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1 Potential Theory

In physics applications, a “potential” is a function from which the more imminently needed one can be
derived. This motivates the notation and the sign conventions used. The discussion revolves about showing
the equivalence of two groups of three statements, as indicated in the twin diagrams below:
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We now proceed explaining how to derive these results one from another, as indicated by the arrows.

1.1 Electrostatic Field

We proceed with the left-hand side diagram:
a: We simply apply ∇⃗× to both sides of E⃗ = −∇⃗Φ and obtain

∇⃗×E⃗ = −∇⃗×(∇⃗Φ) ≡ 0, ⇒ ∇⃗×E⃗ = 0, (1.2)

since the curl of the gradient of any (well-defined, twice differentiable) scalar function is zero.
b.1: We integrate both sides of E⃗ = −∇⃗Φ along a contour C1, from the point a to b, and use the funda-

mental theorem of calculus to obtain:∫
C1

d⃗r·E⃗ =
∫ b

a
d⃗r·E⃗ = −

∫ b

a
d⃗r·∇⃗Φ = −Φ

∣∣b
a = Φ(a)− Φ(b). (1.3)

Since the result only depends on the end-points1 , it is path-independent, and we could have inte-
grated along a different contour, C2, that begins and ends at the same points:

Φ(a)− Φ(b) = −
∫ b

a
d⃗r·∇⃗Φ =

∫
C2

d⃗r·E⃗. (1.4)

b.2: Subtracting (1.4) from (1.3), we obtain

0 =

b∫
a (C1)

d⃗r·E⃗ −
b∫

a (C2)

d⃗r·E⃗ =

b∫
a (C1)

d⃗r·E⃗ +

a∫
b (−C2)

d⃗r·E⃗ =
∮

C
d⃗r·E⃗, (1.5)

where C = C1 + C2 is the closed contour following C1 from a to b, and
then C2 from b back to a; −C2 implies following the contour against its
indicated orientation.
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1 Caveat: see Section 1.2 below.
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c: If we know that
∮

C
d⃗r·E⃗ = 0, mark off two points on the contour C and call them a and b; label one

portion of the closed contour C1, the other C2. The closed-contour integration is then the sum of two
integrals:

0 =
∮

C
d⃗r · E⃗ =

b∫
a (C1)

d⃗r · E⃗ +

a∫
b (−C2)

d⃗r · E⃗ =

b∫
a (C1)

d⃗r · E⃗ −
a∫

b (C2)

d⃗r · E⃗ ⇒
b∫

a (C1)

d⃗r · E⃗ =

a∫
b (C2)

d⃗r · E⃗, (1.6)

and the integral is path-independent, and depends only on the end-points. Introducing the symbol
Φ := −

∫
d⃗r·E⃗ for the anti-derivative (indefinite integral), we then have:∫ b

a
d⃗r · E⃗ = Φ(a)− Φ(b) ⇒ E⃗ = −∇⃗Φ. (1.7)

d: Once we have that
∮

C
d⃗r·E⃗ = 0, we use Stokes’ theorem “backwards,” and write:

0 =
∮

C

d⃗r·E⃗ =
∫

S
d2⃗r · (∇⃗×E⃗), (1.8)

where S is any surface that is bounded by the closed contour C. Since this integral vanishes for every
surface bounded by the closed contour C, it must be the integrand that vanishes, and we conclude
that ∇⃗ × E⃗ = 0.

e: This one is easy: knowing that ∇⃗×E⃗ = 0, integrate over any surface S, taking the scalar product
between the area element, d2⃗σ and the vector ∇⃗×E⃗:

∫
S d2⃗σ·(∇⃗×E⃗) = 0, since the integrand is zero.

It should be noted that the above computations are all done assuming that the various functions and
their various derivatives are well-defined (bounded) throughout the region where these computations are
expected to hold.

f: Much as in part a, we simply apply ∇⃗· on both sides of B⃗ = ∇⃗×A⃗, and obtain:

∇⃗ · B⃗ = ∇⃗ · (∇⃗ × A⃗) ≡ 0, (1.9)

since the divergence of the curl of any (well-defined, twice differentiable) vector function is zero.
g.1: We now integrate both sides of B⃗ = ∇⃗×A⃗ over a surface S1 bounded by a contour C = ∂S1, and use

the Stokes’ theorem to obtain:∫
S1

d2⃗σ · B⃗ =
∫

S1

d2⃗σ · (∇⃗×A⃗) =
∮

C

d⃗r · A⃗. (1.10)

Since the result only depends on the computation of the integral along the boundary C, we could
have just as well integrated over any other surface, S2, as long as it is bounded by the same contour:∮

C

d⃗r · A⃗ =
∫

S2

d2⃗σ · (∇⃗×A⃗) =
∫

S2

d2⃗σ · B⃗ (1.11)

g.2: Subtracting (1.11) from (1.10), we obtain

0 =
∫

S1

d2⃗σ·B⃗ −
∫

S2

d2⃗σ·B⃗ =
∫

S1

d2⃗σ·B⃗ +
∫
−S2

d2⃗σ·B⃗ =
∮

S
d2⃗σ·B⃗, (1.12)

where S = S1 + S2 is the closed surface put together from S1 and S2 by virtue of them both being
bounded by the same contour. (Think of the Northern and the Southern hemisphere both bounded
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by the equator.) Integrating over −S2 implies integrating over the same surface, S2, but with the
opposite normal. Think of it this way: let’s suppose first that S1 represents the Northern hemisphere
and C the equator. Now imagine constructing S2 by deforming the Northern hemisphere, by “lower-
ing” the surface of S2 below the Earth surface, until it becomes the plane containing the equator. The
normals to this version of S2 are all parallel to each other and point directly to the North pole from
the center of this version of S2, which happens also to be the center of the Earth.

Now continue deforming S2 further in the general direction of the South pole, so that it eventually
conforms to the Southern hemisphere. Keeping the normals to the surface uniform through this
continuous process, we now have S2 with its normals all pointing towards the center of the Earth.
Notice that this configuration was reached by continuously deforming Northern hemisphere S1 into
the Southern hemisphere S2, and that:
(a) the normals to S1 are outward, and point away from the center of Earth,
(b) the normals to S2 are inward, and point towards the center of Earth.

Thus, as one would follow the normals from the Northern hemisphere across the equator to the
Southern hemisphere, their direction changed discontinuously on the equator. Switching the second
integral from S2 to −S2 then equips also the Southern hemisphere with outward (directed away from
the center of the Earth) normals, and now the whole closed surface has uniformly defined normals—
this then is S.

S1 S1

S2

S1

S2

S1

−S2

(1.13)

h: In turn, if we know that
∮

S
d2⃗σ·B⃗ = 0, divide this surface into two regions by a closed contour C ⊂ S.

Label one of those regions S1 and the other −S2. They are both bounded by C and jointly form S, so
the integral over S is the sum of the integrals over S1 and −S2:

0 =
∮

S

d2⃗σ·B⃗ =
∫

S1

d2⃗σ·B⃗ +
∫
−S2

d2⃗σ·B⃗ =
∫

S1

d2⃗σ·B⃗ −
∫

S2

d2⃗σ·B⃗ ⇒
∫

S1

d2⃗σ·B⃗ =
∫

S2

d2⃗σ·B⃗, (1.14)

and the integral is independent of the actual surface along which it is computed—provided the
surface is bounded by the fixed contour C. It follows that the integral is completely determined by
data along this contour. It follows that the integrals (1.14) must equal a contour integral

∮
C
d⃗r·A⃗, so

that ∮
C

d⃗r·A⃗ =
∫

S

d2⃗σ·(∇⃗×A⃗) =
∫

S

d2⃗σ·B⃗ ⇒ B⃗ = ∇⃗×A⃗, (1.15)

since the second equality holds for every surface that is bounded by C, and the first equality is Stokes’
theorem.

i: Once we have that
∮

S
d2⃗σ·B⃗ = 0, we use Gauss’ theorem “backwards,” and write:

0 =
∮

S

d2⃗σ·B⃗ =
∫

V

d3⃗r (∇⃗·B⃗), (1.16)
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where V is the volume that is bounded by the closed surface S. Since this integral vanishes for every
surface bounded by the closed contour C, it must be the integrand that vanishes, and we conclude
that ∇⃗ × E⃗ = 0.

j: This one is easy: knowing that ∇⃗·B⃗ = 0, integrate over any volume V:
∫

V d3⃗r(∇⃗·B⃗) = 0, since the
integrand is zero.

1.2 Sources and Sinks

The above analysis within the Section 1 implicitly assumed that in all cases the integrands and the integrals
were well-defined.
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