A].l references are tO Elemen tm’y Dijﬁf?’en tial Equﬂ tiO?lS, Instructor’s Warning: This solution set presents con-
siderably more detail than was required of Students in

5th ed., by CH Edwards and D.E Penney their assignments; hopefully y’all will learn from this.

§1.3

#16: We need to discuss the applicability of Theorem 1 (p.23) to % = 4/x — y, and thus whether
or not a unique solution satisfying y(2) = 1 exists. To that end, we need to check the assumptions
of Theorem 1: are

1. y/x=yand
9 _ ox—y _  _
2. oy VX— Y = 2\/1—y dy 2 xl—y

continuous in a rectangle containing (x, y) = (2,1)? Indeed, they are:

1. 4/x — y becomes imaginary when y > x: in the standard (x, y)-plane, this is to the left of the
straight line y = x.
ulny

2. z\jxlfy becomes “3” nonsense on this diagonal line, y = x, so that we are left with the whole
open half-plane being to the right of the y = x 45° diagonal.

The point (x, y) = (2,1) is well within this half-plane, and we can easily find a rectangle around
this point and within the “kosher” half-plane:

"
bad region \\\\\\ + « the initial point
W -
3 i
\\\\\\\\\ good region

The conditions of Theorem 1 satisfied in any such rectangle, the conclusion of Theorem 1 holds:
there is a unique solution to this differential equation, satisfying the condition that y(2) = 1.

# 30: Several students have returned blanks on this one. None of whom then even tried
sketching the solution—as suggested in the problem itself!? And, not “mentally”; try it with
paper and pen(cil). In particular, see if the piece-wise defined function is continuous and smooth
at the junction points. What happens to the graph when you vary c¢? And, finally, calculate the
derivative, y’(x), as well as the expression — /1 — y2(x) in each of the three regions, and see if the
statement of the differential equation,

Y (x) £ = 1= 12(x), (1.3:1)

is satisfied in all three regions and at the junctions.

§1.4

#42: The moon rock. They talk about the number of potassium and argon atoms, as a function
of time; let’s call these functions K(¢) and A(t), respectively. The next sentence is packed with
info, so let’s disjoin it:



1. it says that potassium decays radioactively. Then, Eq. (14) applies, and we have, without

much ado:
d_K _ _ —kt _ —t/t .
T kK(t), = K(t) = Kge™ =Ky27"7, (1.4:2)
In(2)

where in the last equality we’ve used the relation (18), that k = ==, so that
—t/t
okt — o~ In@t/T _ (eln(Z)) — ot (1.4:3)
OK so far? Now we know how the number of potassium atoms changes over time, K(t) = Ko 27/".

So, how about the argon atoms? Well, there’s:

2. That second sentence also says that only one in nine potassium atom decays produces an
argon atom. So, how many potassium atoms have decayed by time t? Easy: To begin with, there
were Ky, and at time £, there were only K, 2717 thus, Ky — Ko 277 have decayed. And, a ninth of
those produced argon atoms. Therefore, the number of argon atoms has to be:

A() = 3(Ko = Ko 27/7) = 1Ko(1 - 27177) . (1.4:4)

OK. Now back up to that first sentence: “A certain moon rock was found [at time ¢, since the
time t = 0, when it contained only potassium] to contain equal numbers of potassium and argon
atoms.” Ha! That’s it! This says that:

At)=K(t), e LKo(1-277) = Kg2T (1.4:5)
Canceling Ko, multiplying through by 9, and rearranging terms left-right, we get

1210277, = Lot o log (i) = -t/t, (1.4:6)

10 —

or
t. = 7 log,(10) ~ (1.28x10° years)(3.3219) ~ 4.2521x10’ years . (1.4:7)

The result, 1.25x10° years, quoted in the text is a typo.

§1.5

# 14: The differential equation xy’ — 3y = x’>—or, equivalently, y — 3y = x? is of the form of
Eq. (3) on p.45, with P(x) = —% and Q(x) = x*. Therefore, the solution in Eq. (6) on p.45 applies.
In there, the C-independent term is the particluar solution. 'nuff said:

yp(x) — e—fdx P(x) fdx Q(X) e+fdx Px) _ e+3f% fdx X2 e—3f% ,
_ _+3In(x) 2 -3In(x) _ .3 o3 _ 3 [dx _ 3
=e dx x“e =X dxx“x™ = x - - x” In(x) . (1.5:8)



§1.6
Errata: The last display on p.68 and the firs on p.69, should have, respectively

dx 1
x(y)‘fd_ydy‘fdy/dxdy""

dp_ 2
ypd—y—p .

and

Do you now see their typos? Doesn’t it make much more sense?

#25: The differential equation y*(xy’ + y)(1 + x*)!/? = x contains the pattern xy’ + y which should
be obvious to simplify as

, _dy _dy dx d ‘
Xy +y—xa+1-y—xa+ay— a(xy). (1.6:9)
This suggests trying the substitution z = x y, which is indeed easy to invert:
z=xy, = yzz. (1.6:10)

Since y’ occurs nowhere else, this is enough to complete the substitution y — z = x y, and obtain
2
Yy +y)Vi+xt = x, = (z) dz Vi+xt = x, (1.6:11)

which separates:
3
xdx  @ert)=u 4 du

22dz = \/ﬁ i (1.6:12)
and can be integrated into:
12 = 1Vu+lc, = 22 =3Vi+xi+C. (1.6:13)
where I judiciously included a 1 in the initial appearance of the integration constant, C.
This implicit solution can be solved for y:
=1 € w618

#54: The differential equation yy” = 3(y’)? is precisely of one of the two reduction types, and
closely follows Example 11—where, however, there was a typo. But, never fear, we proceed
as instructed: the independent variable, x, does not occur in this differential equation, so we
substitute:

d
p=y, and y'=p d—Z : (1.6:15)

The differential equation then becomes

vy =3y, = y(Pd—y =3p?, (1.6:16)



which separates into:

dp _ ,dy _ 3 _ 3 .
i 37, = In(p) = 3Iny +In(C) = In(y®) + In(C) = In(C1?), (1.6:17)

which produces, upon exponentiating both sides:

p=Cy’, = S =Cy. (1.6:18)
This last equation separates and can be integrated:
dy 1,2 -2
? = Cdx, = -y = Cx—x0), = y - =2C(xo—x), (1.6:19)
and finally,
1 = Q0¥ (xo—x), (1.6:20)

which agrees with the text’s solution, upon identifying A = 2C and B = xp. A bit more user-
friendly format of the same solution is

y(x) = ; (1.6:21)

V2C(xg — x)



