
Complex Integration

1. Singularities of Functions

First of all, you have to be able to locate and characterize the singularities of the integrand.

1.1. Location

To that end, note that if g(z) and h(z) are (simpler) functions of the complex variable z,
then f(z) = g(z)/h(z) diverges (tends to infinity) where g(z) diverges and also where h(z)
vanishes. To discern the behavior of f(z) near a singularity, it suffices to expand g(z) and
h(z) in a Laurent series to lowest (most negative/least postitive) order. Thus:

z ∼ 0 : cot(z) =
cos(z)

sin(z)
≈

1− . . .

z− . . .
=

1

z
, (1.1a)

z ∼ π : cot(z) =
cos(z)

sin(z)
≈

(−1)− . . .

(z − π)− . . .
= −

1

(z − π)
. (1.1b)

Note that

cos(x+iy) = sin(x) cos(iy) + cos(x) sin(iy) = sin(x) cosh(y) + i cos(x) sinh(y) , (1.2)

so that cos(z) diverges when y = ℑm(z) does, at y → ±∞. So does, then, cot(z). To sum
up, the singularities of cot(z) are at z = 0,±π,±2π, . . . and ∞.

1.2. Order (severity)

Next, we need to determine the severity of each singularity. Since

cot z ∼
1

z
= z−1 , for z ∼ 0 , (1.3)

we conclude that z = 0 is a pole of the 1st order of cot(z). That is, the calculation (1.1a)
indicates (as easily verified by expanding beyond the leading power) that

cot(z) =
1

z
+

∞∑

n=0

a0 z
n , (1.4)

where the (infinite) sum clearly defines the analytic part of the function cot(z). That is, in
the corresponding Laurent expansion, a−1 = 1 and an = 0, ∀n < −1. This last fact implies,
by definition, that cot(z) has a pole of the first order at z = 0. The same analysis will verify
that cot(z) has poles of the first order at all of its singularitites, z = 0,±1,±2, . . . ,∞; e.g.:

cot(z) =
−1

(z − π)
+

∞∑

n=0

a′0 (z − π)n , etc. (1.5)

By contrast, the function 1
z
cot(z) would have a pole of the second order at z = 0,

but poles of the first order at z = ±1,±2, . . . ,∞. Continuing in this vein, the function
sec2(z) = [cos(z)]−2 has a (double) pole wherever cos(z) = 0, i.e., at z = ±1

2 (2n+1)π.
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Finally, e
1
z has an essential singularity at z = 0. To see this, note that the Taylor

expansion ew =
∑∞

n=0
wn

n! has an infinite radius of convergence, so that the expansion

e
1
z =

∞∑

n=0

z−n

n!
=

0∑

n=−∞

zn

(−n)!
(1.6)

is valid in the entire complex plan outside z = 0. This turns out to be the actual Laurant
expansion of e

1
z , proving that there is a nonzero coefficient an for n < N , regardless how

negative an N we chose: there is no limit to the “depth” of the singularity of e
1
z at z = 0;

it is essential . Stated differently, limz→0 z
Ne

1
z = ∞ regardless of how large N is.

It is often useful to note that, if f(z) has a pole of order m at z0, so that

f(z) =
∑

n≥−m

an(z−z0)
n , (1.7)

the function g(z) = [f(z)]−1 vanishes at z0, and at the rate (z−z0)
m, i.e., we then know

that

g(z) =
1

f(z)
=

∑

n≥+m

bn(z − z0)
n , (1.8)

and where the Taylor coefficients bn are related (but are not equal in general) to the
Laurent coefficients an−2m. As a simple but nontrivial example, consider

f(z) =
3

4− z2
=

3

4

(
1

z + 2
−

1

z − 2

)

=
3

4

(
z − (−2)

)−1
−

3

4

(
z − (+2)

)−1
(1.9)

We easily read off a−1 = 3
4 for z0 = −2 and a−1 = −3

4 for z0 = +2. On the other hand,
the expansion of the reciprocal,

1

f(z)
= g(z) = 1

3
(4−z2) = 4

3
(z−(−2))− 1

3
(z−(−2))2,

= −4
3(z−(+2))− 1

3 (z−(+2))2,

(1.10)

implies that b1 = +4
3 = (a1−2 = a−1)

−1 for z0 = −2, and b1 = −4
3 = (a1−2 = a−1)

−1 for
z0 = +2. This f(z) has a pole of order 1 at both z0 = ±2, and g(z) vanishes linearly at
those same points (in all cases, it is the nonzero term of lowest order that determines the
order of the pole and the rate of vanishing).

1.3. Residues

Finally, we will need the result
∮

C

dz f(z) = 2πi
∑

zi within C

Res
zi

[f(z)] , (1.11)

and that

Res
z0

[f(z)]
def
= a−1(z0) = lim

z→z0

[ 1

m!

dm−1

dzm−1

(

(z−z0)
mf(z)

)]

, (1.12)

where, when f(z0) = 0, we have:

lim
z→z0

[ (z−z0)

f(z)

]

= lim
z→z0

[ d
dz
(z−z0)
d
dz
f(z)

]

= lim
z→z0

[ 1

f ′(z)

]

. (1.13)
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2. Some Simple Samples

Consider, for starters, evaluating I =
∫ +∞

−∞
dx

1+x2n , for n = 1, 2, 3, . . . We first extend the

integrand into a function of the complex variable z = x+iy = ρeiθ, and note that the (new,

complexified) integrand satisfies

lim
ρ→∞

1

1 + z2n
= lim

ρ→∞

1

1 + ρ2ne2inθ
= 0 , ∀θ . (2.1)

We thus complete the contour z ∈ (−∞,+∞) by adding to it a semi-circle at infinity,

choosing the semicircle in the upper half-plain. Then
∮

C

dz

1 + z2n
= I +

∫

1
2C@∞, ℑm(z)≥0

dz

1 + z2n
= I + lim

ρ→∞

∫ π

0

idθρeiθ

1 + ρ2ne2inθ
,

= I + i lim
ρ→∞

ρ1−2n

∫ π

0

dθeiθ

ρ−2n + e2inθ
, (note: ρ−2n → 0)

= I + i lim
ρ→∞

ρ1−2n

︸ ︷︷ ︸

→0

∫ π

0

dθeiθ(1−2n) . (2.2)

That is, the integral along the semi-circle at infinity vanishes, and the whole contour

integral receives contributions only from the original I. Thus,

I =

∮

C

dz

1 + z2n
= 2πi

∑

ℑm(zk)>0

Res
zk

[ 1

1 + z2n

]

, (2.3)

where zk are the poles of 1
1+z2n , i.e., the zeros of 1+z2n. Since z2n = −1 = eiπ = eiπ+2kiπ,

∀k ∈ ZZ, we have that zk = eiπ
2k+1
2n . Since

zk+2n = eiπ
2(k+2n)+1

2n = eiπ
2k+1
2n +2iπ = eiπ

2k+1
2n +2iπ = eiπ

2k+1
2n = zk , (2.4)

there are only a finite (2n) number of inequivalent choices of k, and for convenience we

can let k = 0, 1, . . . , (2n−1) rather than k = 1, 2, . . . , 2n. Note that only those zk are

enclosed in the semicircular contour for which ℑm(zk) > 0, as stated in the condition for

the summation in Eq. (2.3); these turn out to be zk, k = 0, 1, . . . , (n−1); see the figure

below.

ρ → ∞ ρ

C

z

z0

z1z2

z3

z4

z5 z6

z7

the n = 4 case
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Thus,

I =

∮

C

dz

1 + z2n
= 2πi

n−1∑

k=0

Res
zk

[ 1

1 + z2n

]

, zk = eiπ
2k+1
2n . (2.5)

I’ll let you compute this using Eq. (1.12). Also, try closing the contour in the lower
half-plain (with ℑm(z) ≤ 0), and verify that the result remains the same.

3. A Nifty Complex Integral

The integral
∫ ∞

0

dx e2ix

1− x5

can be evaluated as a complex contour integral, by interpreting the integral along the real
axis as open contour (with a detour around the pole at x = 1. However, note that the
integrand is neither (anti)symmetric nor does it become a simple multiple of itself under
x → e2πi/5x. Therefore, closing the contour along a spoke limx→∞[0, eiφx), for any φ 6= 0
will end up involving another unknown integral, and so will be of no help in evaluating the
above integral itself.

Recall however that the ln(z) function customarily has a branch-cut along the positive
axis, so that ln(z) becomes ln(z)−2πi just below the axis if one arrives there by going from
just above the real axis counter-clockwise around the origin, or clockwise around infinity.
We then consider the closed-contour integral

I =

∮

C

dz e2iz

1− z5
ln(z) . (3.1)

The contour C goes along the real axis (with a clockwise, upper semicircular detour around
z=1), encircles z=∞ in the clockwise fashion, runs just below the real axis (with a clock-
wise, lower semicircular detour around z=1), and encircles z=0 in a counterclockwise
fashion. Thus:

I = I+ǫ,1−δ + I+
1
2C

(CW )

δ

+ I+1+δ,∞ + I∞ + I−∞,1+δ + I−
1
2C

(CW )

δ

+ I−1−δ,0 + I0 , (3.2)

where

I+ǫ,1−δ =

∫ 1−δ

ǫ

dx e2ix

1− x5
ln(x) , (3.3a)

I+
1
2C

(CW )

δ

= −iπRes
z=1

[ e2iz

1− z5
ln(z)

]

, (3.3b)

I+1+δ,∞ =

∫ ∞

1+δ

dx e2ix

1− x5
ln(x) , (3.3c)

I∞ =

∫

C∞

dz e2iz

1− z5
ln(z) , (3.3d)

I−∞,1+δ =

∫ 1+δ

∞

dx e2ix

1− x5
[ln(x)− 2πi] , (3.3e)
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I−
1
2C

(CW )

δ

= −iπRes
z=1

[ e2iz

1− z5
[ln(z)− 2πi]

]

, (3.3f)

I−1−δ,ǫ =

∫ ǫ

1−δ

dx e2ix

1− x5
[ln(x)− 2πi] , (3.3g)

Iǫ =

∫

Cǫ

dz e2iz

1− z5
ln(z) . (3.3h)

Now notice that the limits on (3.3e, g) are opposite of those in (3.3a, c); we then flip the
limits on the former two and find that

lim
ǫ,δ→0

[

I+ǫ,1−δ + I+1+δ,∞ + I−∞,1+δ + I−1−δ,ǫ

]

= +2πi P

∫ ∞

0

dx e2ix

1− x5
, (3.4)

since the terms involving the logarithm cancel between the I+’s and the I−’s. Similarly,

I+
1
2C

(CW )

δ

+ I−
1
2C

(CW )

δ

= −2πiRes
z=1

[ e2iz

1− z5
ln(z)

]

+ −iπRes
z=1

[ e2iz

1− z5
(ln(z)−2πi)

]

,

= −2πi
[
0
]
+ −iπ

[2πie2i

5

]
=

2π2e2i

5
.

(3.5)

Next (recall that although limǫ→0 ln(ǫ) = −∞, limǫ→0(ǫ ln (ǫ)) = 0),

Iǫ = lim
ǫ→0

∫ 0

2π

ǫeiφidφ e2iǫe
iφ

1− ǫ5e5iφ
(ln ǫ+ iφ) = lim

ǫ→0
iǫ

∫ 0

2π

eiφdφ(ln ǫ+ iφ) = 0 . (3.6)

Finally,

I∞ = lim
λ→∞

ǫ→0

∫ 0

2π

(λ+ ǫeiφ)idφ e2i(λ+ǫeiφ)

1− (λ+ ǫeiφ)5
(
ln(λ+ ǫeiφ)

)
, (3.7a)

= i lim
λ→∞

e2iλ ln(λ)

λ4

∫ 0

2π

dφ = 2πi lim
λ→∞

e2iλ ln(λ)

λ4
= 0 . (3.7b)

So,

I = 2πiP

∫ ∞

0

dx e2ix

1− x5
+

2π2e2i

5
. (3.8)

On the other hand, as a contour integral I may be evaluated as the sum of residues of the
poles encircled — which is only the z=1, and it is encircled clockwise:

I = −2πiRes
z=1

[e2iz ln(z)

1− z5

]

= −2πi lim
z→1

[e2iz ln(z)

−5z4

]

= 0 . (3.9)

Note that while it is true that ln(z) diverges at z=0,∞, these are not poles! If they were,
than limz→0 z

n ln(z) would be non-zero for some integral n. In fact, this limit vanishes for
any, even fractional n > 0. (As for the z=∞ singularity, the simple substitution ζ = 1/z
lets us repeat the argument with ζ → 0.) In other words, the singularities of ln(z) are
milder than any pole, even of fractional order. This makes the above trick especially useful.

The final result then is:

0 = I = 2πi P

∫ ∞

0

dx e2ix

1− x5
+

2π2e2i

5
, (3.10)
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or

P

∫ ∞

0

dx e2ix

1− x5
=

iπe2i

5
= −π

5 sin(2) + iπ5 cos(2) . (3.11)
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