Howard University

WASHINGTON, D.C. 20059
DEPARTMENT OF PHYSICS AND ASTRONOMY

This is an "open Textbook (Arfken), open lecture notes" exam. For full credit, show all your work. If you cannot complete one part of a calculation, a clear description of the procedure/method will still earn you partial credit. Budget your time: first do what you are sure you know how; use short-cuts whenever possible (but be prepared to explain them afterwards, if necessary).

1. Test for convergence (absolute?, conditional?, uniform? - as appropriate, and for which x ?):

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}}{1+n^{3}}, \quad \sum_{n=0}^{\infty} \frac{n^{x}}{n!} .
$$

2. Determine the rate of convergence of the following sum, and then improve it:
$[10+20 \mathrm{pt}]$

$$
S \stackrel{\text { def }}{=} \sum_{k=0}^{\infty} \frac{1}{\left(k^{2}+1\right)}
$$

(Hint: add a suitable multiple of that α_{p} (p.297) which converges as fast as S does to obtain a sum that converges faster than S.)
3. List the locus (place) and type of all singular points of the following function:

$$
f(z)=\frac{1+e^{i \pi z}}{\sin (\pi z)}, \quad|z|<\infty
$$

4. Evaluate the following integrals using residues:

$$
\int_{-\infty}^{\infty} \frac{e^{+i x} \mathrm{~d} x}{\left(x^{3}-8\right)}, \quad \int_{0}^{\infty} \frac{x^{2} \mathrm{~d} x}{\left(x^{4}+1\right)}
$$

(Hint: First find the location of poles of the integrand, preferably in polar form; then close the integral by adding $\operatorname{arc}(\mathrm{s})$ at infinity in the upper or lower complex plane - wherever the integrand decays - and/or 'spokes' along which the integral is proportional to the original; if there are poles along the contour, determine the detour; evaluate the closed contour integral by summing the enclosed residues; finally, solve for the value of the above integrals.)

