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1. Calculate the integral
∫ ∞
0

dx e−x2

x4 by transforming it into the Gamma-function

integral. [=10pt]

Comparing to Γ(z)
def
=

∫ ∞
0

dt e−ttz−1, we notice that the integrand of the required

integral involves an exponential, but that the exponent there is quadratic, rather than

linear. This prompts the change of variables x =
√

t = t
1
2 . Then, dx = 1

2dt t
1
2−1.

Substituting these into the required integral produces

∫ ∞

0

dx e−x2

x4 =

∫ ∞

0

(
1
2
dt t

1
2−1

)
e−t t2 = 1

2

∫ ∞

0

dt e−t t
5
2−1 = 1

2
Γ(5

2
) .

Next, we use iteratively the recursion relation, Γ(z + 1) = zΓ(z):

∫ ∞

0

dx e−x2

x4 = 1
2Γ(5

2 ) = 1
2

3
2Γ(3

2 ) = 1
2

3
2

1
2Γ(1

2 ) = 3
8

√
π .

2. Calculate the integral
∫ 1

0
dx

(
ln x)5 by transforming it into the Gamma-function inte-

gral. [=10pt]

As in the previous problem, comparing to Γ(z)
def
=

∫ ∞
0

dt e−ttz−1, we notice that the

integrand of the required integral involves no exponential, but a logarithm which does not

appear in the defining integral of Γ(z). This prompts the change of variables x = et. Then,

dx = dt et. Substituting these into the required integral prouces

∫ 1

0

dx
(
ln x)5 =

∫ 0

−∞

(
dt et

)
t5

τ=−t
=

∫ 0

∞

(
− dτ e−τ

)
(−τ)5 ,

= −
∫ ∞

0

dτ e−τ τ5 = −Γ(6) = −5! = −120 .

3. Show that the equation ~∇× (~∇× ~A) = k2 ~A, where k is a constant, implies that both
~∇· ~A = 0 and also that ~∇2 ~A = −k2 ~A. (Hint: apply ~∇· to the original equation.) [10pt.]

FOLLOW THE HINT!!!

Following the hint, we obtain:

~∇ ·
(
~∇× (~∇× ~A)

)
= ~∇ · (k2 ~A) = k2~∇ · ~A ,
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Solutions: T. Hübsch

since k is a constant. Next recall that ~∇ · (~∇ × ~X) ≡ 0 for any vector, and so also in

particular for ~X = (~∇× ~A). Thus, the far left-hand side in our above calculation equation

vanishes, and we have

0 = k2~∇ · ~A ⇒ ~∇ · ~A = 0 . (1)

Next we use the identity (1.86) from Arfken’s p. 50, to rewrite the left-hand side of

the original equation and obtain:

~∇× (~∇× ~A) = ~∇(~∇ · ~A) − ~∇2 ~A
(1)
= −~∇2 ~A . (2)

The left-hand side being equal to k2 ~A from the original equation, we have that

−~∇2 ~A = k2 ~A i.e. ~∇2 ~A = −k2 , (3)

which is the required second result.

Comment 1: A result such as (1) is often called the integrability or consistency condition.

It is not a solution of the original equation, but a condition that must be true of the original

equation is to hold. Typically, such conditions are obtained from the original one, after

some further differentiation and the use of some identity. Equation (3) is then in fact the

original one, rewritten by using (a) an identity, and (b) the consistency condition. Indeed,

Eq. (3) is a rather simpler version of the original equation.

Comment 2: Working out something in components is quaranteed to be the longest way,

and is to be done only when all else fails!

Comment 3: FOLLOW THE HINTS!!! ... unles you are convinced that the instruc-

tors give them for maliciously derailing purposes.

4. Circle the equation number for each generalized coordinate system (ξ, η, ζ) which is

valid but not orthogonal:

x = ξ + η , y = ξ − η , z = ζ ; (4a)

x = ξ + η , y = ξ + η , z = ζ ; (4b)

x = ξ + η , y = ξ − 2η , z = ζ ; (4c)

x = ξ + η , y = ξ − η , z = 2ζ ; (4d)

x = ξ + η , y = ξ − 2η , z = 2ζ ; (4e)

(Show all work below this line; use overleaf if necessary.)
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Solutions: T. Hübsch

As defined in class, the metric tensor is calculated as:

gjk
def
=

3∑

i=1

∂xi

∂qj

∂xi

∂qk
=

∂x

∂qj

∂x

∂qk
+

∂y

∂qj

∂y

∂qk
+

∂z

∂qj

∂z

∂qk
. (5)

Looking at the equations (4), it is fairly clear that only the third contribution to the

metric is nonzero if either qj or qk is chosen to be ζ . Moreover, since z is in all cases only

a function of ζ, both gξζ and gηζ vanish. On the other hand,

gξη
def
=

3∑

i=1

∂xi

∂ξ

∂xi

∂η
=

∂x

∂ξ

∂x

∂η
+

∂y

∂ξ

∂y

∂η
+

∂z

∂ξ

∂z

∂η
(6)

is possibly nonzero and is an off-diagonal term. If non-zero, this will indicate non-

orthogonality. Note also that the third contribution vanishes in all five cases, since z

is only a function of ζ , not ξ, η. Now, ∂x
∂ξ = ∂y

∂ξ = ∂x
∂η = 1 in all five cases, and ∂y

∂η equals,
respectively, −1,+1,−2,−1,−2 in the five cases. Thus, we have

gξ,η = 0 , 2 , −1 , 0 , −1 ,

respectively for the five cases. Thus, the coordinate systems (4a) and (4d) are orthogonal,

and (4b), (4c) and (4e) are not. However, note that Eqs. (4b) also specifies that x = y, which

cannot possibly be true in any valid 3-dimensional system of coordinates, and we remain

with (4c) and (4e) as specifying valid but not orthogonal coordinate systems (ξ, η, ζ).

5. If Ai, i = 1, 2, 3, are components of a contravariant vector and Bi of a covariant one,

prove that ~A· ~B def
=

∑3
i=1 AiBi is a general scalar, i.e., invariant under any change of

coordinates, but that ~A2 def
=

∑3
i=1 AiAi is a scalar only with respect to a subclass of

specific transformations.

(Show all work below this line; use overleaf if necessary.)

Since ~A is a contravariant vector and ~B a covariant one, we have that, with respect
to a general change of coordinates:

Ãi =

3∑

j=1

∂x̃i

∂xj
Aj , and B̃i =

3∑

k=1

∂xk

∂x̃i
Bk .

Then

3∑

i=1

ÃiB̃i =

3∑

i=1

3∑

j=1

∂x̃i

∂xj
Aj

3∑

k=1

∂xk

∂x̃i
Bk , (7a)

=

3∑

j,k=1

Aj
[ 3∑

i=1

∂x̃i

∂xj

∂xk

∂x̃i

]
Bk =

3∑

j,k=1

Aj
[∂xk

∂xj

]
Bk , (7b)

=

3∑

j,k=1

Ajδk
j Bk =

3∑

j=1

AjBj , (7c)
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Solutions: T. Hübsch

which proves that ~A· ~B =
∑3

i=1 AiBi is a general scalar. On the other hand,

3∑

i=1

ÃiÃi =

3∑

i=1

3∑

j=1

∂x̃i

∂xj
Aj

3∑

k=1

∂x̃i

∂xk
Ak =

3∑

j,k=1

Aj
[ 3∑

i=1

∂x̃i

∂xj

∂x̃i

∂xk

]
Ak (8)

does not further simplify along the lines in Eqs. (7b)–(7c), because the matrix ∂x̃i

∂xj is not

the inverse of ∂x̃i

∂xk in general. However, in the special case when the change of coordinates

(x1, x2, x3) 7→ (x̃1, x̃2, x̃3) is a (uniform, constant) rotation— ∂x̃i

∂xj is the inverse of ∂x̃i

∂xk , they

contract to the identity matrix and | ~A|2 def
=

∑3
i=1 AiAi is a scalar.

6. For the matrix M =
[

0 1
1 0

]
, the Cayley-Hamilton theorem implies that M2 = αM+β1.

a. Write down the equation satisfied by M owing to the Cayley-Hamilton theorem. [=5pt]

b. Calculate γ and δ in M3 = γM + δ1. [=5pt]

(Show all work below this line; use overleaf if necessary.)

a. The Cayley-Hamilton theorem says that every matrix satisfies its own secular equa-

tion, so this is what we need for the matrix M:

det
[
M − λ1

]
= det

[
0 1
1 0

]
− λ

[
1 0
0 1

]
= det

[
−λ 1
1 −λ

]
= λ2 − 1 , (9)

so λ2 − 1 = 0 or λ2 = 1 is the secular equation for M =
[
0 1
1 0

]
. The Cayley-Hamilton

theorem than states that M2 = 1 (which, for this small and simple matrix is easy to check

exlicitly). That is, α = 0 and β = 1.

b. Since M2 = 1, M3 = M. Comparison with the given equation, M3 = γM + δ1,

immediately yields γ = 1 and δ = 0.

—◦—

In fact, it is easy to deduce that Mn = 1 for any even n, and Mn = M for odd n.

Remarkably then, we can write down that any (finite or infinite) series can be simplified

through this simple replacement, i.e., through the use of the Cayley-Hamilton theorem.

For example, (1 + M)4 = 14 + 413M + 612M2 + 41M3 + M4, which then becomes

1 + 41M + 611 + 41M + 1 = 81 + 8M =
[

8 8
8 8

]
.

7. With · denoting multiplication, show that
(
{1,−1}, ·}) is a group.

(Show all work below this line; use overleaf if necessary.)

Closure: (1)·(1) = (1), (1)·(−1) = (−1), (−1)·(1) = (−1), (−1)·(−1) = (1); the

result of the product of all pairs is either 1 or −1, both in the group.

Unit: (1)·(1) = (1) and (1)·(−1) = (−1)·(1) = (−1), so 1 is the unit (identity)

element.
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Solutions: T. Hübsch

Inverse: (1)·(1) = (1) so 1 is its own inverse. Similarly, (−1)·(−1) = (1), −1 is its

own inverse.

Associativity: Must show that [a·b]·c = a·[b·c] for all (eight!) combinations, letting

a, b, c be each 1 or −1. (Left as an excercise.)

8. Consider the rotations (in the plane) by (multiples of) 90◦ and reflections about the

horzontal and the vertical axis.

a. Find the letter(s) of the English alphabet which are (is) symmetric with respect to all

of these. [=5pt]

b. Find the letter(s) which are (is) symmetric with respect to rotations by 180◦. [=5pt]

(More than just the solutions to the above questions are shown below.)

a. The letters O and X remain looking recognizably same after (multiple) rotation(s) by

90◦ and reflections.

b. H, I, N, O, S, X and Z remain looking the same after rotation by 180◦.

c. A, H, I, M, O, T, U, V, W, X, Y and Z remain looking the same after a reflection

about the vertical axis.

d. B, C, D, E, H, I, K, O, X and Z remain looking the same after a reflection about the

horizontal axis.

e. We construct the multiplication table for the group formed by rotatons1: Rk (rotation

counter-clockwise by kπ/2), H and V (reflections about a horizontal and about a vertical

axis). As it turns out, R1H produces an operation not in the list thus far: reflection about

the NE–SW axis, which we must include as a new element, and call it, say, S. Similarly,

R1V produces a new reflection: about the WE–SE axis, which we must include as a new

element, and call it, say, Z. Now this 8-element group is complete:

1 R1 R2 R3 H V S Z

R0 = 1 1 R1 R2 R3 H V S Z

R1 R1 R2 R3 1 S Z V H

R2 R2 R3 1 R1 V H Z S

R3 R3 1 R1 R2 Z S H V

H H Z V S 1 R2 R3 R1

V V S H Z R2 1 R1 R3

S S H Z V R1 R3 1 R2

Z Z V S H R3 R1 R2 1

1 Note that R0 = R4 = 1 is the ‘do nothing’ identify element.
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Solutions: T. Hübsch

9. Using that sin(ax) = 1
2i

(
eiax − e−iax

)
, obtain a series for sin(ax) and check the first 3

terms against the Taylor expansion. [=5+5pt]

(More than just the solutions to the above questions are shown below.)

a. As obtained in a previous class,

eiax =
∞∑

k=0

(iax)k

k!
,

so, using the hint:

sin(ax) =
1

2i

[ ∞∑

k=0

(iax)k

k!
−

∞∑

k=0

(−iax)k

k!

]
=

1

2i

∞∑

k=0

[
1 −

(
− 1)k

](iax)k

k!
,

=
1

2i

∞∑

k=0
k odd

2
(iax)k

k!
=

∞∑

n=0

(iax)2n+1

(2n + 1)!
=

∞∑

n=0

i2n(ax)2n+1

(2n + 1)!
,

=

∞∑

n=0

(−1)n (ax)2n+1

(2n + 1)!
= ax − (ax)3

3!
+

(ax)5

5!
+ . . .

b. Comparison with the Taylor series is straightforward:

sin(ax) =

∞∑

k=0

(ax)k

k!

[ dk

dxk
sin(ax)

]
x=0

,

= 0 + ax cos(0) + 0 +
(ax)3

3!

[
− cos(0)

]
+ 0 +

(ax)5

5!

[
cos(0)

]
+ . . .

= ax − (ax)3

3!
+

(ax)5

5!
+ . . .

10. Consider the function f(z) = 3
√

z.

a. How many values does f (z) have? [=3pt]

b. List the different values. [=3pt]

c. Determine where is f (z) analytic. [=4pt]

a. The function f(z) = 3
√

z is triple valued. That is, it assigns three distinct values to

every value of z. Since the set of all values of z is ℵ1, this would make the number of

possible values of f (z) equal to 3ℵ1—but that’s pedantry; either of the first two sentences

suffices.
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Solutions: T. Hübsch

b. The different values were shown in class to be found as

3
√

z =
3
√

r ei(φ+2πk) =





3
√

r eiφ/3 , for k = 0;

3
√

r eiφ/3+2πi/3 , for k = 1;

3
√

r eiφ/3+4πi/3 , for k = 2.

After k=2, the values of 3
√

z repeat cycling through the three values given above.

c. For determining where f(z) is analytic, we need the <e[z]- and the =m[z]-derivatives

of <e[f(z)] and =m[f(z)]; f (z) is not analytic where

∂ <e[f (z)]

∂x
=

∂ =m[f(z)]

∂y
,

∂ <e[f(z)]

∂y
= −∂ =m[f (z)]

∂x

do not hold simultaneously. We’ll need (taking either all upper signs, or all lower signs):

∂(x ± iy)
1
3

∂x
=

(1)

3(x ± iy)
2
3

,
∂(x ± iy)

1
3

∂y
=

(±i)

3(x ± iy)
2
3

,

since <e[f (z)] = ( 3
√

x + iy + 3
√

x− iy)/2 and =m[f (z)] = ( 3
√

x + iy − 3
√

x − iy)/2i. Thus,

1

2

[ 1

3(x+iy)
2
3

+
1

3(x−iy)
2
3

]
?
=

1

2i

[ i

3(x+iy)
2
3

− −i

3(x−iy)
2
3

]
,

1

2

[ i

3(x+iy)
2
3

+
−i

3(x−iy)
2
3

]
?
= − 1

2i

[ 1

3(x+iy)
2
3

− 1

3(x−iy)
2
3

]
.

It is not hard to see that both of these equations hold—except at x, y = 0, where neither

expression is well defined. Therefore, f(z) is analytic for all z 6= 0.

11. Determine where is the function f(z) = z+i
z−i analytic. [=10pt]

As in the previous problem, we need to check

∂ <e[f (z)]

∂x
=

∂ =m[f(z)]

∂y
,

∂ <e[f(z)]

∂y
= −∂ =m[f (z)]

∂x

and so need (taking either all upper signs, or all lower signs):

∂

∂x

(x ± iy ± i

x ± iy ∓ i

)
=

(1)(x ± iy ∓ i) − (x ± iy ± i)(1)

(x ± iy ∓ i)2
=

∓2i

(x ± iy ∓ i)2
,

and
∂

∂y

(x ± iy ± i

x ± iy ∓ i

)
=

(±i)(x ± iy ∓ i) − (x ± iy ± i)(±i)

(x ± iy ∓ i)2
=

+2

(x ± iy ∓ i)2
.
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(Note that the sign of the numerator always comes out positive.) Thus:

1

2

[ −2i

(x + iy − i)2
+

+2i

(x − iy + i)2

]
?
=

1

2i

[ +2

(x + iy − i)2
−

+2

(x − iy + i)2

]
,

1

2

[ +2

(x + iy − i)2
+

+2

(x − iy + i)2

]
?
= − 1

2i

[ −2i

(x + iy − i)2
− +2i

(x − iy + i)2

]
.

since 1
2i = − i

2 , both of these equations hold—except at x, y = 0, where neither expression

is well defined. Therefore, f (z) = z+i
z−i

is analytic for all z 6= 0.

Another (slightly longer) way to calculate is to first rewrite:

f(z) =
z + i

z − i
=

z + i

z − i

z∗ + i

z∗ + i
=

x2+y2−1

x2+y2−2y+1
+ i

2x

x2+y2−2y+1
,

and then proceed with the calculation of the required partial derivatives.

—◦—

Compare now the outcomes of the two problems. In both cases, the function turned out

to be analytic except at z = 0. However, the first function is obviously ‘better behaved’ at

z = 0—it is finite (in fact, vanishes) there while the second one diverges (blows up).
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