Howard University

WASHINGTON, D.C. 20059

DEPARTMENT OF PHYSICS AND ASTRONOMY
(202)-806-6245 (Main Office)
(202)-806-5830 (FAX)

Mathematical Methods I
1st Midterm Exam

2355 Sixth Str., NW, TKH Rm. 215
thubsch@howard.edu (202)-806-6257

10th Oct. '97.

Instructor: T.Hübsch
(Student name and ID)
This is an "open Textbook (Arfken), open lecture notes" exam. For full credit, show all your work. If you cannot complete one part of a calculation, a clear description of the procedure/method will still earn you partial credit. Budget your time: first do what you are sure you know how; use short-cuts whenever possible (but be prepared to explain them afterwards, if necessary).

1. Calculate $\int_{S} \mathrm{~d} \vec{\sigma}\left[x^{2}+y^{2}+z^{2}\right]^{\frac{2}{3}}$, where S is the unit sphere, centered at the origin:
$\begin{array}{ll}\text { a. directly; } & {[=10 \mathrm{pt}]} \\ \text { b. upon applying one of the integration/derivative identities. } & {[=10 \mathrm{pt}]}\end{array}$
(Hint: changing into spherical coordinates first should simplify calculations significantly.)
2. Consider a (generalized) coordinate system (ξ, η, ϑ) which is related to the cartesian system (x, y, z) through the relations

$$
\xi=(x+y), \quad \eta=(x-y), \quad \vartheta=\frac{z^{2}}{x^{2}-y^{2}}
$$

Determine whether the new system is orthogonal or not.
[$=20 \mathrm{pt}]$
(Hint: be careful about new vs. old coordinates in the definition of the metric tensor!!!)
3. For $i, j=1,2,3, A^{i}, B^{j}$ are components of two contravariant vectors and $g_{i j}$ are the components of the metric (twice covariant) tensor; they all are some unspecified functions.
a. Determine transformation properties of $\sum_{i, j=1}^{3}\left(A^{i} g_{i j} B^{j}\right)$.
$[=5 \mathrm{pt}]$
b. Determine transformation properties of $\sum_{i, j, k=1}^{3} A^{k} \frac{\partial}{\partial x^{k}}\left(A^{i} g_{i j} B^{j}\right)$. [=5pt]
c. List the three general scalars which can be made (only) from these quantities. [=15pt]
4. For the matrix $M=\left(\begin{array}{cc}1 & \sqrt{3} \\ \sqrt{3} & a\end{array}\right)$, where a is a real number,
a. determine, without any calculation, if the eignevalues are real, and explain why; $[=5 \mathrm{pt}]$
b. determine a so that one of the eigenvalues would be zero; [=5pt]
c. calculate the eigenvalues; $\quad[=5 \mathrm{pt}]$
d. calculate the eigenvectors; $\quad[=20 \mathrm{pt}]$
e. calculate \sqrt{M}. $[=10 \mathrm{pt}]$

