
Orthogonal Coordinate Systems
We generalize what we’ve learned from Cartesian coordinates to arbitrary orthogonal coordinate systems,
and then specialize to cylindrical and to spherical coordinate systems.

1 Orthogonal Coordinate Systems

In Cartesian coordinates, Pythagoras’ theorem guarantees that (remember Einstein’s summation conven-
tion):

ds2 = (dx)2 + (dy)2 + (dz)2 = dxi �ij dxj (1.1)

is the square of the infinitesimal line element along any continuous curve. This will of course look very
differently in an arbitrary “curvilinear” coordinate system:

ds2 = d�i gij(�) d�j , (1.2)

and the matrix of functions gij(�) that specifies how to compute this fundamental quantity in geometry is
called the metric of the coordinate system (�1, �2,…). In retrospect, comparing (1.1) with (1.2), we see that
the Kronecker symbol, �ij (which represents the identity matrix), is the metric of the Cartesian coordinate
system—that’s where the simplicity of the Cartesian coordinate system comes from.

The metric of the �-coordinate system is always related to the Cartesian metric by the change of
coordinates:

d2s = dxi �ij dxj =
(

d�k )x
i

)�k
)

�ij
()xj

)�l
d�l

)

= d�k
( )xi

)�k
�ij
)xj

)�l
⏟⏞⏞⏟⏞⏞⏟
gkl(�)

)

d�l, (1.3a)

⇒ gkl(�) =
)xi

)�k
�ij
)xj

)�l
, where gkl(�) ≡ glk(�) by definition. (1.3b)

This metric was used to define the scalar product, and scalar products can be used to define angles:

A⃗ ⋅ B⃗ = Ai(�) gij(�)Bj(�) = |A⃗||B⃗| cos(�AB), (1.4)

where |A⃗| =
√

A⃗ ⋅ A⃗ =
√

Ai(�) gij(�)Aj(�), so that

�AB = cos−1
( Ai(�) gij(�)Bj(�)
√

Ai(�) gij(�)Aj(�)
√

Bi(�) gij(�)Bj(�)

)

(1.5)

defines angles between vectors in terms of the scalar product of vectors. Therefore, a coordinate system
(and its geometry) is fully specified by giving the list of the coordinates �1, �2,…) and providing the metric
gij(�), i.e., the generalization of Pythagoras’ theorem.

At the end of this semester, wewill see how vector calculus generalizes to all “curvilinear” coordinates.
For now, we specialize to that subset, wherein the expansion (1.2) does not have any mixed terms, where

ds2 =
3
∑

i=1
(d�i)2 gii(�) =

3
∑

i=1

(

ℎi(�) d�i
)2, ℎi(�) ∶=

√

gii(�). (1.6)
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That is: the metric gij(�) in these coordinate systems is diagonal, i.e., gij(�) = 0 if i ≠ j. Square-roots of
the diagonal elements (the ℎi(�)-coefficients) can then be used to rescale the coordinate differentials, and
since ds has physical units (dimensions) of length, so do the products

ℎ1(�) d�1, ℎ2(�) d�2, ℎ3(�) d�3. (1.7)

In this sense, these rescaled differentials are similar to the Cartesian differentials, straightforwardly general-
izing the volume integration differential element: d3r⃗ = ℎ1ℎ2ℎ3d�1d�2d�3. Similarly, the vector-derivative
operator becomes

∇⃗ = ê1
1
ℎ1

)
)�1

+ ê1
1
ℎ2

)
)�2

+ ê1
1
ℎ3

)
)�3

, (1.8)

and its action on a scalar function is straightforward:

grad(f ) = ê1
1
ℎ1
)f
)�1

+ ê1
1
ℎ2
)f
)�2

+ ê1
1
ℎ3
)f
)�3

. (1.9)

Its action on vectors, however, is a bit trickier, since we have to take into account that not only are the
components of a vector �-dependent, but so are the scaling factors, as well as the unit vectors: ê�i are
constant in magnitude, but their directions do change in general.

The textbook [1, § 3.10, pp. 182–187] provides also a geometrical derivation and explanation of the
following formulae:

div(A⃗) = ∇⃗× A⃗ = 1
ℎ1ℎ2ℎ3

3
∑

i=1

[

)
)�i

(Ai ℎ1ℎ2ℎ3
ℎi

)

]

, (1.10)

= 1
ℎ1ℎ2ℎ3

[

)
)�1

(

A1ℎ2ℎ3
)

+ )
)�2

(

ℎ1A2ℎ3
)

+ )
)�3

(

ℎ1ℎ2A3
)

]

, (1.11)

curl(A⃗) = ∇⃗ ⋅ A⃗ = 1
ℎ1ℎ2ℎ3

|

|

|

|

|

|

|

|

|

ℎ1ê1 ℎ2ê2 ℎ3ê3
)
)�1

)
)�2

)
)�3

ℎ1A1 ℎ2A2 ℎ3A3

|

|

|

|

|

|

|

|

|

= 1
ℎ1ℎ2ℎ3

3
∑

i,j,k=1
�ijk(ℎiêi)

[ )
)�j

(ℎkAk)
]

(1.12)

Combining the above, we can compute

div
(

grad(f )
)

= 1
ℎ1ℎ2ℎ3

[

)
)�1

(ℎ2ℎ3
ℎ1

)f
)�1

)

+ )
)�2

(ℎ1ℎ3
ℎ2

)f
)�2

)

+ )
)�3

(ℎ1ℎ2
ℎ3

)f
)�3

)

]

(1.13)

as well as
∇⃗2A⃗ = grad

(

div(A⃗)
)

− curl
(

curl(A⃗)
)

, (1.14)

the expansion of which is tedious in general; see below for special cases.

1.1 Cylindrical Coordinates

These coordinates (�, �, z) may be specified by relating them to Cartesian coordinates:

� =
√

x2 + y2, x = � cos(�), (1.15a)
� = Arctan(y, x), y = � sin(�), (1.15b)
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and the cylindtical coordinate z is identical to the Cartesian z. The function Arctan(y∕x) is defined:

Arctan(y, x) ∶= tan−1
(y
x

)

+ #(−x)� + #(x)#(−y)2�. (1.16)

this renders the numerical value of Arctan(y, x) ∈ [0, 2�], which is the usual choice of the range for the
polar angle �. Here,

#(x) =
{0 for x < 0,
1 for x > 0,

(1.17)

is the Heaviside step-function.

We can use the relation (1.3) to compute the metric of the cylindrical system:

)x
)�

= cos(�),
)y
)�

= sin(�), )z
)�

= 0, (1.18a)

)x
)�

= −� sin(�),
)y
)�

= � cos(�), )z
)�

= 0, (1.18b)

)x
)z

= 0,
)y
)z

= 0, )z
)z

= 1. (1.18c)

Substituting these into (1.3), we have:

g�� =
3
∑

i=1

()xi

)�

)2
= cos2(�) + sin2(�) + (0)2 = 1, (1.19a)

g�� =
3
∑

i=1

)xi

)�
)xi

)�
=
(

cos(�)
)(

−� sin(�)
)

+
(

sin(�)
)(

� cos(�)
)

+ (0)(0) = 0, (1.19b)

g�z =
3
∑

i=1

)xi

)�
)xi

)z
=
(

cos(�)
)(

−� sin(�)
)

+
(

sin(�)
)(

� cos(�)
)

+ (0)(0) = 0, (1.19c)

g�� =
3
∑

i=1

()xi

)�

)2
=
(

−� sin(�)
)2 +

(

� cos(�)
)2 + (0)2 = �2, (1.19d)

g�z =
3
∑

i=1

)xi

)�
)xi

)z
=
(

−� sin(�)
)

(0) +
(

� cos(�)
)

(0) + (0)(1) = 0, (1.19e)

gzz =
3
∑

i=1

()xi

)z

)

= (0)(0) + (0)(0) + (1)2 = 1, (1.19f)

so that the (�, �, z)-coordinate system orthogonal:

[

gij(�, �, z)
]

=
⎡

⎢

⎢

⎣

1 0 0
0 �2 0
0 0 1

⎤

⎥

⎥

⎦

and ℎ� = 1, ℎ� = �, ℎz = 1. (1.20)

We thus have [1, (3.147)–(3.151), pp. 189–190]:

grad(f ) = (∇⃗f ) = ê�
)f
)�

+ ê�
1
�
)f
)�

+ êz
)f
)z
, (1.21)

div(A⃗) = (∇⃗ ⋅ A⃗) = 1
�
)(�A�)
)�

+ 1
�
)A�

)�
+
)Az

)z
, (1.22)
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curl(A⃗) = (∇⃗× A⃗) = 1
�

|

|

|

|

|

|

|

|

|

ê� � ê� êz
)
)�

)
)�

)
)z

A� �A� Az

|

|

|

|

|

|

|

|

|

, (1.23)

(∇⃗2f ) = 1
�
)
)�

(

�
)f
)�

)

+ 1
�2
)2f
)�2

+
)2f
)z2

, (1.24)

(∇⃗2A⃗)� = (∇⃗2A�) −
1
�2
A� −

2
�2
)A�

)�
, (1.25)

(∇⃗2A⃗)� = (∇⃗2A�) −
1
�2
A� +

2
�2
)A�

)�
, (1.26)

(∇⃗2A⃗)z = (∇⃗2Az). (1.27)

1.2 Spherical Coordinates

These coordinates (r, �, �) may be specified by relating them to Cartesian coordinates:

r =
√

x2 + y2 + z2, x = r sin(�) cos(�), (1.28a)

� = Arctan
(

z,
√

x2 + y2 + z2
)

, y = r sin(�) sin(�), (1.28b)
� = Arctan(y, x), z = r cos(�). (1.28c)

We can use the relation (1.3) to compute the metric of the cylindrical system:

)x
)r

= sin(�) cos(�),
)y
)r

= sin(�) sin(�), )z
)r

= cos(�), (1.29a)

)x
)�

= r cos(�) cos(�),
)y
)�

= r cos(�) sin(�), )z
)�

= −r sin(�), (1.29b)

)x
)�

= −r sin(�) sin(�),
)y
)�

= r sin(�) cos(�), )z
)�

= 0. (1.29c)

Substituting these into (1.3), we have:

grr =
3
∑

i=1

()xi

)r

)2
= sin2(�) cos2(�) + sin2(�) sin2(�)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= sin2(�)

+cos2(�) = 1, (1.30a)

gr� =
3
∑

i=1

)xi

)r
)xi

)�
=
(

sin(�) cos(�)
)(

r cos(�) cos(�)
)

+
(

sin(�) sin(�)
)(

r cos(�) sin(�)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= r sin(�) cos(�)

+
(

cos(�)
)(

−r sin(�)
)

= 0, (1.30b)

gr� =
3
∑

i=1

)xi

)r
)xi

)�
=
(

sin(�) cos(�)
)(

−r sin(�) sin(�)
)

+
(

sin(�) sin(�)
)(

r sin(�) cos(�)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= 0

+
(

cos(�)
)(

0
)

= 0, (1.30c)
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g�� =
3
∑

i=1

()xi

)�

)2
=
(

r cos(�) cos(�)
)2 +

(

r cos(�) sin(�)
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= r2 cos2(�)

+
(

−r sin(�)
)2 = r2, (1.30d)

g�� =
3
∑

i=1

)xi

)�
)xi

)�
=
(

r cos(�) cos(�)
)(

−r sin(�) sin(�)
)

+
(

r cos(�) sin(�)
)(

r sin(�) cos(�)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= 0

+
(

−r sin(�)
)(

0
)

= 0, (1.30e)

g�� =
3
∑

i=1

()xi

)�

)

=
(

−r sin(�) sin(�)
)2 +

(

r sin(�) cos(�)
)2 +

(

0
)2 = r2 sin2(�), (1.30f)

so that the (r, �, �)-coordinate system orthogonal:

[

gij(r, �, �)
]

=
⎡

⎢

⎢

⎣

1 0 0
0 r2 0
0 0 r2 sin2(�)

⎤

⎥

⎥

⎦

and ℎ� = 1, ℎ� = r, ℎ� = r sin(�). (1.31)

We thus have [1, (3.156)–(3.160), p. 192]:

grad(f ) = (∇⃗f ) = êr
)f
)r

+ ê�
1
r
)f
)�

+ ê�
1

r sin(�)
)f
)�
, (1.32)

div(A⃗) = (∇⃗ ⋅ A⃗) = 1
r2
)(r2Ar)
)�

+ 1
r sin(�)

)(sin(�)A�)
)�

+ 1
r sin(�)

)(A�)
)�

, (1.33)

curl(A⃗) = (∇⃗× A⃗) = 1
r sin(�)

|

|

|

|

|

|

|

|

|

ê� r ê� r sin(�) ê�
)
)�

)
)�

)
)�

A� rA� r sin(�)A�

|

|

|

|

|

|

|

|

|

, (1.34)

(∇⃗2f ) = 1
r2
)
)r

(

r2
)f
)r

)

+ 1
r2 sin(�)

)
)�

(

sin(�)
)f
)�

)

+ 1
r2 sin2(�)

)2f
)�2

, (1.35)

(∇⃗2A⃗)r = (∇⃗2Ar) −
2
r2
Ar −

2
r2 sin(�)

)(sin(�)A�)
)�

− 2
r2 sin(�)

)A�

)�
, (1.36)

(∇⃗2A⃗)� = (∇⃗2A�) −
1

r2 sin2(�)
A� +

2
r2
)Ar

)�
− 2 cos �
r2 sin2(�)

)A�

)�
, (1.37)

(∇⃗2A⃗)� = (∇⃗2A�) −
1

r2 sin2(�)
A� +

2
r2 sin(�)

)Ar

)�
+ 2 cos �
r2 sin2(�)

)A�

)�
. (1.38)

There is also the oft-used identity

1
r2
)
)r

(

r2
)f
)r

)

≡ )2f
)r2

+ 2
r
)f
)r

≡ 1
r
)
)r

(

r
)f
)r

+ f
)

≡ 1
r
)2(rf )
)r2

. (1.39)
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