§ 1.3

\# 16: We need to discuss the applicability of Theorem 1 (p.23) to $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{x-y}$, and thus whether or not a unique solution satisfying $y(2)=1$ exists. To that end, we need to check the assumptions of Theorem 1: are

1. $\sqrt{x-y}$ and
2. $\frac{\partial}{\partial y} \sqrt{x-y}=\frac{1}{2 \sqrt{x-y}} \frac{\partial x-y}{\partial y}=\frac{-1}{2 \sqrt{x-y}}$
continuous in a rectangle containing $(x, y)=(2,1)$? Indeed, they are:
3. $\sqrt{x-y}$ becomes imaginary when $y>x$: in the standard (x, y)-plane, this is to the left of the straight line $y=x$.
4. $\frac{-1}{2 \sqrt{x-y}}$ becomes " $\frac{1}{0}$ " nonsense on this diagonal line, $y=x$, so that we are left with the whole open half-plane being to the right of the $y=x 45^{\circ}$ diagonal.

The point $(x, y)=(2,1)$ is well within this half-plane, and we can easily find a rectangle around this point and within the "kosher" half-plane:

The conditions of Theorem 1 satisfied in any such rectangle, the conclusion of Theorem 1 holds: there is a unique solution to this differential equation, satisfying the condition that $y(2)=1$.
\# 30: Several students have returned blanks on this one. None of whom then even tried sketching the solution-as suggested in the problem itself!? And, not "mentally"; try it with paper and pen(cil). In particular, see if the piece-wise defined function is continuous and smooth at the junction points. What happens to the graph when you vary c ? And, finally, calculate the derivative, $y^{\prime}(x)$, as well as the expression $-\sqrt{1-y^{2}(x)}$ in each of the three regions, and see if the statement of the differential equation,

$$
\begin{equation*}
y^{\prime}(x) \stackrel{?}{=}-\sqrt{1-y^{2}(x)} \tag{1.3:1}
\end{equation*}
$$

is satisfied in all three regions and at the junctions.

§ 1.4

\# 42: The moon rock. They talk about the number of potassium and argon atoms, as a function of time; let's call these functions $K(t)$ and $A(t)$, respectively. The next sentence is packed with info, so let's disjoin it:

1. it says that potassium decays radioactively. Then, Eq. (14) applies, and we have, without much ado:

$$
\begin{equation*}
\frac{\mathrm{d} K}{\mathrm{~d} t}=-k K(t), \quad \Rightarrow \quad K(t)=K_{0} e^{-k t}=K_{0} 2^{-t / \tau} \tag{1.4:2}
\end{equation*}
$$

where in the last equality we've used the relation (18), that $k=\frac{\ln (2)}{\tau}$, so that

$$
\begin{equation*}
e^{-k t}=e^{-\ln (2) t / \tau}=\left(e^{\ln (2)}\right)^{-t / \tau}=2^{-t / \tau} . \tag{1.4:3}
\end{equation*}
$$

OK so far? Now we know how the number of potassium atoms changes over time, $K(t)=K_{0} 2^{-t / \tau}$.
So, how about the argon atoms? Well, there's:
2. That second sentence also says that only one in nine potassium atom decays produces an argon atom. So, how many potassium atoms have decayed by time t ? Easy: To begin with, there were K_{0}, and at time t, there were only $K_{0} 2^{-t / \tau}$; thus, $K_{0}-K_{0} 2^{-t / \tau}$ have decayed. And, a ninth of those produced argon atoms. Therefore, the number of argon atoms has to be:

$$
\begin{equation*}
A(t)=\frac{1}{9}\left(K_{0}-K_{0} 2^{-t / \tau}\right)=\frac{1}{9} K_{0}\left(1-2^{-t / \tau}\right) . \tag{1.4:4}
\end{equation*}
$$

OK. Now back up to that first sentence: "A certain moon rock was found [at time t_{*} since the time $t=0$, when it contained only potassium] to contain equal numbers of potassium and argon atoms." Ha! That's it! This says that:

$$
\begin{equation*}
A\left(t_{*}\right) \stackrel{!}{=} K\left(t_{*}\right), \quad \text { i.e. } \quad \frac{1}{9} K_{0}\left(1-2^{-t_{*} / \tau}\right) \stackrel{!}{=} K_{0} 2^{-t_{*} / \tau} \tag{1.4:5}
\end{equation*}
$$

Canceling K_{0}, multiplying through by 9 , and rearranging terms left-right, we get

$$
\begin{equation*}
1 \stackrel{!}{=} 102^{-t_{*} / \tau}, \quad \Rightarrow \quad \frac{1}{10} \stackrel{!}{=} 2^{-t_{*} / \tau}, \quad \Rightarrow \quad \log _{2}\left(\frac{1}{10}\right) \stackrel{!}{=}-t_{*} / \tau \tag{1.4:6}
\end{equation*}
$$

or

$$
\begin{equation*}
t_{*}=\tau \log _{2}(10) \approx\left(1.28 \times 10^{9} \text { years }\right)(3.3219) \approx 4.2521 \times 10^{9} \text { years } \tag{1.4:7}
\end{equation*}
$$

The result, 1.25×10^{9} years, quoted in the text is a typo.

§ 1.5

\# 14: The differential equation $x y^{\prime}-3 y=x^{3}$-or, equivalently, $y^{\prime}-\frac{3}{x} y=x^{2}$ is of the form of Eq. (3) on p.45, with $P(x)=-\frac{3}{x}$ and $Q(x)=x^{2}$. Therefore, the solution in Eq. (6) on p. 45 applies. In there, the C-independent term is the particluar solution. 'nuff said:

$$
\begin{align*}
y_{p}(x) & =e^{-\int \mathrm{d} x P(x)} \int \mathrm{d} x Q(x) e^{+\int \mathrm{d} x P(x)}=e^{+3 \int \frac{\mathrm{~d} x}{x}} \int \mathrm{~d} x x^{2} e^{-3 \int \frac{\mathrm{~d} x}{x}} \\
& =e^{+3 \ln (x)} \int \mathrm{d} x x^{2} e^{-3 \ln (x)}=x^{3} \int \mathrm{~d} x x^{2} x^{-3}=x^{3} \int \frac{\mathrm{~d} x}{x}=x^{3} \ln (x) . \tag{1.5:8}
\end{align*}
$$

§ 1.6

Errata: The last display on p. 68 and the firs on p. 69 , should have, respectively

$$
x(y)=\int \frac{\mathrm{d} x}{\mathrm{~d} y} \mathrm{~d} y=\int \frac{1}{\mathrm{~d} y / \mathrm{d} x} \mathrm{~d} y=\cdots
$$

and

$$
y p \frac{\mathrm{~d} p}{\mathrm{~d} y}=p^{2} .
$$

Do you now see their typos? Doesn't it make much more sense?
\# 25: The differential equation $y^{2}\left(x y^{\prime}+y\right)\left(1+x^{4}\right)^{1 / 2}=x$ contains the pattern $x y^{\prime}+y$ which should be obvious to simplify as

$$
\begin{equation*}
x y^{\prime}+y=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+1 \cdot y=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{\mathrm{d} x}{\mathrm{~d} x} y=\frac{\mathrm{d}}{\mathrm{~d} x}(x y) . \tag{1.6:9}
\end{equation*}
$$

This suggests trying the substitution $z=x y$, which is indeed easy to invert:

$$
\begin{equation*}
z=x y, \quad \Rightarrow \quad y=\frac{z}{x} \tag{1.6:10}
\end{equation*}
$$

Since y^{\prime} occurs nowhere else, this is enough to complete the substitution $y \rightarrow z=x y$, and obtain

$$
\begin{equation*}
y^{2}\left(x y^{\prime}+y\right) \sqrt{1+x^{4}}=x, \quad \Rightarrow \quad\left(\frac{z}{x}\right)^{2} \frac{\mathrm{~d} z}{\mathrm{~d} x} \sqrt{1+x^{4}}=x \tag{1.6:11}
\end{equation*}
$$

which separates:

$$
\begin{equation*}
z^{2} \mathrm{~d} z=\frac{x^{3} \mathrm{~d} x}{\sqrt{1+x^{4}}} \stackrel{\left(1+x^{4}\right)}{=}=u \frac{1}{4} \frac{\mathrm{~d} u}{\sqrt{u}}, \tag{1.6:12}
\end{equation*}
$$

and can be integrated into:

$$
\begin{equation*}
\frac{1}{3} z^{3}=\frac{1}{2} \sqrt{u}+\frac{1}{3} C, \quad \Rightarrow \quad 2 x^{3} y^{3}=3 \sqrt{1+x^{4}}+C . \tag{1.6:13}
\end{equation*}
$$

where I judiciously included a $\frac{1}{3}$ in the initial appearance of the integration constant, C.
This implicit solution can be solved for y :

$$
\begin{equation*}
y(x)=\frac{1}{x} \sqrt[3]{\frac{3 \sqrt{1+x^{4}}}{2}+\frac{C}{2}} . \tag{1.6:14}
\end{equation*}
$$

\# 54: The differential equation $y y^{\prime \prime}=3\left(y^{\prime}\right)^{2}$ is precisely of one of the two reduction types, and closely follows Example 11-where, however, there was a typo. But, never fear, we proceed as instructed: the independent variable, x, does not occur in this differential equation, so we substitute:

$$
\begin{equation*}
p:=y^{\prime}, \quad \text { and } \quad y^{\prime \prime}=p \frac{\mathrm{~d} p}{\mathrm{~d} y} . \tag{1.6:15}
\end{equation*}
$$

The differential equation then becomes

$$
\begin{equation*}
y y^{\prime \prime}=3\left(y^{\prime}\right)^{2}, \quad \Rightarrow \quad y\left(p \frac{\mathrm{~d} p}{\mathrm{~d} y}\right)=3 p^{2} \tag{1.6:16}
\end{equation*}
$$

which separates into:

$$
\begin{equation*}
\frac{\mathrm{d} p}{p}=3 \frac{\mathrm{~d} y}{y}, \quad \Rightarrow \quad \ln (p)=3 \ln y+\ln (C)=\ln \left(y^{3}\right)+\ln (C)=\ln \left(C y^{3}\right) \tag{1.6:17}
\end{equation*}
$$

which produces, upon exponentiating both sides:

$$
\begin{equation*}
p=C y^{3}, \quad \Rightarrow \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=C y^{3} . \tag{1.6:18}
\end{equation*}
$$

This last equation separates and can be integrated:

$$
\begin{equation*}
\frac{\mathrm{d} y}{y^{3}}=C \mathrm{~d} x, \quad \Rightarrow \quad-\frac{1}{2} y^{-2}=C\left(x-x_{0}\right), \quad \Rightarrow \quad y^{-2}=2 C\left(x_{0}-x\right) \tag{1.6:19}
\end{equation*}
$$

and finally,

$$
\begin{equation*}
1=(2 C) y^{2}\left(x_{0}-x\right) \tag{1.6:20}
\end{equation*}
$$

which agrees with the text's solution, upon identifying $A=2 C$ and $B=x_{0}$. A bit more userfriendly format of the same solution is

$$
\begin{equation*}
y(x)=\frac{1}{\sqrt{2 C\left(x_{0}-x\right)}} \tag{1.6:21}
\end{equation*}
$$

