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Mathematical Methods I 21st Nov. ’97.

2nd Midterm Exam Solutions (T. Hübsch)

The solutions are presented here with much more detail than was ex-
pected of the students’ answers in the exam. Hopefully, this will provide
additional information and help understanding the material more fully.

1.a.
∑∞

n=0

(−1)nn3

1+n3 is a number series, so our concern is absolute or conditional convergence.

It should be clear that this series does not converge absolutely. For example, testing with the

integral test, we have that ∫ ∞

1

dx x3

1 + x3
>

∫ ∞

1

dx = +∞ .

Furthermore, the series does not converge even conditionally, since it does not satisfy the Leibnitz

criterion (for sufficiently large n):

(n+1)3

1 + (n+1)3
6< n2

1 + n3
, and lim

n→∞

n3

1 + n3
= 1 6= 0 .

To see the inequality more clearly multiply both sides by (1 + (n+1)3)(1 + n3), and expand:

(n+1)3(1 + n3) 6< n3(1 + (n+1)3) ,

n6 + 3n5+3n4+2n3+3n2+3n+1 6< n6+3n5+3n4+2n3 ,

3n2+3n+1 6< 0 , n ≥ 0 ,

where the last (and quite obvious) inequality was obtained by subtracting n6+3n5+3n4+2n3 from

both sides.

1.b.
∑∞

n=0
nx

n!
is a function series. It is easy to calculate the radius of absolute convergence,

using the ratio test (“
!
>” means that the inequality is required):

1
!
> lim

n→∞

∣∣∣∣
(n+1)x/(n + 1)!

nx/n!

∣∣∣∣ = lim
n→∞

(n+1)x

(n + 1)n!

n!

nx
= lim

n→∞

(n+1
n

)x

(n + 1)
= lim

n→∞

(1+ 1
n
)x

(n + 1)
= 0 ,

as long as |x| < ∞. Whence the above series is absolutely convergent for |x| < ∞. By replacing
nx

n!
with Mn

def
= nS

n!
for some arbitrarily large but finite S, the above calculation stands for the

Weierstrass M -test and proves absolute and uniform convergence as long as |x| < S < ∞.

2. Following the hint, we first determine that 1
(k2+1)

∼ 1
k2 for large k, i.e., the series converges

as 1/k2. To improve convergence, we will need to add a multiple of α1 (which also converges as
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∼ 1/k2):

∞∑

k=0

1

(k2+1)
+ a1α1 = 1 +

∞∑

k=1

[
1

(k2+1)
+

a1

k(k+1)

]
, (1a)

∞∑

k=0

1

(k2+1)
+ a1 = 1 +

∞∑

k=1

k(k+1) + a1(k
2+1)

(k2+1)k(k+1)
, (1b)

= 1 +

∞∑

k=1

(1+a1)k
2 + (k+a1)

(k2+1)k(k+1)
. (1c)

So, if we set a1 = −1, the leading (∼ k2) term in the numerator vanishes, leaving

∞∑

k=0

1

(k2+1)
+ (−1) = 1 +

∞∑

k=1

k−1

(k2+1)k(k+1)
,

or
∞∑

k=0

1

(k2+1)
= 2 +

∞∑

k=1

k−1

(k2+1)k(k+1)
.

3. The function f(z) = 1−eiπz

sin(πz)
is a bit more complicated than it may first appear. One way to

analyze this is to factor exp( 1
2 iπz) from the numerator and rewrite

f(z) =
1 − eiπz

sin(πz)
= e

1
2 iπz e−

1
2 iπz − e

1
2 iπz

sin(πz)
= −2i e

1
2 iπz sin( 1

2
πz)

sin(πz)
.

Now, e
1
2 iπz neither vanishes nor blows up anywhere in the finite z-plane. When z=n is an integer,

the denominator vanishes and these are the potential locations of the poles. However, when 1
2
z=k

(and so z=2k is an even integer), the numerator vanishes also, then f(z) is of the form 0
0 , and

can be shown by the use of L’Hospital’s rule to be finite there. Thus, the poles are located where

z is an odd integer, i.e., at zk=(2k+1).

4.a. The integrand of
∫ ∞
−∞

dx e+ix

x3−8
, regarded as a complex function, is eiz

z3−8
and has three simple

poles where z3 = 8, i.e., at zk = 2e2kπi/3, k = 0, 1, 2. The real integral may be thought of as

a complex contour integral along the real axis, and can be closed by adding a semi-circle either

in the upper half-plane or in the lower half-plane. The exponential factor in the integrand may

be written eiz = eixe−y . For =m(z) = y → −∞, the integrand would diverge exponentially

and the integral would be ill defined. Thus, we close the contour in the lower half-plane, where

=m(z) = y > 0 and guarantees convergence of the integral. Moreover, along this arc at infinity

with =m(z) = y > 0, the integral will vanish, by Jordan’s lemma (see p.424–425). Note that the

straight part of the contour goes right through the pole at z0 = 2. Therefore, we need to make an

ε-arc detour. I choose the detour also to be in the upper half-plane, and note that the orientation

–2–
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of the so chosen detour is negative (see below). Therefore, we have (assuming the limits R → ∞
and ε → 0):

∮

C

eizdz

z3−8
=

∫ 2−ε

−R

eixdx

x3−8
+

∫

Cε

eizdz

z3−8
+

∫ R

2+ε

eixdx

x3−8
+

∫ π

0

eiReiθ
Reiθidθ

R3e3iθ − 8
, (2a)

which becomes

2πi Res
z=z1

[
eiz

z3−8

]
=

∫ 2−ε

−R

eixdx

x3−8
− πi Res

z=z0

[
eiz

z3−8

]
+

∫ R

2+ε

eixdx

x3−8
+ 0 , (2b)

2πi
[
eiz1

3z2
1

]
= P

∫ ∞

−∞

eixdx

x3−8
− πi

[
eiz0

3z2
0

]
, (2c)

so

P
∫ ∞

−∞

eixdx

x3−8
= 2πi

[
eiz1

3z2
1

]
+ πi

[
eiz0

3z2
0

]
. (3)

The two real integrals add up to the Cauchy principal part, and the residue of the simple poles

was evaluated as

Res
z=zk

[
eiz

z3−8

]
= lim

z→zk

[
(z−zk)

eiz

z3−8

]
= lim

z→zk

[
eiz

3z2

]
=

eizk

3z2
k

. (4)

Since the integrand diverges at a point of the integration domain, the principal part had to be

taken anyway.

−R

z0

z1

z2

+R

ε

R

iR

+R

R

The two contours: for problem #4.a. on the left, and for #4.b. on the right. The final evaluation

of the expressions has been left out, as it does not simplify very much.

4.b. The integrand in
∫ ∞
0

x2 dx
(x4+1)

has simple poles at zk = e(2k+1)πi/4, for k = 0, 1, 2, 3. Also,

we note that the integral will look the same (up to an overall constant factor) if the variable x

is replaced by z=x eikπ/2, where k=0, 1, 2, 3. As for closing the contour, the integrand z2

z4+1
will

vanish for |z| → ∞, for all Arg(z). Thus, we have:
∮

C

dz z2

z4+1
=

∫ R

0

dx x2

x4+1
+

∫

CR

dz z2

z4+1
+

∫ 0

iR

dz z2

z4+1
, (5a)

which becomes (z1 = (1+i)/
√

2)

2πi Res
z=z1

[
z2

z4+1

]
=

∫ ∞

0

dx x2

x4+1
+ 0 −

∫ ∞

0

d(ix) (ix)2

(ix)4+1
, (5b)

2πi
z 2
1

4z 3
1

= (1 + i)

∫ ∞

0

dx x2

x4+1
, ⇒

∫ ∞

0

dx x2

x4+1
= π

√
2 . (5c)

–3–


