
The Gamma Function and its Cousins

1. The Gamma Function

Quantum mechanics (but also many other branches of Physics and Engineering) abounds
with integrals where the integrand is a product of and exponential function and polynomial.
Very often, these integrals can be brought to the form

Γ(z)
def
=

∫ ∞

0

dt tz−1 e−t . (1.1)

In doing so, the following maneuvers may be useful:

¦ Reflecting the integration variable (replacing t → −t throughout in):
∫ T2

T1

dt f (t) =

∫ −T2

−T1

(−dt) f (−t) =

∫ −T1

−T2

dt f (−t) . (1.2)

¦ Dividing the symmetric integration range into two similar halves:
∫ +T

−T

dt f (t) =

∫ 0

−T

dt f (t) +

∫ +T

0

dt f (t)
(1.2)
=

∫ +T

0

dt f (−t) +

∫ +T

0

dt f(t) ,

=

∫ +T

0

dt
[
f (−t) + f(t)

]
.

(1.3)

Since f (−t)+f (t) = 2f (t) for even functions, while f(−t)+f (t) = 0 for odd functions,
∫ +T

−T

dt feven(t) = 2

∫ +T

0

dt feven(t) ,

∫ +T

−T

dt fodd(t) = 0 . (1.4)

¦ General change of the integration variable(s)—should be a “no-brainer”:
∫ x1

x0

dxf(x) =

∫ t(x1)

t(x0)

dt
(dx

dt

)
f(x(t)) . (1.5)

¦ Integration by parts—should be another “no-brainer”:
∫ x1

x0

dxf ′(x) g(x) =
[
f (x1) g(x1) − f(x0) g(x0)

]
−

∫ x1

x0

dx f(x) g′(x) . (1.6)

It should be quite clear that this is a straightforward consequence of the ‘product
rule’: d

dx

(
f (x)g(x)

)
= f ′(x)g(x) + f (x)g′(x). (Hint: move the integral on the right over

to the left.)

Useful practice: Derive the master formula:
∫ ∞

0

dt e−(αt)β

tγ =
Γ(γ+1

β
)

β αγ+1
. (1.7)
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The formula will apply even for complex α, β, γ, provided <e(α) > 0. Integrals of the
same type but the full range −∞ < x < ∞ are solved using (1.3) and this master formula.
Integrals over the full range, but with a polynomial in the exponential instead of a simple
power are solved by first completing the polynomial into a pure square, cube, etc., and
then substituting so as to obtain a form of (1.7). So, for example,

∫ ∞

−∞
dx e−a2x2+2abx xn =

∫ ∞

−∞
dx e−(ax+b)2 eb2

xn =
eb2

an+1

∫ ∞

−∞
dt e−t2 (t − b)n , (1.8)

whereupon you expand (t − b)n and solve each integral separately using (1.7). Note that
any finite limit would have been shifted in the change x 7→ t = ax−b.

1.1. Properties

The benefit of changing an integral to the form (1.1) is seen upon noting that Γ(z) satisfies
a number of useful properties

Γ(1+z) = zΓ(z) , (1.9a)

Γ(1−z) =
π

Γ(z) sin(πz)
, (1.9b)

Γ(k z) = (2π)
1
2 (1−k) kkz− 1

2

k−1∏

r=0

Γ(z +
r

k
) , k an integer. (1.9c)

The first of these implies that Γ(z) = Γ(1 + z)/z, which we can substitute in the second
one and obtain the frequently useful reflection formula

Γ(1+z) Γ(1−z) =
πz

sin(πz)
. (1.10)

Finally, for most physics applications it suffices to know that

Γ(1) = 1 , Γ(1
2 ) =

√
π , (1.11)

since most physics-related integrals (if they can be related to Γ(z) at all) end up being
expressed in terms of

Γ(n + 1) = n! , Γ(n+ 1
2 ) =

(2n−1)!!

2n

√
π . (1.12)

Here n!
def
= n·(n−1) · · · 2·1, while n!!

def
= n·(n−2) · · · 4·2 if n is even, or n!!

def
= n·(n−2) · · · 3·1

if n is odd. Also we have that

(2n)!! = 2n n! and (2n+1)!! =
(2n+1)!

2n n!
(1.13)

The first result in (1.11) is elementary:

Γ(1) =

∫ ∞

0

dt e−t =
(
−e−t

)
t=+∞ −

(
−e−t

)
t=0

= (0) − (−1) = 1 . (1.14)
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The second one requires a small maneuver:

Γ(1
2 ) =

∫ ∞

0

dt t−
1
2 e−t = 2

∫ ∞

0

dx e−x2

=

∫ +∞

−∞
dx e−x2

, (1.15)

where we changed the integration variable to x =
√

t, so dt√
t

= 2dx and used (1.3). Now

comes a little trick (note the use of the distinct integration variables in the two factors of[
Γ(1

2 )
]2

):

[
Γ(1

2
)
]2

=
[ ∫ ∞

−∞
dx e−x2][ ∫ ∞

−∞
dy e−y2]

=

∫

xy−plane

dxdy e−(x2+y2) ,

=

∫ ∞

0

rdr

∫ 2π

0

dφ e−r2

= 2π

∫ ∞

0

rdr e−r2

= 2π

∫ ∞

0

(1
2
du) e−u ,

= πΓ(1) = π .

(1.16)

whence Γ( 1
2) =

√
π, the second result in (1.11). (The second line began with the change of

variables from Cartesian (x, y) to polar (r, φ), where x = r cos φ and y = r sinφ; the last integral

in the second line follows upon the change of variables u = r2.)

1.2. Related Integrals

Other integrals that are related to the Gamma function include:

Γ(z) =

∫ 1

0

dt
(

ln
(1

t

))z−1

, (1.17a)

=

[ ∫

C

dτ eτ τ−z

]−1

. (1.17b)

The last integral is a contour integral in the complex τ -plane, where the contour C goes
along the negative and just below the real-τ axis, encircles τ = 0 counterclockwise and
returns to τ = −∞ following the negative real-τ axis just above it.

Since ∫ 1

0

dt e−t tz−1 =

∞∑

k=0

(−1)k

k!

1

z + k
, (1.18)

(hint: expand the exponential and integrate term by term), we also have that

Γ(z) =

∞∑

k=0

(−1)k

k!

1

z + k
+

∫ ∞

1

dt e−t tz−1 . (1.19)

It is not hard to prove that this integral converges for all finite z, so that the singularities
Γ(z) are those of the series: z = 0, −1, −2. . . Also, from this series+integral representation
it is easy to calculate

Resz=−n

(
Γ(z)

)
=

(−1)n

n!
. (1.20)
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2. The Psi Function

Defined as

ψ (m)(x)
def
=

dm+1

dzm+1
ln Γ(z) , ψ (x)

def
= ψ (0)(x)

def
=

d

dz
ln Γ(z) , (2.1)

the related function ψ (z) satisfies

ψ (1+z) =
1

z
+ ψ (z) , (2.2a)

ψ (1−z) = π cot(πz) + ψ (z) , (2.2b)

kψ (k z) = k ln(k) +

k−1∑

r=0

ψ (z +
r

k
) , k an integer. (2.2c)

These are easily derived from the relations (1.9).

Integrals and sums relating to the psi function include:

ψ (z) =

∫ ∞

0

dx

x

[
e−x −

1

(x + 1)2

]
(2.3a)

=

∫ ∞

0

dx

x

[
e−x − xe−xz

1 − e−x

]
(2.3b)

= −γ +

∫ ∞

0

dx
e−x − e−xz

1 − e−x
(2.3c)

= −γ +

∫ 1

0

dx
1 − xz−1

1 − x
(2.3d)

= −γ +

∞∑

n=0

( 1

n + 1
−

1

n + z

)
(2.3d)

= −γ +

∫ 1

0

dx
1 − xz−1

1 − x
(2.3d)

3. The Betta Function

Related is Euler’s beta function (for <e(x),<e(y) > 0)

B(x, y)
def
=

∫ 1

0

dt tx−1(1 − t)y−1 =

∫ ∞

0

du
ux−1

(1 + u)x+y
,

=
Γ(x) Γ(y)

Γ(x + y)
=

x + y

x y

(
x+y

y

)−1

.

(3.1)

Here
(
x+y

y

)
generalizes the (better be) well known binomial coefficient

(
n

k

)
def
=

n!

k! (n−k)!
=

n

1

(n−1)

2
· · · (n−k+1)

k
(3.2)
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from integral to complex values arguments (with positive real part). Note that the latter
formula applies even if n is not an integer, as long as k is an integer. The Euler beta
function (3.1), however, holds for even complex arguments, so we can define the binomial
coefficient to be

(
x+y

y

)
def
=

(x+y)!

x! y!
=

x + y

x y

Γ(x + y)

Γ(x) Γ(y)
=

x + y

x y

1

B(x, y)
, (3.3)

which gives a well-defined result as long as x+y is not a negative integer.

The (integral version of the) binomial coefficient appears in the binomial expansion:

(a + b)n =

n∑

k=0

(
n

k

)
an−kbk . (3.4)

This is often used also as

(a + b)n = an
[
1 +

( b

a

)]n

= an
n∑

k=0

(
n

k

)( b

a

)k

, (3.5)

and generalizes for cases when n → ν is not an integer and/or ν < k into

(a + b)ν = aν
[
1 +

( b

a

)]ν

= aν
∞∑

k=0

ν

k(ν−k)

(b/a)k

B(ν−k, k)
. (3.6)

Since the k in these expressions are always integers, the last expression in (3.2) always ap-
plies and is also the quickest way to calculate. Note, however, that once the series becomes
infinite, there is the issue of convergence! The series (3.6) converges (absolutely) precisely
if b < a. So, clearly, to apply (3.6), one factors out the larger of the two summands.

Integrals relating to the Betta function include
∫ ∞

0

dt
cosh(2xt)

[cosh(t)]2y
= 4y−1B(y+x, y−x) , (3.7a)

∫ π/2

0

dθ cosµ(θ) sinν(θ) = 1
2
B

(µ+1

2
,
ν+1

2

)
, (3.7b)

for <e(y) > | <e(x)|, and <e(µ),<e(ν) > −1.
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