HOWARD UNIVERSITY

Washington, DC 20059

Department of Physics and Astronomy
(202)-806-6245 (Main Office)
(202)-806-5830 (FAX)

2355 Sixth St., NW, TKH Rm. 215
thubsch@howard.edu
(202)-806-6257

1st Dec. '04.

Mathematical Methods I
Final Exam
Instructor: T. Hübsch
(Student name and ID)
This is an "open Textbook (Arfken), open lecture notes" take-home exam, due 5 p.m. of Monday, 8th Dec. '04. For full credit, show all your work. If you cannot complete one part of a calculation, a clear description of the procedure/method will still earn you partial credit. Neither collaboration nor consultation is allowed, but you may quote - with full reference - any published source for intermediate results that you may use.

1. Calculate the integrals

$$
\int_{S} \mathrm{~d} \vec{\sigma} \cdot \vec{r}, \quad \text { and } \quad \int_{C} \mathrm{~d} \vec{r} \cdot \vec{\nabla} x y^{2} e^{-z^{2} / x}
$$

where S is the surface of the tetrahedron with vertices at $(0,0,0),(1,0,0),(1,1,0)$ and $(1,1,1)$ in a cartesian coordinate system, C is the unit circle in the $x-y$ plane centered at the origin.
2. Given are uniform and perpendicular electric and a magnetic fields, so $\vec{E} \cdot \vec{B}=0$.
a. From \vec{E} and \vec{B}, construct three algebraically independent scalars with respect to rotations in space (only), and find the two combinations of these which are also scalars with respect to the full Lorentz symmetry.
b. Determine the velocity for a Lorentz transformation, Eq. (4.161), such that in the transformed system $\overrightarrow{B^{\prime}}=0$.
c. Determine a condition on $F_{\mu \nu} F^{\mu \nu}$ for the arrangement in part b. not to contradict the principle of special relativity that no physical system may move faster than the speed of light in vacuum.
For a hint, express first $F_{\mu \nu} F^{\mu \nu}$ and $\epsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}$ in terms of \vec{E} and \vec{B}.
3. a. Determine a so that one eigenvalues of $\boldsymbol{M}=\left[\begin{array}{lll}2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & a\end{array}\right]$ vanishes.
b. Find all eigenvalues of \boldsymbol{M} for the a for which $\operatorname{det} \boldsymbol{M}=0$.
c. Find all normalized eigenvectors of \boldsymbol{M} for that same a.
4. Determine the radius of convergence of $\sum_{k=0}^{\infty} \frac{\Gamma(n k) x^{k}}{\Gamma(k) \Gamma\left(k+\frac{1}{3}\right) \Gamma\left(k+\frac{2}{3}\right)}$, depending on the positive integer n, or at least for $n=2$.

