
1 Integrating via Residues

Cauchy’s integral formula1

f (n)(z0) =
n!

2πi

∮
C

dζ f(ζ)

(ζ − z0)n+1
(1)

and the associated Laurent expansion

f(z) =

∞∑
n=−∞

an(z0) (z − z0)
n, an(z0) =

1

2πi

∮
C

dζ f(ζ)

(ζ − z0)n+1
(2)

have numerous applications. In particular, if we integrate (2) along a contour that encircles z0 once,
counter-clockwise,∮

C
dz f(z) =

∞∑
n=−∞

an(z0)

∮
C
dz(z − z0)

n, change var’s z−z0 =: ζ = reiθ. (3)

We modify the contour C to a circular one, centered at z0 and of radius r:

=
∞∑

n=−∞
an(z0)

∮
C′

r

dζ ζn =
∞∑

n=−∞
an(z0)

∫ 2π

0
(reiθ idθ) (rn einθ) =

∞∑
n=−∞

an(z0) i r
n+1

∫ 2π

0
dθ ei(n+1)θ,

=

∞∑
n=−∞
n̸=−1

an(z0) i r
n+1

[
ei(n+1)2π − e0

i(n+ 1)︸ ︷︷ ︸
=0

]
+ a−1(z0) i

∫ 2π

0
dθ = 2πi a−1(z0). (4)

This being the only contribution, it is called a residue and denoted

Res
z!z0

[f(z)] def= a−1(z0) =
1

2πi

∮
C
dz f(z), (5)

where C is a sufficiently small contour that it encloses only one singularity of f(z), the one at z0. The key
result is that —if f(z) has a pole of order m at z0— this residue can just as well computed as the limit

Res
z!z0

[f(z)] =
1

(m− 1)!
lim
z!z0

[
dm−1

dzm−1

(
(z−z0)

m f(z)
)]

, (6)

which is easily proven by using Cauchy’s integral formula (1) to write the derivative as a contour-integral:

Res
z!z0

[f(z)] =
1

(m− 1)!

[
(m−1)!

2πi

∮
C

dζ
(
(ζ−z0)

m f(ζ)
)

(ζ−z0)(m−1)+1

]
=

1

2πi

∮
C

dζ f(ζ)

(ζ−z0)
, (7)

which precisely reproduces the definition (5).

For a larger contour that encloses more than one singularity, the definition (5) generalizes to∮
C
dz f(z) = 2πi

∑
zi ⟲C

Res
z!zi

[f(z)] (8)

where “zi ⟲ C” means that the summation runs over all “zi that are encircled (once, CCW) by the contour
C.”

We now explore some cases where these results can be used to compute definite integrals.

1Unless otherwise specified, the contour C encircles z0 once, counter-clockwise.
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1.1 Circular Integrals

Given an integral of the general form I =
∫ 2π
0 dθ f(sin θ, cos θ), where the integrand can be written entirely

in terms of the trigonometric functions sin θ and cos θ, we use that

z = eiθ ⇒ dθ = −i
dz

z
, sin θ =

z − 1/z

2i
, cos θ =

z + 1/z

2
, (9)

so that

I =

∫ 2π

0
dθ f(sin θ, cos θ) = −i

∮
|z|=1

dz

z
f
(z − 1/z

2i
,
z + 1/z

2

)
. (10)

In addition to Examples 11.8.1 and 11.8.2 in [1, p. 523–524], consider a rather more complicated-looking
integral

I =

∫ 2π

0

dθ (cos(θ) + i sin(θ)− 1)2

4 cos(4θ) + 4i sin(4θ) + 15 cos(2θ) + 15i sin(2θ)− 4
, (11)

and note that the suggested change of variables z = eiθ implies that zk = cos(kθ) + i sin(kθ). Therefore

cos(kθ) =
zk + z−k

2
sin(kθ) =

zk − z−k

2i
, and dθ = −i

dz

z
. (12)

Substituting, we obtain

I = −i

∮
|z|=1

dz

z

(
(z+1/z)/2 + (z−1/z)/2− 1

)2
2(z4+1/z4) + 2(z4−1/z4) + 15(z2+1/z2)/2 + 15(z2−1/z2)/2− 4)

, (13)

which looks perhaps even more intimidating. . . until we note that the 1/zk-terms cancel upon expanding
the numerator and the denominator separately, while the zk-terms add up:

I = −i

∮
dz F (z), F (z) def=

(z−1)2

z(z+2i)(z−2i)(2z+1)(2z−1)
, (14)

which makes it clear that the integrand has simple poles at z = 0, z = ±1
2 and z = ±2i (which is where the

denominator goes to zero), the first three of which are inside the unit circle and contribute in the residue
formula:

I = −i
{
2πi

(
Res
z!0

[F (z)] + Res
z! 1

2

[F (z)] + Res
z!− 1

2

[F (z)]
)}

, (15)

= 2π
(
lim
z!0

[z F (z)] + lim
z! 1

2

[(z−1
2)F (z)] + lim

z!− 1
2

[(z−1
2)F (z)]

)
, (16)

= 2π
(
−1

4
+

1

34
+

9

34
=

3

68

)
=

3π

34
= 0.277199 . . . (17)

1.2 Completing the Contour

Consider comoputing a real-valued integral I =
∫ b
a dx f(x) as if it was a complex-valued integral, drawing

the straight-interval “contour” x ∈ [a, b] in the complex plane, z = x+ iy. The general idea is then:

1. Complete the interval z ∈ [a+i0, b+i0] by connecting segments to it to form a closed contour C =

[a, b] + C1 + C2 + . . . ,

2. such that the complex integral
∫
Ci

dz f(z) on each additional segment is:

(a) either easy to compute
(b) or proportional to I.

3. Find the poles of f(z) enclosed by the so-formed combined contour, and employ the residue formula:∫ b

a
dx f(x) +

∑
k

∮
Ck

dz f(z) =

∮
C
dz f(z) =

∑
zi ⟲C

Res
z!zi

[f(z)] (18)
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A. The integral I =
∫∞
−∞

dx
1+x4 is well-defined all along the real axis, and we define it as

I =

∫ ∞

−∞

dx

1 + x4
def= lim

R!∞

∫ R

−R

dz

1 + z4
. (19)

The “contour” x ∈ [−R,R] is depicted at right, to-
gether with a possible completion of the contour, the
blue-ink semi-circle of radius R. The enclosed poles
of the integrand are shown as “⋆”. −R 0 +R

1 ⋆
z0⋆

z1

The poles of the complex-valued integrand 1
1+z4

are the locations where the denominator vanishes:

1 + z4 = 0 ⇒ z4k = −1 = eiπ = ei(π+2kπ), zk = ei(1+2k)π/4, k = 0, 1, 2, 3, (20)

of which the first two, z0 = eiπ/4 and z1 = e3iπ/4 are the enclosed poles, and z2 = e5iπ/4 and z3 = e7iπ/4

are excluded.

The circular arc contribution is easy to compute in the limit r ! ∞, since this∫
arc

dz

1 + z4
= lim

R!∞

∫ π

0

iReiθdθ

1 + (Reiθ)4
= lim

R!∞

∫ π

0

iReiθdθ

R4e4iθ
= lim

R!∞

i

R3︸ ︷︷ ︸
! 0

∫ π

0
dθ e−3iθ = 0. (21)

Finally, we are in the position to employ the residue formula:∫ ∞

−∞

dx

1 + x4
+

∫
arc

dz

1 + z4
=

∮
C

dz

1 + z4
= 2πi

{
Res
z!z0

[ 1

1 + z4
]
+ Res

z!z1

[ 1

1 + z4
]}

, (22)

= 2πi
{

lim
z!z0

[
(z − z0)

1

1 + z4
]
+ lim

z!z1

[
(z − z1)

1

1 + z4
]}

. (23)

Although it is easy to factorize (1 + z4) = (z−z0)(z−z1)(z−z2)(z−z3), we proceed instead by employing
L’Hospital’s rule (you show that the factorization produces the same result):

z0 = eiπ/4 : lim
z!eiπ/4

z − eiπ/4

1 + z4
= lim

z!eiπ/4

d
dz (z − eiπ/4)

d
dz (1 + z4)

= lim
z!eiπ/4

1

4z3
=

1

4e3iπ/4
= e−3iπ/4

4 ; (24)

z1 = e3iπ/4 : lim
z!e3iπ/4

z − e3iπ/4

1 + z4
= lim

z!e3iπ/4

d
dz (z − e3iπ/4)

d
dz (1 + z4)

= lim
z!e3iπ/4

1

4z3
=

1

4e9iπ/4
= e−9iπ/4

4 . (25)

Therefore, ∫ ∞

−∞

dx

1 + x4
+

∫
arc

dz

1 + z4︸ ︷︷ ︸
! 0

= 2πi
{

e−3iπ/4

4 + e−9iπ/4

4

}
= 2πi

{
− i

2
√
2

}
=

π√
2
. (26)

Incidentally, one would obtain the same end-result if one completed the contour by adding the arc
in the lower half-plane. That arc-contribution would also vanish, just like (21). This time however, the
combined contour would close clockwise, thus acquiring an overall (−1) factor on the left-hand side of the
analogue of (23). The so-completed contour would however enclose the poles z2 and z3, and exclude z0

and z1. But, don’t take my word for it: do the math.

B. Consider now the similar integral I =
∫∞
−∞

dx
1+x3 , which is not well-defined all along the real axis: the

path of integration x ∈ (−∞,+∞) encounters the singularity x = −1, where the integrand blows up. We
then need to define the principal part as

I = ℘

∫ ∞

−∞

dx

1 + x3
def= lim

R!∞
ϵ!0

[ ∫ −1−ϵ

−R

dz

1 + z3
+

∫ +R

−1+ϵ

dz

1 + z3

]
. (27)
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Completing the contour is now a little more involved,
since we need to add two arcs: one of radius R as be-
fore, and now also an ϵ-radius semicircle that connects
the (−R,−1−ϵ] and [−1+ϵ,+R) segments. The result is
depicted at right, where the big semicircle is depicted in
blue-ink, while the ϵ-semicircle is indicated by red ink. The
relevant poles of the integrand are shown as “⋆”. −R 0 +R

1

⋆
z0

⋆
z1

The poles of the complex-valued integrand 1
1+z3

are the locations where the denominator vanishes:

1 + z3 = 0 ⇒ z3k = −1 = eiπ = ei(π+2kπ), zk = ei(1+2k)π/3, k = 0, 1, 2, (28)

of which the first one, z0 = eiπ/3is enclosed by the above choice for the completed contour, while z1 =

e3iπ/3 = −1 and z2 = e5iπ/3 are excluded.

The R-radius arc contribution (blue) is again zero∫
R-arc

dz

1 + z3
= lim

R!∞

∫ π

0

iReiθdθ

1 + (Reiθ)3
= lim

R!∞

∫ π

0

iReiθdθ

R3e3iθ
= lim

R!∞

i

R2︸ ︷︷ ︸
! 0

∫ π

0
dθ e−2iθ = 0. (29)

For the little contour, we change variables z ! ζ = z+1 to re-center at z = −1, and then we use polar
coordinates ζ = ϵeiθ. That is, we use z = ϵeiθ−1, where θ varies from π to 0, clockwise:∫

ϵ-arc

dz

1 + z3
= lim

ϵ!0

∫ 0

π

iϵeiθdθ

1 + (ϵeiθ−1)3︸ ︷︷ ︸
indeterminate, of the 0/0 form

= lim
ϵ!0

∫ 0

π

d
dϵ iϵe

iθdθ
d
dϵ(1 + (ϵeiθ−1)3)

= lim
ϵ!0

∫ 0

π

ieiθdθ

3(ϵeiθ−1)2(eiθ)
, (30)

= lim
ϵ!0

∫ 0

π

idθ

3(−1)2
=

i

3

∫ 0

π
dθ =

i

3
(−π) =

π

3i
. (31)

Notice that this infinitesimal semicircle-integral equals 1
2 of the full-circle integral, and that it is computed

clockwise, so that its residue-formula (alternative) computation is (notice the −πi = (−1)12(2πi) factor
multiplying the residue contributions):∫

ϵ-arc

dz

1 + z3
= −iπ Res

z!−1

[ 1

1 + z3

]
= −iπ lim

z!−1

[
(z − (−1))

1

1 + z3

]
,

= −iπ lim
z!−1

[ d
dz (z + 1)
d
dz (1 + z3)

]
= −iπ lim

z!−1

[ 1

3z2

]
= −iπ

1

3(−1)2
=

π

3i
. (32)

Combining the segment contributions, the residue formula provides

℘

∫ ∞

−∞

dx

1 + x3
+

∫
ϵ-arc

dz

1 + z3
+

∫
R-arc

dz

1 + z3
= 2πi Res

z!z0

[ 1

1 + z3

]
, (33)

I +
π

3i
+ 0 = 2πi lim

z!eiπ/3

[(z − eiπ/3)

1 + z3

]
= 2πi lim

z!eiπ/3

[ d
dz (z − eiπ/3)

d
dz (1 + z3)

]
= 2πi lim

z!eiπ/3

[ 1

3z2

]
, (34)

I +
π

3i
= 2πi

1

3
(e−2iπ/3) ⇒ I =

2πi

3
e−2iπ/3 − π

3i
=

2πi

3
e−2iπ/3 +

πi

3
(35)

This may be simplifed:

I =
πi

3

(
2e−2iπ/3 + 1

)
=

πi

3

(
2 cos(2π/3)− 2i sin(2π/3) + 1

)
=

πi

3

(
2(−1

2)− 2i(
√
3
2 ) + 1

)
, (36)
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=
πi

3

(
− i(

√
3)
)
=

π

3
(
√
3) =

π√
3
. (37)

This time, both semicircles could have been drawn in the opposing way, resulting in three additional
candidate contours:

1
⋆

⋆

⋆

1
⋆

⋆

⋆

1
⋆

⋆

⋆

(38)

each of which leads to the same end-result (37). Again, don’t take my word for it: do the math.

C. In the above two examples, the integrand was such that the R-arc integral vanished in the R ! ∞ limit
both in the upper and the lower half-plane. Obviously, this need not always be the case, and one or the
other may have to be chosen. This typically hinges on analyzing what happens to the complex-extended
integrand f(z) in the limit limR!∞ f(x+ iR). Some of the most typical examples of this sort are analyzed
in [1, p. 527–531]; they all rely on the fact that:

lim
R!∞

eiz = lim
R!∞

eiReiθ = lim
R!∞

eiR cos θ−R sin θ = lim
R!∞

eiR cos θ︸ ︷︷ ︸
bounded

e−R sin θ︸ ︷︷ ︸
! 0

= 0, θ ∈ [0, π]; (39)

lim
R!∞

e−iz = lim
R!∞

e−iReiθ = lim
R!∞

e−iR cos θ+R sin θ = lim
R!∞

e−iR cos θ︸ ︷︷ ︸
bounded

eR sin θ︸ ︷︷ ︸
!∞

= ∞, θ ∈ [0, π]; (40)

while in the lower half-plane:

lim
R!∞

eiz = lim
R!∞

eiReiθ = lim
R!∞

eiR cos θ−R sin θ = lim
R!∞

eiR cos θ︸ ︷︷ ︸
bounded

e−R sin θ︸ ︷︷ ︸
!∞

= ∞, θ ∈ [π, 2π]; (41)

lim
R!∞

e−iz = lim
R!∞

e−iReiθ = lim
R!∞

e−iR cos θ+R sin θ = lim
R!∞

e−iR cos θ︸ ︷︷ ︸
bounded

eR sin θ︸ ︷︷ ︸
! 0

= 0, θ ∈ [π, 2π]. (42)

This extends to any other function for which the same type of limiting behavior can be established.

To this end, consider the behavior eiz
2
. Upon writing z = Reiθ, we have that

iz2 = iR2 cos(2θ)−R2 sin(2θ), (43)

where the sign of sin(2θ) changes twice as fast, so that an integral involving eiz
2

would have a vanishing
R-arc contribution only in the 1st and 3rd quadrant; those in the 2nd and 4th quadrant are divergent.
Next, noting that along the bisector of the 1st and
3rd quadrant, eiz

2 |z=reiπ/4 = ei(r
√
i)2 = e−r2 , we can

evaluate the so-called Fresnell integral,

I =

∫ ∞

0
dx eix

2
(44)

by completing the contour as shown to the right. 0 +R

The R-arc (blue) contribution,
∫ π/4
0 dθ ei(Reiθ)2 =

∫ π/4
0 dθ eiR

2 cos(2θ)−R2 sin(2θ) =
∫ π/4
0 dθ eiR

2 cos(2θ) e−R2 sin(2θ)

vanishes in the R ! ∞ limit, since sin(2θ) ≥ 0 for θ ∈ [0, π/4], and |eiR2 cos(2θ)| ≤ 1 is bounded. The slanted
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(maroon) contribution,
∫ 0
R d(reiπ/4) ei(re

iπ/4)2 = −eiπ/4
∫ R
0 dr eir

2(eiπ/2=i) = −eiπ/4
∫ R
0 dr e−r2 should be

familiar: in the R ! ∞ limit, it involves the known2 result
∫∞
0 dr e−r2 =

√
π/2. In addition, the complex-

valued function eiz
2

has no poles in the finite C-plane, so that we have:(
I =

∫ ∞

0
dx eix

2
)
+

∫ π/4

0
dθ ei(Reiθ)2︸ ︷︷ ︸
! 0

+

∫ 0

R
d(reiπ/4) ei(re

iπ/4)2︸ ︷︷ ︸
!−eiπ/4

√
π

=

∮
dz eiz

2
= 0, (45)

producing the result

I =

∫ ∞

0
dx eix

2
= eiπ/4

√
π (46)

Including a ratio of polynomials in z in the integrand will not change the vanishing of the R-arc segment
contribution, since the exponential decays faster than any polynomial. However, this will change the
slanted segment contribution. To that end, recall formula (2.15) from the “Know Thy Math” handout:∫ ∞

0
dt e−(αt)β tγ =

Γ
(γ+1

β

)
β α(γ+1)

(47)

which can be used to evaluate, term-by-term, any slanted-segment integral of the form

lim
R!∞

∫ 0

R
d(teiπ/4)

[∑
k

ck(te
iπ/4)γk

]
ei(te

iπ/4)2 = −
∑
k

ck e
iπ(γk+1)/4 1

2
Γ
(γk + 1

2

)
. (48)

where we identified α = 1 and β = 2. If all γk are non-negative integers, the integrand is analytic, and
right-hand side of the analogue of Eq. (45) continues to vanish, as there are no poles to enclose.

If the integrand needs to contain a ratio of polynomials in the square brackets, the reciprocal of the
denominator can be expanded into a power-series using 1

1−ξ =
∑∞

k=0 ξ
k, turning the desired integral into

an integral over a Taylor series. Wherever this series converges absolutely, it can be integrated term-
by-term, and the result re-summed. The ratio of polynomials inserted within the square-brackets in the
template (48) may well have poles, and those that are enclosed within the pie-slice contour (44) will now
contribute 2πi-multiples of the corresponding residues. Thus, as long as this slanted (maroon) contribution
can be evaluated (by using (47), for example), so can then all portions of the template (48), producing a
value for integrals of the form

∫∞
0 dx

poly1(x)
poly2(x)

eix
2
.

D. The type of contour used in (44) may also be useful in another type of integral:∫ ∞

0
dx f(x), where f(ωx) = ωnf(x), with |ω| = 1. (49)

In that case, the integrals along the “spokes” z = rωk for k = 0, 1, . . . are all proportional to each other:∫ ∞

0
d(ωkx) f(ωkx) = ω(n+1)k

∫ ∞

0
dx f(x), (50)

and we only need to connect the k = 0 (original) “spoke” with another one by means of an arc at infinity,
choosing this other “spoke” so that the connecting arc would be easy to evaluate, and possibly zero.

To this end, consider the integral

I =

∫ ∞

0
dz f(x), f(z) =

x8

6− 7x8 + x24
, (51)

2This is half of the integral computed on p. 4 of “Know Thy Math” handout, and shows up in many other places.
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using the 45◦ pie-slice contour (44). For the R-arc (blue),

lim
R!∞

∫ π/4

0
d(Reiθ) f

(
Reiθ

)
= lim

R!∞

∫ π/4

0

iReiθdθ R8e8iθ

6− 7R8e8iθ +R24e24iθ
= lim

R!∞

∫ π/4

0

iR9e9iθdθ

R24e24iθ
,

= lim
R!∞

i

R13︸ ︷︷ ︸
! 0

∫ π/4

0
dθ e−13iθ︸ ︷︷ ︸

bounded

= 0. (52)

whereas for the slanted (maroon) segment

lim
R!∞

∫ 0

R
d(reiπ/4) f

(
reiπ/4

)
= lim

R!∞

∫ 0

R

dr r8 e9iπ/4

6− 7r8 e8iπ/4 + r24e24iπ/4
= − lim

R!∞

∫ R

0

dr r8 eiπ/4

6− 7r8 + r24
,

= −eiπ/4 lim
R!∞

∫ R

0

dr r8

6− 7r8 + r24
, = −eiπ/4 I. (53)

Now, the complex-valued integrand f(z) has poles where the denominator vanishes:

6− 7z8 + z24 = (z8 − 1)(z8 − 2)(z8 + 3) (54)

vanishes at the 24 points:

1. z8 = 1: z1,k =
8
√
1·e2kiπ = e2kiπ/8, k = 0, 1, . . . , 7;

2. z8 = 2: z2,k =
8
√
2·e2kiπ = 8

√
2 e2kiπ/8, k = 0, 1, . . . , 7;

3. z8 = −3: z3,k =
8
√
3·e(2k+1)iπ = 8

√
3 e(2k+1)iπ/8, k = 0, 1, . . . , 7.

Of these the contour encloses only z3,0. However, note that z1,0, z2,0 are in the path of the original (horizon-
tal “spoke”) integral, while z1,1, z2,1 are in the path of the slanted “spoke” integral — these will modify the
otherwise straight contour segments with the ϵ-semicircle detours. Among the various options, consider:

⋆ ⋆

⋆⋆

⋆

0 +R

(55)

The straight-line portions of the [0, R]-segment provide, in the double limit (R ! ∞, ϵ ! 0) the principal
value of the original integral (51), and the principal value of the integral along the slanted “spoke” is
defined accordingly, so it is equal to −eiπ/4 I as shown in (53). The ϵ-semicircular detours add, respectively
±πiResz!zi [f(z)] for each of the singular points encountered on the path, with the signs chosen: “+” for
CCW detours, and “−” for CW detours. Putting these together along the so-chosen contour, which encloses
only the z3,0 singularity, produces:(

℘I − iπRes
z!1

[f(z)]− iπ Res
z! 8√2

[f(z)]
)
+ 0 +

(
−eiπ/4 ℘I + iπ Res

z! 8√2ekiπ/4
[f(z)] + iπ Res

z!1ekiπ/4
[f(z)]

)
= 2iπ Res

z! 8√3eiπ/8
[f(z)],

(56)

which we solve for

℘I =
1

1−eiπ/4

(
iπRes

z!1
[f(z)] + iπ Res

z! 8√2
[f(z)]− iπ Res

z! 8√2ekiπ/4
[f(z)]− iπRes

z!1ekiπ/4
[f(z)] + 2iπRes

z! 8√3eiπ/8
[f(z)]

)
. (57)
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Whereas this is tedious to evaluate, it is straightforward: all the poles are simple (m = 1), and the limit-
formula (6) insures that each evaluation is a limit. For example,

Res
z!1

[f(z)] = Res
z!1

[f(z)] = lim
z!1

[
(z−1)

z8

6− 7z8 + z24
]
, (58)

which may be easier to evaluate using L’Hospital’s rule than utilizing the factorization of the denominator:

(z−1)f(z) =
z8(z−1)

6− 7z8 + z24
=

z8(z−1)

(z8 − 1)(z8 − 2)(z8 + 3)
,

=
z8(z−1)(

(z − z1,0)(z − z1,1)(z − z1,2) · · · (z − z1,7)
)
(z8 − 2)(z8 + 3)

, . (59)

since z1,0 = e2(0)iπ/8 = 1. Either way, the final evaluation (57) is left as an exercise.

1.3 Exploiting Multi-Valuedness

In this group, read carefully the examples worked out in detail on pp. 534–537.

1.4 Exploiting Periodicity

In this group, read carefully the examples worked out in detail on pp. 537–538.
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