(1, 2) and -(4, 0) as indicated by their indices. Let gij be the metric tensor and gij its inverse, as usual.
Then

Contraction Rank Type

gijAij 0 (0, 0)

gijBij
k 1 (1, 0)

δikBij
k := Bij

i 1 (0, 1)

δjkBij
k := Bij

j 1 (0, 1)

gijC
ijkl 2 (2, 0)

gijgklC
ijkl 0 (0, 0)

Contraction Rank Type

Aij δ
i
mBkl

m = Aij Bkl
i 3 (0, 3)

Aij g
ik Bkl

m 3 (1, 2)

Aij δ
i
m g

jk Bkl
m = Aij g

jk Bkl
i 1 (0, 1)

Aij g
il gjk Bkl

m 1 (1, 0)

Aij δ
i
m g

jk Bkl
m gln = Aij g

jk Bkl
i gln 1 (1, 0)

Aij g
il gjk Bkl

m gmn 1 (0, 1)

are some of the possible contractions. The Reader should have no difficulty verifying all the table entries
and creating many more.

However, if we restrict somehow the class of coordinate transformations, there may well
exist tensors that happen to be invariant with respect to such a restricted class of coordinate
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transformations. In fact, we can turn this around: select a particular tensor and then restrict to
those coordinate transformations which leave the chosen tensor invariant.

— ? —

Yet more general than tensors—but still quite “orderly” in their transformation properties are
quantities such as the determinant product (1.55) and the determinant of the metric (1.74): their
transformation includes also a power of the Jacobian (determinant) of the transformation:

Definition 1.10 (Tensor Density) An array of quantities, T i1···ipj1···jq (ξ), specified as functions in
the ξ-coordinate system, are elements of (p, q)-tensor density of weight w, T, precisely if
they transform like:

T
i1···ip
j1···jq (ξ) 7→ T

i1···ip
j1···jq (η) =

∣∣∣∂η
∂ξ

∣∣∣w ∂ηi1
∂ξk1

· · · ∂η
ip

∂ξkp
∂ξl1

∂ηj1
· · · ∂ξ

lq

∂ηjq
T
k1··· kp
l1 ··· lq (ξ). (1.96)

We say that its rank is p+q, its type is (p, q) and its weight is w.

1.2.1 Structure-Preserving Transformations

In various considerations, we may wish to restrict the changes of variables so as to preserve a
defined quantity or structure.

Volume-Preserving Transformations: These are the special class of coordinate transformations
that satisfy9 :

volume-preserving: (ξ1, · · · , ξn)→ (η1, · · · , ηn) : det
[∂(ξ1, · · · , ξn)

∂(η1, · · · , ηn)

]
!

= 1. (1.97)

Rotations: The metric being of special interest in many considerations, we may wish to restrict
to allowing only coordinate changes that leave a given metric invariant. To this end, we’d restrict:

(ξ1, · · · , ξn)→ (η1, · · · , ηn) : gij(η) =
∂ξk

∂ηi
∂ξl

∂ηj
gkl(ξ)

!
= gkl(ξ) (1.98)

In this case, gij is also an invariant tensor (trivially, with respect to gij-preserving transformations),
but so are then also all the tensors one can construct from products of δij, gij, g

ij.

In the special case of such a restriction, when the original ξ-coordinates may in fact be
transformed into Cartesian and

gij(ξ) = δij =

{
1 if i = j,

0 if i 6= j,
(1.99)

the condition (1.62) becomes

(x1, · · · , xn)→ (ξ1, · · · , ξn) :
∂xk

∂ξi
∂xl

∂ξj
δkl

!
= δij. (1.100)

9 The exclaimed equality symbol “ !
=” denotes that we demand the indicated equality to hold. By the same token,

“ ?
=” would question the so-indicated equality.
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Rewritten in matrix notation, this is[ ∂x
∂ξ

] [ ∂x
∂ξ

]T
= 1l, i.e.

[ ∂x
∂ξ

]T
=
[ ∂x
∂ξ

]−1
, (1.101)

which defines orthogonal matrices. It is not hard to show that the product of two orthogonal
matrices is again orthogonal, that the identity matrix, 1l, is in fact orthogonal, and that every
orthogonal matrix has a unique inverse which is again orthogonal. Such n × n matrices—and
coordinate transformations—therefore form a group, denoted O(n). Restricting in addition to
volume-preserving transformations restricts O(n) → SO(n), and these are well-known to repre-
sent familiar rotations.

1.3 More on Bases

1.3.1 Bases

The example WoE 1.1 indicates the possibility of constructing—from co- and contra-variantly de-
fined components of vectors—objects that are invariant with respect to general invertible transfor-
mations of coordinates. To specify such constructions, we may select a basis (having the maximal
number of linearly independent vectors) for any given vector space—one from many.

Covariant Basis: Having chosen a particular coordinate system (ξ1, · · · , ξn), we may introduce
“coordinate vectors”, ~ξi, to serve as a place-holder or order-counter for the ith component of
vectors10 :

covariant basis vectors: ~ξi :=
∂~r

∂ξi
(1.102)

where ~r is the “position vector,” specifying the considered point in the ξ-space. Using the basis
elements ~ξi within the given vector space, a generic linear combination:

~A := Ai(ξ) ~ξi, Ai(η) =
∂ηi

∂ξj
Aj(ξ), (1.103)

specifies ~A in terms of its contravariant vector components.

Contravariant Basis: Given the covariant basis (1.102) and the metric (1.62), we define:

contravariant basis vectors: ~ξi := gij(ξ) ~ξj (1.104)

indicating basis vectors that transform contravariantly, the way the dξi do. Using the basis ele-
ments ~ξi within the given vector space, a generic linear combination:

~A := Ai(ξ) ~ξ
i, Ai(η) =

∂ξj

∂ηi
Aj(ξ), (1.105)

specifies ~A in terms of its covariant vector components.

10 The n-tuple (ξ1, · · · , ξn) is a vector only for Cartesian coordinates: only therein do such n-tuples of coordinates
satisfy the definition 1.1. This is another way of seeing how special Cartesian coordinates are.
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Comparing (1.103) with (1.105) reveals that

~A = Ai(ξ) ~ξi = Aj(ξ) g
ji(ξ) ~ξi = Aj(ξ) ~ξ

j (1.106)

the same vector has both covariant components (when expressed in a frame of contravariant
coordinate vector basis) and contravariant components (with respect to a covariant basis) and
one can transform covariant quantities into contravariant ones using the metric.

On Transformations and Invariance: There is a notion of active and passive transformations in
the literature. The former actually changes the physical state of the system being described,
and so can be represented if either the components or the basis vectors transform, but not both.
No vector can be invariant with respect to such a “one-sided” transformation; that manifestly is
not what we are discussing here. In turn, the latter are transformations in the description of a
physical system, with respect to which the described system itself indeed should be invariant—all
the various descriptions being assumed to be faithful. In this sense, we are herein discussing these
latter, passive transformations.

Note that neither the ~ξi nor the ~ξi are normalized in any sense—since no norm has been
defined so far for these vectors.

The vector ~A itself is an invariant quantity:

~A = Ai~ξi 7→
( ∂ξi
∂ηj

Aj
)(∂ηk

∂ξi
~ηk

)
= Aj

(∂ηk
∂ξi

∂ξi

∂ηj

)
~ηk = Aj

(∂ηk
∂ηj

)
~ηk = Aj

(
δkj

)
~ηk = Aj~ηj. (1.107)

Indeed, the vector (possibly representing a physical quantity) should not depend on how we
choose our frame of unit vectors, i.e., coordinates.

Remark 1.13: Since the vector ~r is invariant with respect to arbitrary (passive) transformations,
the definition (1.102) and the computation (1.103)–(1.107) make it clear that ~ξi transforms the
same as ∂

∂ξi
does. Indeed, the partial derivative operators ∂

∂ξi
may well be regarded as covariant

vector basis elements. Herein, we avoid using differential operators as basis elements, but the
Reader should note this oft-used possibility.

1.3.2 Coordinate Vectors, Ortho-Normalized

The sequence of equalities ~A = Ai~ξi = Ai(gij~ξ
j) = (Aigij)~ξ

j = Ai~ξ
i demonstrates that a vector it-

self is neither covariant nor contravariant, but that its components may be specified as contravari-
ant or covariant, depending on whether we choose to specify them with respect to covariant or
contravariant basis elements.

Caution: since the ~ξi and the ~ξi are not unit-normalized, the coef-
ficients Ai and Ai in (1.103)–(1.105) are in the expressions (1.103)–
(1.107) specified not with respect to unit-normalized basis vectors and
so differ from the conventions adopted by most texts at the start.

We thus turn to this normalization.
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Returning to the square of the line element, it must be expressible as the scalar product of
the differential of the position vector, d~r:

ds2 = d~r · d~r =
(
dξi ~ξi

)
·
(
dξj ~ξj

)
= dξi dξj

(
~ξi · ~ξj

)
, (1.108a)

= gij(ξ) dξi dξj. (1.108b)

Comparing the two results (1.108a)–(1.108b) implies that

~ξi · ~ξj = gij(ξ), (1.109)

thus defining what the ~ξi · ~ξj product should mean. Then,

~ξi · ~ξj =
(
gik~ξk

)
·
(
gjl~ξl

)
= gik gjl

(
~ξk · ~ξl

)
= gik gjl gkl = gik δjk = gij. (1.110)

Using this, we can use the coordinate vectors to project components of a vector:

~ξi · ~A = ~ξi ·
(
Aj ~ξj

)
= (~ξi · ~ξj)Aj = gij A

j =: Ai : covariant(ized) component, (1.111a)

~ξi · ~A = ~ξi ·
(
Aj ~ξj

)
= (~ξi · ~ξj)Aj = δij A

j = Ai : contravariant(ized) component, (1.111b)

This demonstrates again that the transformation properties of the components of a vector depend
on how—with respect to which basis, {~ξ1, · · · , ~ξn} or {~ξ1, · · · , ~ξn}—the components have been
specified, echoing (yet again) an earlier conclusion.

Since gij(ξ) and gij(ξ) are nontrivial and non-constant functions in general coordinate sys-
tems, we see that even the norm of ~ξi is not constant:

‖~ξi‖ :=
√
~ξi · ~ξi =

√
gii(ξ)

‖~ξi‖ :=
√
~ξi · ~ξi =

√
gii(ξ)

 for all i = 1, · · · , n,
with no summation.

(1.112)

In general, gii(ξ) 6=
(
gii(ξ)

)−1, and the proper scaling factors, ‖~ξi‖−1 and ‖~ξi‖−1 differ.

However, in orthogonal coordinate systems, g⊥ii(ξ) =
(
gii⊥(ξ)

)−1
= h 2

i (ξ), where the indices
“⊥” are meant to remind of the orthogonality of the considered coordinate system. The coeffi-
cients hi(ξ) :=

√
g⊥ii(ξ) = 1

/√
gii⊥(ξ) are called scaling factors.

Restrict to orthogonal coordinates for the rest of this section.

To distinguish components in a unit-normalized orthogonal basis (used by Ref. [1]) from
those that are not (as used in the preceding several sections), we will hereafter write

~A = Ai ~ξ
i = Aı̂ ê

i = Aı̂ êi = Ai ~ξi, (1.113)

where (no summation on any indices):

êi := ‖~ξi‖−1~ξi =
1
√
gii

~ξi = hi
−1 ~ξi, êi := ‖~ξi‖−1~ξi =

1√
gii

~ξi = hi~ξ
i, (1.114)
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~ξi =
√
gii êi = hi êi, ~ξi =

√
gii êi = hi

−1 êi. (1.115)

Therefore, whereas

~ξi = gij ~ξj (1.116)

is a simple relationship, the general relationship between unit-normalized vectors√
gii êi =

∑
j

gij
√
gjj êj, no sum on i, (1.117)

is not. However, for orthogonal coordinate systems, where gij = hi
2 δij and gij = hj

−2 δij with no
summation over i, this simplifies into:

h−1i êi =
∑
j

(
hj
−2 δij

)
hj êj = hi

−1 êi, ⇒ êi⊥ = ê⊥
i . (1.118)

The simplifications due to this result are made manifest in Table 1 by labeling the simplifying
equations as “⊥=.” It is fairly clear from Table 1 that the definition of vector components with

~ξi-basis ~ξi-basis êi-basis êi-basis

Ai Ai =
∑

j gijA
j Aı̂ =

∑
j

√
giigijA

j ⊥= hiA
i Aı̂ =

√
giiA

i ⊥= hiA
i

Ai =
∑

j g
ijAj Ai Aı̂ =

√
giiAi

⊥
= hi

−1Ai Aı̂ =
∑

j

√
gii g

ijAj
⊥
= hi

−1Ai

Table 1: The conversion relations among the four possible definitions of components of a vector, with
respect to the ~ξi-basis, the ~ξi-basis, the êi-basis and the êi-basis. Throughout the table, only explicitly
written summations are implied. Also, the conversion relations involving the êi- and êi-bases tacitly
assume orthogonality of the coordinate system.

respect to the unit-normalized êi- and êi-basis turns out indistinguishable and so “half-way” be-
tween the ~ξi- and ~ξi-basis. While this does turn out to be economical—when it can be applied—it
equivocates between all the diverse quantities discussed above, the differences between which
stem solely from the difference of the transformation of natural components of d~r and ~∇. Also,
the thoroughly consistent introduction and use of unit-normalized basis vectors is less elegant (to
be modest) in generic, non-orthogonal coordinate systems.

1.4 Derivatives of Vectors

As a warm-up, note that the ~∇-derivative of a scalar function is straightforward, since there is
only one type of product between the vector ~∇ and the scalar, f(~r). Then,

~∇f ≡ grad(f) = ~ξi
∂f

∂ξi
. (1.119)
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1.4.1 Variations of Coordinate Vectors

Being that vectors are linear combinations Ai(ξ) ~ξi, a derivative of vectors will necessarily have to
include both a derivative of the components, Ai(ξ) and of the basis vectors ~ξi.

We will thus need to know how does the basis vector ~ξi change as coordinates ξj vary. Since
the derivative of a vector—computed by definition from the difference of the vector at a nearby
point and the vector at the original point—must itself be a vector and so a linear combination of
the coordinate vectors, ~ξk:

∂~ξi
∂ξj

:= lim
εj→0

~ξi(ξ + ε)− ~ξi(ξ)
εj

= Γkij
~ξk, (1.120)

where Γkij are the coefficients in this linear combination, and we show below that they are far
from zero in general (A.7).

As regards the rate of change in ~ξi, we use the fact that

~ξi · ~ξj = gij and ~ξi · ~ξk = δki , (1.121)

so obtained by contracting the left-hand side equality, Eq. (1.109), with gjk. Next, we compute
the rate of change of both sides of the right-hand side equality (1.121): first, the right-hand side
is an invariant constant, so

∂

∂ξj

(
~ξi · ~ξk

)
=

∂

∂ξj

(
δki

)
= 0, (1.122)

on the other hand, the left-hand side consists of two factors, for one of which we know the
transformation to be

∂

∂ξj

(
~ξi · ~ξk

)
=
∂~ξi
∂ξj
· ~ξk + ~ξi ·

∂~ξk

∂ξj
= Γlij

~ξl · ~ξk + ~ξi ·
∂~ξk

∂ξj
= Γlij δ

k
l + ~ξi ·

∂~ξk

∂ξj
,

= Γkij + ~ξi ·
∂~ξk

∂ξj
. (1.123)

Thus, we have obtained that

Γkij + ~ξi ·
∂~ξk

∂ξj
= 0, i.e. ~ξi ·

∂~ξk

∂ξj
= −Γkij. (1.124)

By Eqs (1.111),

−Γkij =
∂~ξk

∂ξj

∣∣∣
i (covariant)

, i.e.
∂~ξk

∂ξj
= −Γkij

~ξi. (1.125)

Notice, by the way, that simply preserving the free index (here j, k) positions from left-hand side
to right-hand side, this is the only way to write the formula—which could have been used as a
derivation shortcut.

Armed with these observations and the results the derivation of which we defer to the Ap-
pendix A, we now turn to compute derivatives of vectors.

27



1.4.2 The General Derivative of a Vector

Since the coordinate vectors, ~ξi and ~ξi, are not constant in general coordinates (A.7), this must
be taken into account when differentiating either vector (1.103)–(1.105). We’ll start with the
contravariant vector:

∂ ~A

∂ξi
=

∂

∂ξi
Aj ~ξj =

∂Aj

∂ξi
~ξj + Aj

∂~ξj
∂ξi

=
∂Aj

∂ξi
δkj
~ξk + Aj Γkji

~ξk, (1.126)

=
[ ∂Ak
∂ξi

+ ΓkjiA
j
]
~ξk =: Ak ;i ~ξk. (1.127)

Similarly,

∂ ~B

∂ξi
=

∂

∂ξi
Bj

~ξj =
∂Bj

∂ξi
~ξj +Bj

∂~ξj

∂ξi
=
∂Bj

∂ξi
δjk
~ξk −Bj Γjki

~ξk, (1.128)

=
[ ∂Bk

∂ξi
− ΓjkiBj

]
~ξk =: Bk;i

~ξk. (1.129)

We have introduced the component notation for this covariant derivative, Ak ;i and Bk;i, whereby
the derivative by ξi is indicated to have been performed not only on the component, but also on
the component vectors—representing thus the derivative of the whole vector.

1.4.3 Divergence

The divergence of a vector is now obtained as the contraction

~∇ · ~A ≡ div( ~A) := ~ξi · ∂
~A

∂ξi
= ~ξi ·

(
Ak ;i ~ξk

)
= Ak ;i

(
~ξi · ~ξk

)
= Ak ;i δ

i
k = Ai;i,

=
[ ∂Ai
∂ξi

+ ΓijiA
j
]
, for a contravariant vector, (1.130)

(A.11)
=

[ √g
√
g

∂Ai

∂ξi
+
( 1
√
g

∂
√
g

∂ξj

)
Aj
]

=
1
√
g

∂
(√

g Ai
)

∂ξi
. (1.131)

For a vector of which we are given the covariant components, Bi(ξ), we compute the divergence
by converting its components into contravariant ones:

~∇ · ~B ≡ div( ~B) =
1
√
g

∂
(√

g gij Bj

)
∂ξi

, (1.132)

and note that the lack of symmetry (perhaps expected, näıvely) owes to the fact that the partial
derivative operators, ∂

∂ξi
, themselves transform as components of a covariant vector, thus mani-

festly breaking whatever symmetry one might have expected between the two types of vectors.

1.4.4 Curl

The curl of a vector in three dimensions, n = 3, may now be defined using the above-introduced

notion of the cross-product (1.88), noting that the ~∇ operator is naturally covariant:

~∇× ~B ≡ curl( ~B) :=
1
√
g

[(∂Bj

∂ξi
− ΓljiBl

)
εijk
]
~ξk =

1
√
g

(∂Bj

∂ξi

)
εijk ~ξk. (1.133)
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The second term, involving the Christoffel symbol does not contribute since:

Γlji ε
ijk 1

= Γlij ε
jik 2

= (+Γlji) (−εijk) = −Γlji ε
ijk ≡ 0, (1.134)

where the first equality follows upon simply renaming the indices i ↔ j; the second follows on
using both that Γlij = +Γlji and that ε jik = −εijk. Finally, the last equality follows on realizing
that we have just proved that this quantity equals the negative of itself.

Again, the curl of a vector of which contravariant components were given is computed by
first lowering the component index:

curl( ~A) =
1
√
g

(
∂
(
Al glj

)
∂ξi

)
εijk ~ξk. (1.135)

Note that in n-dimensional spaces

curl( ~B) =
1
√
g

(∂Bj

∂ξi

)
εijk1···kn−2 ~ξk1 · · · ~ξkn−2 =

1
√
g

(∂(Blglj)

∂ξi

)
εijk1···kn−2 ~ξk1 · · · ~ξkn−2 (1.136)

is a totally antisymmetric rank-(n−2) tensor.

1.4.5 Laplacian

The Laplacian (Laplace-Beltrami operator) of a scalar is fairly straightforward, since

~∇2f(~r) = ~∇ ·
(
~∇f(~r)

)
=

1
√
g

[ ∂
∂ξi

(√
g gij

∂f

∂ξj

)]
, (1.137)

where we used Eq. (1.131), with Bj = ∂f
∂ξj

.

For the Laplacian of a vector ~A, we use the identity11 ~∇2 ~A = ~∇(~∇ · ~A)− ~∇× (~∇× ~A):

~∇2 ~A = ~ξi
∂

∂ξi

(
1
√
g

∂
(√

g Aj
)

∂ξj

)
− 1
√
g

(
∂

∂ξi

( 1
√
g

∂(Ap gpn)

∂ξm
εmnl glj

))
εijk ~ξk, (1.138)

=

[
gik

∂

∂ξi

(
1
√
g

∂
(√

g Aj
)

∂ξj

)
− 1
√
g

(
∂

∂ξi

( 1
√
g

∂(Ap gpn)

∂ξm
εmnl··· glj · · ·

))
εij···k

]
~ξk. (1.139)

The ellipses in the index span of each Levi-Civita symbol indicate additional n−3 indices for the
n-dimensional generalization; these are contracted with additional metric tensors, replacing the
ellipses inside the innermost large parentheses, like so: · · · εmnlp···r gljgpq · · · grs)

)
εijq···sk · · · .

1.5 All Together

We collect the first and second derivatives:

~∇f =
( ∂f
∂ξi

)
~ξi; (1.140)

11 This identity is dimension-independent for n ≥ 2, owing to the result (1.135): whereas the “inside” ×-product
results in a rank-(n−2) tensor, the “outside” ×-product results again in a vector.
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~∇2f(~r) =
1
√
g

[ ∂
∂ξi

(√
g gij

∂f

∂ξj

)]
; (1.141)

~∇ · ~A =
1
√
g

∂
(√

g Ai
)

∂ξi
; (1.142)

~∇× ~A =
1
√
g

(
∂Aj
∂ξi

)
εijk1···kn−2 ~ξk1· · · ~ξkn−2 ;

{
a totally antisymmetric
rank-(n−2) tensor (1.143)

~∇2 ~A =

[
gik

∂

∂ξi

(
1
√
g

∂
(√

g Aj
)

∂ξj

)
− 1
√
g

(
∂

∂ξi

( 1
√
g

∂An
∂ξm

εmnl ··· glj · · ·
))

εij ··· k
]
~ξk. (1.144)

The Reader should note the relative simplicity of these expressions—while applicable in any con-
sistent coordinate system! In fact, we have also expressed the curl of a vector for all n, as well as
the Laplacian of a vector. For n = 3, the factors set in orange ink are absent and the more familiar
expressions emerge.

2 Rounding Up the Usual Suspects

2.1 Cylindrical Coordinates

The well-known cylindrical coordinates may be defined by way of referring to the Cartesian co-
ordinates, where z is common, while:

x = ρ cosφ, y = ρ sinφ, and ρ =
√
x2 + y2, φ = ATan(x, y) (2.1)

where

ATan(x, y) :=

{ arctan(y/x) for x, y > 0,

π + arctan(y/x) for x ≤ 0,

2π + arctan(y/x) for y ≤ 0 < x.

(2.2a)

ATan(x, y) arctan
( y
x

)

(2.2b)

corrects arctan-function, which—uncorrected—does not return the full [0, 2π] range of the angle.
Now compute:

[
gij
]

=


∂x
∂ρ

∂x
∂ρ

+ ∂y
∂ρ

∂y
∂ρ

+ ∂z
∂ρ

∂z
∂ρ

∂x
∂ρ

∂x
∂φ

+ ∂y
∂ρ

∂y
∂φ

+ ∂z
∂ρ

∂z
∂φ

∂x
∂ρ

∂x
∂z

+ ∂y
∂ρ

∂y
∂z

+ ∂z
∂ρ

∂z
∂z

∂x
∂φ

∂x
∂ρ

+ ∂y
∂φ

∂y
∂ρ

+ ∂z
∂φ

∂z
∂ρ

∂x
∂φ

∂x
∂φ

+ ∂y
∂φ

∂y
∂φ

+ ∂z
∂φ

∂z
∂φ

∂x
∂φ

∂x
∂z

+ ∂y
∂φ

∂y
∂z

+ ∂z
∂φ

∂z
∂z

∂x
∂z

∂x
∂ρ

+ ∂y
∂z

∂y
∂ρ

+ ∂z
∂z

∂z
∂ρ

∂x
∂z

∂x
∂φ

+ ∂y
∂z

∂y
∂φ

+ ∂z
∂z

∂z
∂φ

∂x
∂z

∂x
∂z

+ ∂y
∂z

∂y
∂z

+ ∂z
∂z

∂z
∂z

 ,
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=

[
(cosφ)2+(sinφ)2+0 (cosφ)(−ρ sinφ)+(sinφ)(ρ cosφ)+0 0+0+0

(−ρ sinφ)(cosφ)+(ρ cosφ)(sinφ)+0 (−ρ sinφ)2+(ρ cosφ)2+0 0+0+0
0+0+0 0+0+0 0+0+1

]
,

=

1 0 0

0 ρ2 0

0 0 1

 , ⇒ [gij] =

1 0 0

0 ρ−2 0

0 0 1

 (2.3)

Then
g := det

[
gij
]

= ρ2, d3~r =
√
g dρ dφ dz = ρdρ dφ dz, (2.4)

and

‖~ξρ‖ =
√
gρρ = 1, so ~ξρ = êρ; ‖~ξρ‖ =

√
gρρ = 1, so ~ξρ = êρ; (2.5)

‖~ξφ‖ =
√
gφφ = ρ, so ~ξφ = ρêφ; ‖~ξφ‖ =

√
gφφ = ρ−1, so ~ξφ = ρ−1êφ; (2.6)

‖~ξz| =
√
gzz = 1, so ~ξz = êz; ‖~ξz‖ =

√
gzz = 1, so ~ξz = êz. (2.7)

Also, since (ρ, φ, z) is orthogonal, êρ = êρ, êφ = êφ, êz = êz. These results imply, as in Eqs. (1.113)–
(1.118), that

Aρ = Aρ̂ = Aρ̂ = Aρ,

Az = Aẑ = Aẑ = Az,
but Aφ = ρ2Aφ, and

Aφ = ρAφ̂,

Aφ = ρ−1Aφ̂.
(2.8)

Then

~∇f = ~ξρ
∂f

∂ρ
+ ~ξφ

∂f

∂φ
+ ~ξz

∂f

∂z
,

= êρ
∂f

∂ρ
+ êφ

1

ρ

∂f

∂φ
+ êz

∂f

∂z
; (2.9)

~∇2f =
1

ρ

[ ∂
∂ρ

(
ρ gρρ

∂f

∂ρ

)
+

∂

∂φ

(
ρ gφφ

∂f

∂φ

)
+

∂

∂z

(
ρ gzz

∂f

∂z

)]
,

=
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2
∂2f

∂φ2
+
∂2f

∂z2
; (2.10)

~∇ · ~A =
1

ρ

[
∂(ρAρ)

∂ρ
+
∂(ρAφ)

∂φ
+
∂(ρAz)

∂z

]
=

1

ρ

∂(ρAρ)

∂ρ
+
∂Aφ

∂φ
+
∂Az

∂z
,

=
1

ρ

∂(ρAρ̂)

∂ρ
+

1

ρ

∂Aφ̂
∂φ

+
∂Aẑ
∂z

; (2.11)

~∇× ~A =
1

ρ

[
~ξρ ε

ρφz
(∂Az
∂φ
− ∂Aφ

∂z

)
+ ~ξφ ε

φzρ
(∂Aρ
∂z
− ∂Az

∂ρ

)
+ ~ξz ε

zρφ
(∂Aφ
∂ρ
− ∂Aρ

∂φ

)]
,

=
1

ρ

[
êρ

(∂Aẑ
∂φ
−
∂(ρAφ̂)

∂z

)
+ ρêφ

(∂Aρ̂
∂z
− ∂Aẑ

∂ρ

)
+ êz

(∂(ρAφ̂)

∂ρ
− ∂Aρ̂

∂φ

)]
,

=
[
êρ

(1

ρ

∂Aẑ
∂φ
−
∂Aφ̂
∂z

)
+ êφ

(∂Aρ̂
∂z
− ∂Aẑ

∂ρ

)
+ êz

(1

ρ

∂(ρAφ̂)

∂ρ
− 1

ρ

∂Aρ̂
∂φ

)]
; (2.12)

~∇2 ~A = ~ξρ

{
gρρ

∂(~∇· ~A)

∂ρ
− ερφz 1

ρ

[
∂

∂φ

(
1

ρ

(∂Aφ
∂ρ
− ∂Aρ

∂φ

)
ερφzgzz

)
− ∂

∂z

(
1

ρ

(∂Aρ
∂z
− ∂Az

∂ρ

)
εzρφgφφ

)]}
+ ~ξφ

{
gφφ

∂(~∇· ~A)

∂φ
− εφzρ 1

ρ

[
∂

∂z

(
1

ρ

(∂Az
∂φ
− ∂Aφ

∂z

)
εφzρgρρ

)
− ∂

∂ρ

(
1

ρ

(∂Aφ
∂ρ
− ∂Aρ

∂φ

)
ερφzgzz

)]}
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+ ~ξz

{
gzz

∂(~∇· ~A)

∂z
− ερφz 1

ρ

[
∂

∂ρ

(
1

ρ

(∂Aρ
∂z
− ∂Az

∂ρ

)
εzρφgφφ

)
− ∂

∂φ

(
1

ρ

(∂Az
∂φ
− ∂Aφ

∂z

)
εφzρgρρ

)]}
,

= ~ξρ

{
∂(~∇· ~A)

∂ρ
− 1

ρ

[
∂

∂φ

(
1

ρ

(∂Aφ
∂ρ
− ∂Aρ

∂φ

))
− ∂

∂z

(
1

ρ

(∂Aρ
∂z
− ∂Az

∂ρ

)
ρ2
)]}

+ ~ξφ

{
ρ−2

∂(~∇· ~A)

∂φ
− 1

ρ

[
∂

∂z

(
1

ρ

(∂Az
∂φ
− ∂Aφ

∂z

))
− ∂

∂ρ

(
1

ρ

(∂Aφ
∂ρ
− ∂Aρ

∂φ

))]}
+ ~ξz

{
∂(~∇· ~A)

∂z
− 1

ρ

[
∂

∂ρ

(
1

ρ

(∂Aρ
∂z
− ∂Az

∂ρ

)
ρ2
)
− ∂

∂φ

(
1

ρ

(∂Az
∂φ
− ∂Aφ

∂z

))]}
,

= ~ξρ

{
∂(~∇· ~A)

∂ρ
−
[1

ρ

∂

∂φ

(1

ρ

∂Aφ
∂ρ
− 1

ρ

∂Aρ
∂φ

)
− ∂

∂z

(∂Aρ
∂z
− ∂Az

∂ρ

)]}
+

1

ρ
~ξφ

{
1

ρ

∂(~∇· ~A)

∂φ
−
[ ∂
∂z

(1

ρ

∂Az
∂φ
− 1

ρ

∂Aφ
∂z

)
− ∂

∂ρ

(1

ρ

∂Aφ
∂ρ
− 1

ρ

∂Aρ
∂φ

)]}
+ ~ξz

{
∂(~∇· ~A)

∂z
−
[1

ρ

∂

∂ρ

(
ρ
∂Aρ
∂z
− ρ∂Az

∂ρ

)
− 1

ρ

∂

∂φ

(1

ρ

∂Az
∂φ
− 1

ρ

∂Aφ
∂z

)]}
,

= êρ

{
∂(~∇· ~A)

∂ρ
−
[1

ρ

∂

∂φ

(1

ρ

∂(ρAφ̂)

∂ρ
− 1

ρ

∂Aρ̂
∂φ

)
− ∂

∂z

(∂Aρ̂
∂z
− ∂Aẑ

∂ρ

)]}
+êφ

{
1

ρ

∂(~∇· ~A)

∂φ
−
[ ∂
∂z

(1

ρ

∂Aẑ

∂φ̂
−
∂Aφ̂
∂z

)
− ∂

∂ρ

(1

ρ

∂(ρAφ̂)

∂ρ
− 1

ρ

∂Aρ̂
∂φ

)]}
+êz

{
∂(~∇· ~A)

∂z
−
[1

ρ

∂

∂ρ

(
ρ
∂Aρ̂
∂z
− ρ∂Aẑ

∂ρ

)
− 1

ρ

∂

∂φ

(1

ρ

∂Aẑ
∂φ
−
∂Aφ̂
∂z

)]}
, (2.13)

= êρ

{
∂

∂ρ

(
1

ρ

∂(ρAρ̂)

∂ρ
+

1

ρ

∂Aφ̂
∂φ

+
∂Aẑ
∂z

)
−
[1

ρ

∂

∂φ

(1

ρ

∂(ρAφ̂)

∂ρ
− 1

ρ

∂Aρ̂
∂φ

)
− ∂

∂z

(∂Aρ̂
∂z
− ∂Aẑ

∂ρ

)]}
+ êφ

{
1

ρ

∂

∂φ

(
1

ρ

∂(ρAρ̂)

∂ρ
+

1

ρ

∂Aφ̂
∂φ

+
∂Aẑ
∂z

)
−
[ ∂
∂z

(1

ρ

∂Aẑ

∂φ̂
−
∂Aφ̂
∂z

)
− ∂

∂ρ

(1

ρ

∂(ρAφ̂)

∂ρ
− 1

ρ

∂Aρ̂
∂φ

)]}
+ êz

{
∂

∂z

(
1

ρ

∂(ρAρ̂)

∂ρ
+

1

ρ

∂Aφ̂
∂φ

+
∂Aẑ
∂z

)
−
[1

ρ

∂

∂ρ

(
ρ
∂Aρ̂
∂z
− ρ∂Aẑ

∂ρ

)
− 1

ρ

∂

∂φ

(1

ρ

∂Aẑ
∂φ
−
∂Aφ̂
∂z

)]}
,

(2.14)

= êρ

{
∂

∂ρ

1

ρ

∂(ρAρ̂)

∂ρ
+

∂

∂ρ

1

ρ

∂Aφ̂
∂φ

+
∂2Aẑ
∂ρ∂z

− 1

ρ2
∂

∂φ

(
ρ
∂Aφ̂
∂ρ

+ Aφ̂

)
+

1

ρ2
∂2Aρ̂
∂φ2

+
∂2Aρ̂
∂z2

− ∂2Aẑ
∂z∂ρ

]}
+ êφ

{
1

ρ2
∂

∂φ

(
ρ
∂Aρ̂
∂ρ

+ Aρ̂

)
+

1

ρ2
∂2Aφ̂
∂φ2

+
1

ρ

∂2Aẑ
∂φ∂z

− 1

ρ

∂2Aẑ
∂z∂φ

+
∂2Aφ̂
∂z2

+
∂

∂ρ

1

ρ

∂(ρAφ̂)

∂ρ
− ∂

∂ρ

1

ρ

∂Aρ̂
∂φ

}
+ êz

{
1

ρ

∂

∂z

(
ρ
∂Aρ̂
∂ρ

+ Aρ̂

)
+

1

ρ

∂2Aφ̂
∂z∂φ

+
∂2Aẑ
∂z2

− 1

ρ

∂

∂ρ
ρ
∂Aρ̂
∂z

+
1

ρ

∂

∂ρ
ρ
∂Aẑ
∂ρ

+
1

ρ2
∂2Aẑ
∂φ2

− 1

ρ

∂2Aφ̂
∂φ∂z

}
, (2.15)
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= êρ

{
1

ρ

∂

∂ρ

(
ρ
∂Aρ̂
∂ρ

)
− 1

ρ2
Aρ̂ +

1

ρ

∂2Aφ̂
∂ρ∂φ

− 1

ρ2
∂Aφ̂
∂φ

+
∂2Aẑ
∂ρ∂z

−1

ρ

∂2Aφ̂
∂φ∂ρ

− 1

ρ2
∂Aφ̂
∂φ

+
1

ρ2
∂2Aρ̂
∂φ2

+
∂2Aρ̂
∂z2

−∂
2Aẑ
∂z∂ρ

]}
+ êφ

{
1

ρ

∂2Aρ̂
∂φ∂ρ

+
1

ρ2
∂Aρ̂
∂φ

+
1

ρ2
∂2Aφ̂
∂φ2

+
1

ρ

∂2Aẑ
∂φ∂z

−1

ρ

∂2Aẑ
∂z∂φ

+
∂2Aφ̂
∂z2

+
1

ρ

∂

∂ρ
ρ
∂Aφ̂
∂ρ
− 1

ρ2
Aφ̂−

1

ρ

∂2Aρ̂
∂ρ∂φ

+
1

ρ2
∂Aρ̂
∂φ

}
+ êz

{
∂2Aρ̂
∂z∂ρ

+
1

ρ

∂Aρ̂
∂z

+
1

ρ

∂2Aφ̂
∂z∂φ

+
∂2Aẑ
∂z2

−∂
2Aρ̂
∂ρ∂z

−1

ρ

∂Aρ̂
∂z

+
1

ρ

∂

∂ρ
ρ
∂Aẑ
∂ρ

+
1

ρ2
∂2Aẑ
∂φ2

−1

ρ

∂2Aφ̂
∂φ∂z

}
, (2.16)

= êρ

[
~∇2
(
Aρ̂
)
− 1

ρ2
Aρ̂ −

2

ρ2
∂Aφ̂
∂φ

]
+ êφ

[
~∇2
(
Aφ̂
)
− 1

ρ2
Aφ̂ +

2

ρ2
∂Aρ̂
∂φ

]
+ êz ~∇2

(
Aẑ
)
, (2.17)

where the last, blue-inked expressions (referring to the unit-normalized basis) are the ones to be
compared with the corresponding ones in Ref. [1].

WoE 2.1 (The Flip-ρ-Identities) : We have also used the identities:[ ∂
∂ρ

, ρ
]
f =

∂

∂ρ
ρf − ρ∂f

∂ρ
= ρ

∂f

∂ρ
+ f − ρ∂f

∂ρ
=
( ∂
∂ρ
ρ
)
f = + f, (2.18)[ ∂

∂ρ
,

1

ρ

]
f =

∂

∂ρ

1

ρ
f − 1

ρ

∂f

∂ρ
=

1

ρ

∂f

∂ρ
− 1

ρ2
f − 1

ρ

∂f

∂ρ
=
( ∂
∂ρ

1

ρ

)
f = − 1

ρ2
f, (2.19)

and [ ∂
∂ρ

1

ρ

∂

∂ρ
ρ− 1

ρ

∂

∂ρ
ρ
∂

∂ρ

]
f =

1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ
+ f

)
− 1

ρ2

(
ρ
∂f

∂ρ
+ f

)
−
(∂2f
∂ρ2

+
1

ρ

∂f

∂ρ

)
,

=
∂2f

∂ρ2
+

2

ρ

∂f

∂ρ
− 1

ρ

∂f

∂ρ
− 1

ρ2
f − ∂2f

∂ρ2
− 1

ρ

∂f

∂ρ
= − 1

ρ2
f. (2.20)

2.2 Spherical Coordinates

The diligent Reader is invited to do the same for the spherical coordinates, where:

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, (2.21)

r =
√
x2 + y2 + z2, θ = ATan

(√
x2 + y2, z

)
, φ = ATan(y, x), (2.22)

so that

[
gij
]

=

1 0 0

0 r2 0

0 0 r2 sin2 θ

 , [
gij
]

=

1 0 0

0 r−2 0

0 0 r−2 sin−2 θ

 , (2.23)

g = r4 sin2 θ, d3~r = r2dr sin θdθ dφ; (2.24)
~ξr = êr, ~ξθ = r êθ, ~ξφ = r sin θ êφ, Ar = Ar̂, Aθ = r Aθ̂, Aφ = r sin θ Aφ̂. (2.25)

33



2.3 Hyper-Spherical Coordinates

Following the pattern of the polar coordinates in the plane, the spherical coordinates in Euclidean
4d-space, we can introduce:

x = r sin θ1 sin θ2 cosφ, r =
√
x2 + y2 + z2 + w2, (2.26a)

y = r sin θ1 sin θ2 sinφ, φ = ATan(y, x), (2.26b)

z = r sin θ1 cos θ2, θ2 = ATan(
√
x2 + y2, z), (2.26c)

w = r cos θ1, θ1 = ATan(
√
x2 + y2 + z2, w). (2.26d)

so that

[
gij
]

=


1 0 0 0

0 r2 0 0

0 0 r2 sin2 θ1 0

0 0 0 r2 sin2 θ1 sin2 θ2

 , g,,= r6 sin4 θ1 sin2 θ2,

d4~r,,= r3dr sin2 θ1dθ1 sin θ2dθ2 dφ,
(2.27)

and so on: the pattern is easy to continue for all n.

Acknowledgement: I should like to thank Philip Kurian for an exceptionally diligent reading of
this dense text, and uncovering scads of typos. I am quite certain, however, that plenty remain
for you to find and report to me, which I wholeheartedly encourage and entreat. Thank you!
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A The Christoffel Symbol

We now turn to exploring the Γkij which is evidently necessary when taking derivatives of vectors.
The choice of the coefficient Γkij does depend on the choice of all three of i, j, k, but we will show
that it is not a tensor.

A.1 Computing the Christoffel Symbol

First, we notice that

Γkij
~ξk =

∂~ξi
∂ξj

=
∂2~r

∂ξi∂ξj
=

∂2~r

∂ξj∂ξi
=
∂~ξj
∂ξi

= Γkji
~ξk, (A.1)

so that Γkij = Γkji.

Next, we compute the Γkij. We start with:

∂gij
∂ξk

=
∂

∂ξk
~ξi · ~ξj =

∂~ξi
∂ξk
· ~ξj + ~ξi ·

∂~ξj
∂ξk

,

= Γlik
~ξl · ~ξj + ~ξi · Γljk ~ξl = glj Γlik + gli Γ

l
jk, (A.2)

where we used that gij = gji. It is not possible to solve for Γ··· from here, since we’d have to
contract with the inverse metric, but in the two terms on the right-hand side, the metrics have
different free indices. For example, contracting with gjm to “free up” the Γlij results in

gjm
∂gij
∂ξk

= gjm glj Γlij + gjm gli Γ
l
jk = δml Γlij + gjm gli Γ

l
jk,

= Γmij + gjm gli Γ
l
jk, (A.3)

from which only one of the two instances of Γ··· has been “freed up”.

We thus write out this same expression, but cyclicly renaming the (i, j, k) indices:
∂gij
∂ξk

= glj Γlik + gli Γ
l
jk, (A.4a)

∂gjk
∂ξi

= glk Γlji + glj Γlki, (A.4b)

∂gki
∂ξj

= gli Γ
l
kj + glk Γlij. (A.4c)

Recalling that gij = gji, we see that every term occurs twice in the right-hand sides of this system.
In particular, glj Γlki is common to the last two, and the rest of the sum of the last two expressions
is the first. Therefore:

∂gik
∂ξj

+
∂gjk
∂ξi
− ∂gij
∂ξk

= 2 glk Γlij, (A.5)

which can be solved for Γlij via contracting with 1
2
gkm (and then renaming m→ k):

Γkij = 1
2
gkl
(∂gil
∂ξj

+
∂gjl
∂ξi
− ∂gij
∂ξl

)
. (A.6)

As promised, we have proved that

∂~ξi
∂ξj

= Γkij
~ξk = 1

2
gkl
(∂gil
∂ξj

+
∂gjl
∂ξi
− ∂gij
∂ξl

)
~ξk, (A.7)

is far from zero in general coordinate systems: the coordinate vectors ~ξi indeed vary in general.
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A.2 Two Trace Formulae

We will need:
Γiij = 1

2
gil
(∂gil
∂ξj

+
∂gjl
∂ξi
− ∂gij
∂ξl

)
= 1

2
gil
∂gil
∂ξj

, (A.8)

where the last two terms cancel, since the second equals the third:

gil
∂gjl
∂ξi

1
= gli

∂gji
∂ξl

2
= gil

∂gij
∂ξl

, (A.9)

where the first equality follows on simultaneously renaming (i, l) → (l, i), and the second on
using the symmetry gij = gji.

Now we need a result about determinants:

∂g(ξ)

∂ξj
= g(ξ) gil(ξ)

∂gil(ξ)

∂ξj
, i.e. gil(ξ)

∂gil(ξ)

∂ξj
=

1

g(ξ)

∂g(ξ)

∂ξj
=
∂ ln

(
g(ξ)

)
∂ξj

. (A.10)

Identifying this factor in the expression (A.8) lets us simplify it:

Γiij = 1
2

∂ ln(g(ξ))

∂ξj
=
∂ ln
√
g(ξ)

∂ξj
=

1√
g(ξ)

∂
√
g(ξ)

∂ξj
. (A.11)

On the other hand,

gij Γkij = 1
2
gij gkl

(∂gil
∂ξj

+
∂gjl
∂ξi
− ∂gij
∂ξl

)
= 1

2
gkl
(

2gij
∂gil
∂ξj
− gij ∂gij

∂ξl

)
, (A.12)

since
gij
∂gjl
∂ξi

1
= gji

∂gil
∂ξj

2
= gij

∂gil
∂ξj

(A.13)

where the first equality follows on simultaneously renaming (i, j) → (j, i), and the second on
using the symmetry gij = gji.

A.3 The Transformation of the Christoffel Symbol

Given the explicit formula (A.6), we can in fact compute straightforwardly how Γkij transforms!

To this end, we note first that

∂gij(ξ)

∂ξk
=
∂ηl

∂ξk
∂

∂ηl

( ∂ηm
∂ξi

∂ηn

∂ξj
gmn(η)

)
=

∂

∂ξk

( ∂ηm
∂ξi

∂ηn

∂ξj
gmn(η)

)
,

=
∂2ηm

∂ξk∂ξi
∂ηn

∂ξj
gmn(η) +

∂ηm

∂ξi
∂2ηn

∂ξk∂ξj
gmn(η) +

∂ηm

∂ξi
∂ηn

∂ξj
∂gmn(η)

∂ξk
,

=
∂ηm

∂ξi
∂ηn

∂ξj
∂ηl

∂ξk
∂gmn(η)

∂ηl
+

∂2ηm

∂ξk∂ξi
∂ηn

∂ξj
gmn(η) +

∂ηm

∂ξi
∂2ηn

∂ξk∂ξj
gmn(η). (A.14)

The occurrence of the mixed, 2nd derivatives manifestly does not conform to the definition 1.9,
and—in general—those are non-zero: ∂gij

∂ξk
is not a tensor, and neither is Γkij.

Substituting the result (A.14), the tensorial transformation rule (1.72) and the inverse of
that for gkl into (A.6), (A.8) and (A.12) is now straightforward, albeit a bit tedious; the result is

Γijk(ξ) =
∂ξi

∂η`
∂ηm

∂ξj
∂ηn

∂ξk
Γ`mn(η)︸ ︷︷ ︸

tensorial

+
∂ξi

∂η`
∂2η`

∂ξj∂ξk︸ ︷︷ ︸
inhomogeneous

. (A.15)
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Its trace, for example, is:

Γiij(ξ) = 1
2 g

il(ξ)
∂gil(ξ)

∂ξj
, (A.16)

=
1

2

( ∂ξi
∂ηk

gkm(η)
∂ξl

∂ηm

)(∂ηn
∂ξi

∂ηp

∂ξl
∂ηq

∂ξj
∂gnp(η)

∂ηq
+

∂2ηn

∂ξj∂ξi
∂ηp

∂ξl
gnp(η) +

∂ηn

∂ξi
∂2ηp

∂ξj∂ξl
gnp(η)

)
,

=
1

2

∂ξi

∂ηk
gkm(η)

∂ξl

∂ηm
∂ηn

∂ξi
∂ηp

∂ξl
∂ηq

∂ξj
∂gnp(η)

∂ηq
+

1

2

∂ξi

∂ηk
gkm(η)

∂ξl

∂ηm
∂2ηn

∂ξj∂ξi
∂ηp

∂ξl
gnp(η)

+
1

2

∂ξi

∂ηk
gkm(η)

∂ξl

∂ηm
∂ηn

∂ξi
∂2ηp

∂ξj∂ξl
gnp(η),

=
1

2

∂ηn

∂ηk
∂ηp

∂ηm
∂ηq

∂ξj
gkm(η)

∂gnp(η)

∂ηq
+

1

2

∂ξi

∂ηk
∂2ηn

∂ξj∂ξi
∂ηp

∂ηm
gkm(η)gnp(η) +

1

2

∂ξl

∂ηm
∂ηn

∂ηk
∂2ηp

∂ξj∂ξl
gkm(η)gnp(η),

=
∂ηq

∂ξj

[
1
2g
km(η)

∂gkm(η)

∂ηq

]
+

1

2

∂ξi

∂ηk
∂2ηn

∂ξj∂ξi
gkm(η)gnm(η) +

1

2

∂ξl

∂ηm
∂2ηp

∂ξj∂ξl
gkm(η)gkp(η),

=
∂ηq

∂ξj

[
1
2g
km(η)

∂gkm(η)

∂ηq

]
+

1

2

∂ξi

∂ηk
∂2ηn

∂ξj∂ξi
δkn +

1

2

∂ξl

∂ηm
∂2ηp

∂ξj∂ξl
δmp ,

=
∂ηq

∂ξj
Γkkq(η)︸ ︷︷ ︸

tensorial

+
∂ξi

∂ηk
∂2ηk

∂ξj∂ξi︸ ︷︷ ︸
inhomogeneous

(A.17)

is one of the simplest expressions. It shows that, although it has one single free index—as the
components of a covariant vector would have—Γiij is not a vector: besides the leading (tenso-
rial) transformation term, it also picks up an inhomogeneous term. The property of transforming
inhomogeneously is characteristic for Γkij in its rôle as a “connexion.”
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B Lexicon

The following is a swift reminder of the definitions of some of the terms used herein.

Basis: Given a vector space, a basis is a maximal collection of its linearly independent vectors;
the number of basis elements is the dimension of the vector space.

Cartesian product: Given two tensors (all indices take on values 1, · · · , n),

T := {T i1,··· ,ipj1,··· ,jq } and U := {Uk1,··· ,kr
l1,··· ,ls }, (B.1)

the Cartesian product (or tensor product) is the tensor with components

V :=
{
V
i1,··· ,ip,k1,··· ,kr
j1,··· ,jq ,l1,··· ,ls := (T

i1,··· ,ip
j1,··· ,jq U

k1,··· ,kr
l1,··· ,ls )

}
. (B.2)

Contraction: Given a (p, q)-tensor T, any (p−1, q−1)-tensor the components of which are repre-
sentable as a sum of the form

δjnim T
i1,··· ,im,··· ,ip
j1,··· ,jn,··· ,jq = T

i1,··· ,k,··· ,ip
j1,··· ,k,··· ,jq = U

i1,··· , îm ,··· ,ip
j1,··· , ĵn ,··· ,jq

(B.3)

is called a contraction of T; “ îm ” indicates that im is omitted from the sequence.

Coordinate system: For our purpose, it is a system of formal variables assigned to completely,
unambiguously and irredundantly describe the configurations of a (physical) system.

Linear operation: Any operation, O(· · · ), defined on (linear superpositions of) vectors,
∑

i ci~vi,
such that the following holds:

O
(∑

i

ci~vi
)

=
∑
i

ci O(~vi), all vectors ~vi and all scalars ci. (B.4)
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