
All references are to Elementary Differential Equations,
5th ed., by C.H. Edwards and D.E. Penney.

Instructor’s Warning: This solution set presents con-
siderably more detail than was required of Students in
their assignments; hopefully y’all will learn from this.

§ 1.3

# 16: We need to discuss the applicability of Theorem 1 (p.23) to d y
d x =

√
x − y, and thus whether

or not a unique solution satisfying y(2) = 1 exists. To that end, we need to check the assumptions
of Theorem 1: are

1.
√

x − y and

2. ∂
∂y
√

x − y = 1
2
√

x−y
∂x−y
∂y =

−1
2
√

x−y

continuous in a rectangle containing (x, y) = (2, 1)? Indeed, they are:

1.
√

x − y becomes imaginary when y > x: in the standard (x, y)-plane, this is to the left of the
straight line y = x.

2. −1
2
√

x−y becomes “ 1
0” nonsense on this diagonal line, y = x, so that we are left with the whole

open half-plane being to the right of the y = x 45◦ diagonal.

The point (x, y) = (2, 1) is well within this half-plane, and we can easily find a rectangle around
this point and within the “kosher” half-plane:
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∗ ← the initial point

The conditions of Theorem 1 satisfied in any such rectangle, the conclusion of Theorem 1 holds:
there is a unique solution to this differential equation, satisfying the condition that y(2) = 1.

# 30: Several students have returned blanks on this one. None of whom then even tried
sketching the solution—as suggested in the problem itself!? And, not “mentally”; try it with
paper and pen(cil). In particular, see if the piece-wise defined function is continuous and smooth
at the junction points. What happens to the graph when you vary c? And, finally, calculate the
derivative, y′(x), as well as the expression −

√
1 − y2(x) in each of the three regions, and see if the

statement of the differential equation,

y′(x) ?
= −
√

1 − y2(x) , (1.3:1)

is satisfied in all three regions and at the junctions.

§ 1.4

# 42: The moon rock. They talk about the number of potassium and argon atoms, as a function
of time; let’s call these functions K(t) and A(t), respectively. The next sentence is packed with
info, so let’s disjoin it:

1



1. it says that potassium decays radioactively. Then, Eq. (14) applies, and we have, without
much ado:

d K
d t
= −k K(t) , ⇒ K(t) = K0 e−kt = K0 2−t/τ , (1.4:2)

where in the last equality we’ve used the relation (18), that k = ln(2)
τ , so that

e−kt = e− ln(2)t/τ =
(
eln(2)
)−t/τ

= 2−t/τ . (1.4:3)

OK so far? Now we know how the number of potassium atoms changes over time, K(t) = K0 2−t/τ.

So, how about the argon atoms? Well, there’s:

2. That second sentence also says that only one in nine potassium atom decays produces an
argon atom. So, how many potassium atoms have decayed by time t? Easy: To begin with, there
were K0, and at time t, there were only K0 2−t/τ; thus, K0 − K0 2−t/τ have decayed. And, a ninth of
those produced argon atoms. Therefore, the number of argon atoms has to be:

A(t) = 1
9

(
K0 − K0 2−t/τ

)
= 1

9K0(1 − 2−t/τ) . (1.4:4)

OK. Now back up to that first sentence: “A certain moon rock was found [at time t∗ since the
time t = 0, when it contained only potassium] to contain equal numbers of potassium and argon
atoms.” Ha! That’s it! This says that:

A(t∗)
!
= K(t∗) , i.e. 1

9 K0 (1 − 2−t∗/τ) !
= K0 2−t∗/τ . (1.4:5)

Canceling K0, multiplying through by 9, and rearranging terms left-right, we get

1 !
= 10 2−t∗/τ , ⇒

1
10

!
= 2−t∗/τ , ⇒ log2( 1

10 ) !
= −t∗/τ , (1.4:6)

or
t∗ = τ log2(10) ≈ (1.28×109 years)(3.3219) ≈ 4.2521×109 years . (1.4:7)

The result, 1.25×109 years, quoted in the text is a typo.

§ 1.5

# 14: The differential equation xy′ − 3y = x3—or, equivalently, y′ − 3
x y = x2 is of the form of

Eq. (3) on p.45, with P(x) = − 3
x and Q(x) = x2. Therefore, the solution in Eq. (6) on p.45 applies.

In there, the C-independent term is the particluar solution. ’nuff said:

yp(x) = e−
∫

dx P(x)
∫

dx Q(x) e+
∫

dx P(x) = e+3
∫

dx
x

∫
dx x2 e−3

∫
dx
x ,

= e+3 ln(x)
∫

dx x2 e−3 ln(x) = x3
∫

dx x2 x−3 = x3
∫

dx
x
= x3 ln(x) . (1.5:8)
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§ 1.6

Errata: The last display on p.68 and the firs on p.69, should have, respectively

x(y) =
∫

d x
d y

dy =
∫

1
dy/dx

dy = · · ·

and
y p

d p
d y
= p2 .

Do you now see their typos? Doesn’t it make much more sense?

# 25: The differential equation y2(xy′ + y)(1+ x4)1/2 = x contains the pattern xy′+ y which should
be obvious to simplify as

x y′ + y = x
d y
d x
+ 1·y = x

d y
d x
+

d x
d x

y =
d

d x
(x y) . (1.6:9)

This suggests trying the substitution z = x y, which is indeed easy to invert:

z = x y , ⇒ y =
z
x
. (1.6:10)

Since y′ occurs nowhere else, this is enough to complete the substitution y→ z = x y, and obtain

y2 (x y′ + y)
√

1 + x4 = x , ⇒

(z
x

)2 d z
d x

√

1 + x4 = x , (1.6:11)

which separates:

z2 dz =
x3 dx
√

1 + x4

(1+x4)=u
= 1

4

du
√

u
, (1.6:12)

and can be integrated into:

1
3 z3 = 1

2

√
u + 1

3C , ⇒ 2 x3 y3 = 3
√

1 + x4 + C . (1.6:13)

where I judiciously included a 1
3 in the initial appearance of the integration constant, C.

This implicit solution can be solved for y:

y(x) =
1
x

3

√
3
√

1 + x4

2
+

C
2
. (1.6:14)

# 54: The differential equation y y′′ = 3(y′)2 is precisely of one of the two reduction types, and
closely follows Example 11—where, however, there was a typo. But, never fear, we proceed
as instructed: the independent variable, x, does not occur in this differential equation, so we
substitute:

p := y′ , and y′′ = p
d p
d y
. (1.6:15)

The differential equation then becomes

y y′′ = 3(y′)2 , ⇒ y
(
p

d p
d y

)
= 3 p2 , (1.6:16)
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which separates into:

dp
p
= 3

dy
y
, ⇒ ln(p) = 3 ln y + ln(C) = ln(y3) + ln(C) = ln(C y3) , (1.6:17)

which produces, upon exponentiating both sides:

p = C y3 , ⇒
d y
d x
= C y3 . (1.6:18)

This last equation separates and can be integrated:

dy
y3 = C dx , ⇒ −

1
2 y−2 = C (x − x0) , ⇒ y−2 = 2 C (x0 − x) , (1.6:19)

and finally,
1 = (2C) y2 (x0 − x) , (1.6:20)

which agrees with the text’s solution, upon identifying A = 2C and B = x0. A bit more user-
friendly format of the same solution is

y(x) =
1√

2C(x0 − x)
. (1.6:21)
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