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Mathematical Methods I 10th Oct. ’97.

1st Midterm Exam Solution

The solutions are presented here with much more detail than was ex-
pected of the students’ answers in the exam. Hopefully, this will provide
additional information and help understanding the material more fully.

1.a: In spherical coordinates, the required integral becomes (d~σ = êr r2 sin θdθ dφ): ~I =

êr r2
∫ π

0
sin θdθ

∫ 2π

0
dφ r

4
3 where we recognized that x2+y2+z2 = r2. It is terribly tempting

to conclude that the θ, φ integrations produce simply a factor 4π, and the result is 4πêr r
10
3 .

This, however, is not true, since êr is not constant (as emphasized in class). Instead, we

can express it in terms of constant vectors, say the Cartesian unit vectors:

êr = sin θ cos φ êx + sin θ sin φ êy + cos θ êz .

For the first two term, the φ-integrals are
∫ 2π

0
sinφdφ = 0 =

∫ 2π

0
cos φdφ, while for the

thrid term, the θ-integral is (with u = cos θ)
∫ π

0
sin θ cos θdθ = −

∫ −1

1
duu = 0. Thus, our

integral vanishes.

1.b: For an indirect evaluation, think of the given integral as a surface-integral over the

boundary surface, S = ∂V . We can then use a variant of Gauss’s theorem,
∫

S=∂V
d~σ f =∫

V
d3~r~∇f . Within the unit sphere centered at the origin, the volume integra becomes

~I =

∫ 1

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dφ ~∇r
4
3 =

∫ 1

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dφ êr
4
3r

1
3 ,

= 4
3

∫ 1

0

r
7
3 dr

∫ π

0

sin θdθ

∫ 2π

0

dφêr .

(1)

Again, êr is not constant; expressing it in terms of constant vectors as done in part a, will

again yield the same, vanishing integrals.

2. To prove that the new system is not orthogonal, we only need a a single non-zero

off-diagonal element in the metric. For this, we need the inverse relations, x = 1
2
(ξ+η),

y = 1
2
(ξ−η), and after noting that ϑ = z2

(x+y)(x−y)
= z2

ξη
, we also have that z =

√
ξηϑ. From

here, it is obvious that partial derivatives of x, y with respect to ϑ vanish, whereupon gξϑ

and gηϑ will have a single contribution, ∂z
∂ξ

∂z
∂ϑ and ∂z

∂η
∂z
∂ϑ respectively, and hence no chance

of cancellation of terms:

gξθ
def
=

∂x

∂ξ

∂x

∂θ
+

∂y

∂ξ

∂y

∂θ
+

∂z

∂ξ

∂z

∂ϑ
,

= ( 1
2 )(0) + (1

2 )(0) +
( ηϑ

2
√

ξηϑ

)( ξη

2
√

ξηϑ

)
= 1

2η .

(2)
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Similarly, gηϑ = 1
2ξ, and since these two off-diagonal elements of the metric are nonzero

the coordinate system {ξ, η, θ} is not orthogonal.

3.a: The quantity
∑3

i,j=1(Aig
ijBj) transforms as a scalar, which is shown as follows:

3∑

i,j=1

(AigijB
j) →

3∑

i,j=1

(Ãig̃ijB̃
j) , (3a)

=

3∑

i,j,k,l,m,n=1

∂x̃i

∂xk
Ak ∂xl

∂x̃i
glm

∂xm

∂x̃j

∂x̃j

∂xn
Bn , (3b)

=
3∑

k,l,m,n=1

Akδl
kglmδm

n Bn =
3∑

k,m=1

AkgkmBm , (3a)

which, except for the relabeling i, j → k,m is the same as in the twiddled coordinate

system—the hallmark of scalars.

3.b: The quantity
∑3

i,j,k=1 Ak ∂
∂xk (AigijB

j) transforms as a scalar, which is seen as follows:

In part a, we’ve shown that
∑3

i,j=1(A
igijB

j) is a scalar. Then, ∂
∂xk

( ∑3
i,j=1 AigijB

j
)

must

be a covariant vector; indeed:

∂

∂xk

3∑

i,j=1

(AigijB
j) → ∂

∂x̃k

3∑

i,j=1

(Ãig̃ijB̃
j) = (4a)

=

3∑

i,j,k,l,m,n,p,q=1

∂xp

∂x̃k

∂

∂xp

( ∂x̃i

∂xq
Aq ∂xl

∂x̃i
glm

∂xm

∂x̃j

∂x̃j

∂xn
Bn

)
, (4b)

=

3∑

k,l,m,n,p,q=1

∂xp

∂x̃k

∂

∂xp

(
Aqδl

qglmδm
n Bn

)
=

3∑

p=1

∂xp

∂x̃k

[∂(AgB)

∂xp

]
, (4c)

where (AgB) =
∑3

i,j=1(A
igijB

j). Finally, the contraction of a contravariant vector, with

components Ak, and a covariant vector, with components
∂(AgB)

∂xk , must produce a scalar:

3∑

k=1

Ak ∂(AgB)

∂xk
→

3∑

k=1

Ãk ∂ ˜(AgB)

∂x̃k
=

3∑

i,j,k=1

∂x̃k

∂xi
Ai ∂xj

∂x̃k

∂(AgB)

∂xj
, (5a)

=

3∑

i,j=1

Aiδj
i

∂(AgB)

∂xj
=

3∑

i=1

Ai ∂(AgB)

∂xi
. (5b)

2



Math.Methods I 1st Midterm Exam Solutions

3.c: All products of the type (summation over repeated indices is implied)

(AigijA
j)a (AkgklBl)

b (BpgpqBq)
c

are all invariant, for arbitrary powers a, b, c. (Note the general fact here: once you have a

scalar, any power of it is again a scalar.)

4.a: The eigenvalues of M =
( 1

√
3√

3 a

)
must be real, since M is real and symmetric.

4.b: The determinant of a matrix must equal the product of eigenvalues (which are the

only entries upon diagonalization). Hence, if one of the eigenvalues is to vanish, so must

the determinant: 0
!
= det[M ] = a − 3, whence a = 3.

4.c: The eigenvalues of M (with now a=3) are the solutions to the secular equation

0
!
= det

[
M − λ1l

]
= (1−λ)(3−λ) −

√
3·
√

3 = λ2 − 4λ , (6)

whereupon the eigenvalues are λ1 = 0 and λ2 = 4.

4.d: The eigenvectors are found by solving

[
M − λi1l

]∣∣xi

〉
= 0 (7)

for each of the two eigenvalues.

[
M − λ11l

]∣∣x1

〉
=

[
1

√
3√

3 3

] [
x1

y1

]
= 0 , (8)

so x1 = −
√

3y1 and |x1〉 = 1
2

(√
3

−1

)
.

[
M − λ21l

]∣∣x2

〉
=

[
−3

√
3√

3 −1

] [
x2

y2

]
= 0 , (9)

so y2 =
√

3x2 and |x2〉 = 1
2

(
1√
3

)
.

4.e: In general,
√

M is to be understood in terms of a power expansion. However, owing

to Cayley-Hamilton’s theorem, we know that
√

M is a 2×2 matrix expressible as α1l+βM ,
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since M2 − 8M − 91l = 0, and so all powers of M higher than the first are expressible as a

linear combination of 1l = M0, and M . Then we have

M =
(√

M
)2

=
(
α1l + βM

)2

=

(
α + β

√
3β√

3β α + 3β

)2

, (10a)

=

(
(α + β)2 + 3b2

√
3β(2α + 4β)√

3β(2α + 8β) (α + 3β)2 + 3b2

)
, (10b)

which yields three equations for the two variables α, β:

α2 + 2αβ + 4β1 = 1 ,

2
√

3β(α + 2β) =
√

3 ,

α2 + 6αβ + 12β2 = 3 .

(11)

√
3 times the first minus the second yields α = 0, whereupon all three equations are solved

by β = ± 1
2 . The fact that the three equations for two variables did have solutions is a

non-trivial verification of the Cayley-Hamilton theorem. The result is
√

M = 1
2
M .

This method of calculating transcendental functions of matrices using the Cayley-

Hamilton theorem does not seem to be of startling significance in the present 2×2 case.

However, consider calculating the square-root of an n×n matrix N . The conventional

method would be to write
√

N as another n×n matrix, R, with arbitrary n2 variables

and then solve the n2 equations R = N2. Contrast this with the method outlined above:

there will only be n variables to determine in the expansion
√

N =
∑n−1

k=0 ckNk. For large

matrices, the saving in computational time is then obvious—and so of special interest to

computational mathematics.
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