
1 Some Substitution Samples

Here are some additional examples of solving differential equations by means of judicious1

substitutions.

A lot will depend on your familiarity with “usual” algebra: if you can recognize that a3b3 +

3a2cb2 + 3ac2b + c3 = (ab + c)3, whatever a, b and c are, substituting the left-hand side by the
right-hand side does simplify things. Similarly, knowing that d

d x

(
y(x) z(x)

)
= y′(x) z(x)+ y(x) z′(x)

will help simplifying:

Example 1:

Consider:
sin(3x) y′(x) + 3 cos(3x) y(x) = x4 . (1.1)

Seeing that the left-hand side is in fact d
d x

(
sin(3x) y(x)

)
, so Eq. (1.1) becomes

d
d x

(
sin(3x) y(x)

)
= x4 , (1.2)

helps. Just multiply through by dx and integrate:∫
d
(

sin(3x) y(x)
)
=

∫
dx x4

sin(3x) y(x) + C = 1
5 x5

⇒ y(x) = (1
5x5
− C) csc(3x) , (1.3)

or
y(x) = 1

5 x5 csc(3x) − C csc(3x) , (1.4)

where it is evident that the first, C′-independent term is the particular solution, and the second,
C′-dependent term is the complementary solution. Of course, C is the integration constant.

Note that Eq. (1.1) could have been recast into another suggestive form if one divided through
by sin(3x):

y′(x) + 3 cot(3x) y(x) = x4 csc(3x) . (1.1’)

This now is of the form y′(x) + p(x) y(x) = q(x), with p(x) = 3 cot(3x) and q(x) = x4 csc(3x); to this,
the solution (6) on p. 45 applies. But, don’t trust me; try it out yourself.

Example 2:

Consider now the differential equation:

y′(x) =

√
3 +

(
x − y(x)

)2

x − y(x)
. (1.5)

The admittedly ugly expression on the right-hand side persistently has x − y(x) and—this is
crucial—y(x) occurs in no other way in this differential equation. This last fact ensures that we
may trade in y(x) for

z(x) := x − y(x) , or y(x) = x − z(x) . (1.6)
1This is the key word: judicious! And, it’s you who has to get to a point of starting to see what is and what isn’t

judicious. Unfortunately, there is no recipe for this, except practice, practice, and then practice. . .
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From this,

y′(x) =
d

d x

(
x − z(x)

)
= 1 − z′(x) , (1.7)

which we substitute in the left-hand side of (1.5), whereas (1.6) is substituted in the right-hand
side of same. This produces:

1 − z′(x) =

√
3 + z2(x)

z(x)
. (1.8)

where I used the convention that z2(x) denotes the square of the function z(x). The differential
equation (1.8) now in fact separates:

z′(x) = 1 −

√
3 + z2(x)

z(x)
,∫

dz

1 −
√

3+z2

z

=

∫
dx ⇒ −

1
9

(
z3 + (3 + z2)3/2

)
= x + C , (1.9)

where C is the constant of integration. Remembering the substitution (1.6), we now have:

x + C + 1
9

(
(x − y)3 + (3 + (x − y)2)3/2

)
= 0 . (1.10)

This actually can be solved, either as y in terms of x or the other way around, but it is quite
hilariously complicated. For giggles, we get:

x±,±(y) =
y − C

2
±

√
A + B

2
±

1
2

√
D − B −

E
√

A + B
, (1.11)

where

A = (C+y−2)(C+y+2) , B =
(
6(C + y)2 + 8

) 2
3
,

D = 2(C − y)2 + 8(Cy − 1) , E = 2(C + y)
(
(C + y)2 + 12

)
.

The explicit, closed-form solutions for y in terms of x are much, much more complicated expres-
sions. That’s why, not infrequently, we content ourselves with the implicit solution (1.10).

— ?—

Between these two (admittedly simple) examples provided to complement Example 1 on
pages 57–58, this idea of seeking out patterns that you know how to simplify and then doing so
should start sinking in. It is of course possible to iterate this, and keep simplifying until, after
several steps, the differential equation becomes something you know how to solve. . . . or you
get stuck with a differential equation that cannot be solved by substitutions (alone).

Practice will help.
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2 Partial Derivatives

For the benefit of the students who have not seen “partial derivatives” before, here’s a little
introduction2: WORK through it!

Consider a functional expression, f (x, y), involving two distinct variables, x and y, and where
the latter is regarded as a function of x. This is not at all outlandish; Let f (x, y(x)) = x3

(
y(x)

)2
.

Then,

d f
d x
=

d x3

d x
(y(x))2 + x3

d
(
y(x)

)2

d x
= 3 x2 (y(x))2 + x3

(
2 y(x)

d y(x)
d x

)
, (2.1)

where the first equality follows on applying the product rule, and the second uses the chain rule.

Note that in the two parts of the calculation, we have temporarily treated x and y as if they
were independent variables. The first term in (2.1) was obtained by pretending that y(x) was in
fact independent of x; the second, by ignoring the x3 factor, and considering the derivative of
only the y2 factor.

This temporary independence is precisely the feature that is formalized by the notion of partial
derivatives. Let’s then define a partial derivative of f (x, y) by x to mean the derivative of f by x
while holding y constant—and the other way around, with x ↔ y. To distinguish this notion of a
derivative from the “ordinary” one, we’ll write this as:

f (x, y(x)) = x3
(
y(x)

)2
,

∂ f
∂x
= 3 x2

(
y(x)

)2
,

∂ f
∂y
= x3 2 y(x) , (2.2)

so that
d f
d x
=
∂ f
∂x
+
∂ f
∂y

d y
d x
=

(
3 x2 (y(x))2

)
+

(
x3 2 y(x)

)(d y
d x

)
. (2.3)

A more general use of partial derivatives (one that you have actually already used, but have
not called it so) is the use of the chain rule in a calculation such as:

d f (a(x), b(x))
d x

=
∂ f
∂a

d a
d x
+
∂ f
∂b

d b
d x
,

such as in the example:

d sin2 (x) cos3 (x)

d x
=

(
2 sin(x)

d sin(x)
d x

)(
cos3(x)

)
+

(
sin2(x)

)(
3 cos2(x)

d cos(x)
d x

)
(2.4)

also follows from (2.3), by identifying a(x) = sin(x) and b(x) = cos(x), so that we abbreviate
f (a, b) = a2 b3:

=
(
2 a b3

)(d a
d x

)
+

(
3 a2 b2

)(d b
d x

)
, which fully agrees with (2.4), (2.5)

and where we used that

∂a2 b3

∂a
= 2 a b3 , and

∂a2 b3

∂b
= 2 a2 b2 . (2.6)

2This is by no means a substitute for the relevant parts of the calculus I, II, III sequence, which will have
properly introduced the subject and with all the necessary rigor and precision!
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For a scientist, perhaps, a reasonable way of thinking of partial derivatives is in trying to
evaluate the original question: how does a compound function vary:

d f (x, y(x)) =
∂ f
∂x

dx +
∂ f
∂y

dy (2.7)

saying simply that the function f (x, y) changes (a) through its direct dependence on x—and
ignoring the dependence on y(x), and (b) through its dependence on y(x)—while ignoring the
direct dependence on x. Of course, we then note that dy = y′(x) dx, and obtain the standard
expression:

d f (x, y(x)) =
∂ f
∂x

dx +
∂ f
∂y

y′(x) dx (2.8)

While you may not heave written this out in this particular way, you must have encountered this
notion before.

A few more examples should clarify the matter; the key point is that while calculating the
partial derivative of f by x, you ignore all other, implicit dependences of f on x through some other
function(s). Thus:

∂
∂x

(√
2x − 3y(x)

)
=

1

2
√

2x − 3y

∂(2x − 3y)
∂x

=
1

2
√

2x − 3y
2 =

1√
2x − 3y(x)

,

∂
∂y

(√
2x − 3y(x)

)
=

1

2
√

2x − 3y

∂(2x − 3y)
∂y

=
1

2
√

2x − 3y
(−3) = −

3

2
√

2x − 3y(x)
,

∂
∂x

(
x

√
1 − y(x)
z(x) + 3

)
=
∂
∂x

(
x

√
1 − y
z + 3

)
=
∂x
∂x

√
1 − y
z + 3

=

√
1 − y(x)
z(x) + 3

,

∂
∂y

(
x

√
1 − y(x)
z(x) + 3

)
=
∂
∂y

(
x

√
1 − y
z + 3

)
=

x
√

z + 3

∂
√

1 − y
∂y

=
x

√
z + 3

1

2
√

1 − y

∂(1 − y)
∂y

=
x

√
z + 3

1

2
√

1 − y
(−y) =

−x y(x)√
(z(x) + 3)(1 − y(x))

,

∂
∂x

(sin(y(x))
cos(x)

)
=
∂
∂x

( sin(y)
cos(x)

)
= sin(y)

∂
∂x

( 1
cos(x)

)
= sin(y)

(
−

1
cos2(x)

∂ cos(x)
∂x

)
= sin(y)

(
−

1
cos2(x)

(
− sin(x)

))
=

sin(y(x)) sin(x)
cos2(x)

,

∂
∂y

(sin(y(x))
cos(x)

)
=
∂
∂y

( sin(y)
cos(x)

)
=

1
cos(x)

∂ sin(y)
∂y

=
cos(y(x))

cos(x)
,

... =
...

Got it?
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3 Matrices, Determinants and Linear Systems

For the benefit of the students who have not seen “matrices” and “determinants” before, here’s
a little introduction3: WORK through it!

Matrices are rectangular lists or tables of numbers or functions, such as

A =

[
1 3 5
2 4 6

]
, B =


1 3
5 2
4 6

 , C =

[
1 3
2 4

]
, D =


−1 3 8
5 2 −7
4 −6 9

 . (3.1)

Two matrices, A and B, can be multiplied if the number of columns of the left factor equals to
number of rows of the right factor. In that case, the multiplication goes as follows:

a11 a12 · · ·

a21 a22 · · ·
...
...
. . .



b11 b12 · · ·

b21 b22 · · ·
...

...
. . .

 =

(a11b11 + a12b21 + · · · ) (a11b12 + a12b22 + · · · ) · · ·
(a21b11 + a22b21 + · · · ) (a21b12 + a22b22 + · · · ) · · ·

...
...

. . .

 (3.2)

So,

AB =

[
(1·1 + 3·5 + 5·4) (1·3 + 3·2 + 5·6)
(2·1 + 4·5 + 6·4) (2·3 + 4·2 + 6·6)

]
=

[
36 39
46 50

]
, (3.3)

AD =

[
(1·(−1) + 3·5 + 5·4) (1·3 + 3·2 + 5·(−6)) (1·8 + 3·(−7) + 5·9)
(2·(−1) + 4·5 + 6·4) (2·3 + 4·2 + 6·(−6)) (2·8 + 4·(−7) + 6·9)

]
=

[
34 −21 32
42 −22 42

]
, (3.4)

BA =


(1·1 + 3·2) (1·3 + 3·4) (1·5 + 3·6)
(5·1 + 2·2) (5·3 + 2·4) (5·5 + 2·6)
(4·1 + 6·2) (4·3 + 6·4) (4·5 + 6·6)

 =


7 15 23
9 23 37

16 36 56

 , (3.5)

BC =


(1·1 + 3·2) (1·3 + 3·4)
(5·1 + 2·2) (5·3 + 2·4)
(4·1 + 6·2) (4·3 + 6·4)

 =


7 15
9 23

16 36

 , (3.6)

CA =

[
(1·1 + 3·2) (1·3 + 3·4) (1·5 + 3·6)
(2·1 + 4·2) (2·3 + 4·4) (2·5 + 4·6)

]
=

[
7 15 23

10 22 34

]
, (3.7)

CC =

[
(1·1 + 3·2) (1·3 + 3·4)
(2·1 + 4·2) (2·3 + 4·4)

]
=

[
7 15

10 22

]
def
= C2 , (3.8)

DB =


((−1)·1 + 3·5 + 8·4) ((−1)·3 + 3·2 + 8·6)
(5·1 + 2·5 + (−7)·4) (5·3 + 2·2 + (−7)·6)
(4·1 + (−6)·5 + 9·4) (4·3 + (−6)·2 + 9·6)

 =


46 51
−13 −23
10 54

 , (3.9)

DD =


((−1)·1 + 3·5 + 8·4) ((−1)·3 + 3·2 + 8·6)
(5·1 + 2·5 + (−7)·4) (5·3 + 2·2 + (−7)·6)
(4·1 + (−6)·5 + 9·4) (4·3 + (−6)·2 + 9·6)

 =


48 −45 43
−23 61 −37

2 −54 155

 . (3.10)

3This is by no means a substitute for the relevant parts of linear algebra, which will have properly
introduced the subject and with all the necessary rigor and precision!
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Furthermore, the products not displayed above,A2,AC, B2, BD, CB, CD,DA andDC, do not
in fact exist.

It is useful to note the special matrices:

O =


0 0 · · ·

0 0 · · ·

...
...
. . .

 , and 1l =


1 0 · · ·

0 1 · · ·

...
...
. . .

 , (3.11)

which satisfy the usual properties

1lA = A = A 1l , and OA = O = AO , ∀A . (3.12)

Caution: the matrix-multiplication is not commutative: AB , BA, above. Also:

E =

[
1 −2
−3 4

]
, then CE =

[
−8 10
−10 12

]
, EC =

[
−3 −5
5 7

]
! (3.13)

Matrices also can square to O, without being equal to O:
0 1 2
0 0 3
0 0 0


2

= O . (3.14)

That means, you can’t (necessarily) divide by matrices. There is, however, such a concept as an
inverse matrix. That is, some matrices have them, others don’t. Also, for non-square matrices, the
left-inverse and the right-inverse may be very different. For example,A above does not have a left
inverse:

There exists no F , such that FA = 1l . (3.15)

But,

A


−2 + α 3

2 + β
1 − 2α −

1
2 − 2β

α β

 =
[
1 0
0 1

]
(3.16)

for arbitrary α, β! We’d say that A has no left-inverse, but has two parameters worth of right-
inverses.

The determinant of a square matrix is defined by the following recursive pair of definitions:

det
[
a11 a12

a21 a22

]
= a11a22 − a12a21 , (3.17a)

and expanding by the first row:

det

 a11 a12 a13 ···
a21 a22 a23 ···
a31 a32 a33 ···

...
...
...
...

 = a11 · det

 a11 a12 a13 ···
a21 a22 a23 ···
a31 a32 a33 ···

...
...
...
...

 − a12 · det

 a11 a12 a13 ···
a21 a22 a23 ···
a31 a32 a33 ···

...
...
...
...

 + a13 · det

 a11 a12 a13 ···
a21 a22 a23 ···
a31 a32 a33 ···

...
...
...
...

 − · · ·
= a11 · det

[ a22 a23 ···
a32 a33 ···

...
...
...

]
− a12 · det

[ a21 a23 ···
a31 a33 ···

...
...
...

]
+ a13 · det

[ a21 a22 ···
a31 a32 ···

...
...
...

]
− · · · (3.17b)
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Note the alternating signs in this “expansion by the first row” (so it ends when you run out of
elements in the first row). Notice also that the resulting determinants are all smaller. So, after
iterating this, you’ll end up with determinants of 2×2 matrices, for which you use (3.17a), and
you’re done.

For example

det


1 2 3
4 5 6
7 8 9

 = 1·det
[
5 6
8 9

]
− 2·det

[
4 6
7 9

]
+ 3·det

[
4 5
7 8

]
= 1(5·9 − 6·8) − 2(4·9 − 6·7) + 3(4·8 − 5·7)

= 1(−3) − 2(−6) + 3(−3) = −3 + 12 − 9 = 0 , (3.18)

but

det


1 2 3
4 5 6
7 8 −9

 = 1·det
[
5 6
8 −9

]
− 2·det

[
4 6
7 −9

]
+ 3·det

[
4 5
7 8

]
= 1(5·(−9) − 6·8) − 2(4·(−9) − 6·7) + 3(4·8 − 5·7)

= 1(−93) − 2(−78) + 3(−3) = −3 + 12 − 9 = 54 . (3.19)

In fact, for square matrices, the condition for an inverse matrix to exist is that its determinant

should be nonzero. Therefore the matrix
[

1 2 3
4 5 6
7 8 9

]
has no inverse, whereas

[
1 2 3
4 5 6
7 8 −9

]
has:

G =


1 2 3
4 5 6
7 8 −9

 , then G−1 =


−

31
18

7
9 −

1
18

13
9 −

5
9

1
9

−
1
18

1
9 −

1
18

 . (3.20)

Indeed, check by explicit matrix multiplication that G−1G = 1l = GG−1.

OK, so what does this have to do with the price of beans in China?

I don’t know. But I know that it helps solving systems of algebraic equations. Suppose we
have the system of algebraic equations:

a x + b y + c z = l ,

d x + e y + f z = m ,

g x + h y + k z = n .

(3.21)

That’s three linear equations for three unknown variables, x, y, z, and depending on the twelve
coefficients: a, b, c, d, e, f , g, h, k and l,m,n. Using the above matrix notation, we can also rewrite
this as a matrix equation: 

a b c
d e f
g h k



x
y
z

 =


l
m
n

 . (3.22)
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Moreover, if we can find the inverse matrix to the square matrix
[ a b c

d e f
g h k

]
, called the matrix of the

system (3.21), we can even solve the system (3.21):
x
y
z

 =

a b c
d e f
g h k


−1 

l
m
n

 . (3.23)

For example, 
x + 2 y + 3 z = 18 ,

4 x + 5 y + 6 z = 18 ,

7 x + 8 y − 9 z = 18 .

i.e.


1 2 3
4 5 6
7 8 −9



x
y
z

 =

18
18
18

 (3.24)

is solved by
x

y

z

 =

−

31
18

7
9 −

1
18

13
9 −

5
9

1
9

−
1

18
1
9 −

1
18



18

18

18

 =

−31 + 14 − 1

13 − 10 + 2

−1 + 2 − 1

 =

−18

18

0

 , ⇒


x = −18 ,
y = 18 ,
z = 0 .

(3.25)

Now, look at the special case of (3.21), when l = m = n = 0:
a x + b y + c z = 0 ,

d x + e y + f z = 0 ,

g x + h y + k z = 0 .

i.e.


a b c
d e f
g h k



x
y
z

 = O . (3.26)

If the square matrix
[ a b c

d e f
g h k

]
has an inverse, then we obtain that


x
y
z

 =

a b c
d e f
g h k


−1 

0
0
0

 ⇒


x = 0 ,

y = 0 ,

z = 0 .

(3.27)

So, the only hope for non-trivial x, y, z to solve the system (3.26) is for the matrix
[ a b c

d e f
g h k

]
to have

no inverse, which can only happen if its determinant is zero.

A homogeneous system of n linear equations in n variables has a
non-trivial solution only if the determinant of the system vanishes.

Indeed: 
x + 2 y + 3 z = 0 ,

4 x + 5 y + 6 z = 0 ,

7 x + 8 y + 9 z = 0 .

i.e.


1 2 3
4 5 6
7 8 9



x
y
z

 =

0
0
0

 (3.28)

is solved by y = −2x and z = x. That is, instead of a single solution such as (3.25), we now have
a 1-parameter family of solutions: (x, y, z) = (x,−2x, x), with x arbitrary and parametrizing the
continuum of solutions.
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