
1

A Hitchhiker’s Guide to Superstring Jump Gates and Other Worlds
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The general assumptions about the physical spacetime in superstring models are reviewed and reexamined. In
particular, it is noted that the original Ansatz has undergone a number of generalizations in the past decade,
and here we seek to establish some general facts about the admissible spacetimes in superstring theory. As
a byproduct, we find that the generic spacetime offers an amusing and cosmologically novel type of candidate
solutions.

1. THE STORY SO FAR

Precisely following in the footsteps of higher-
dimensional supergravity models, physically real-
istic superstring models are sought for by com-
pactifying the extra six dimensions into compact
spaces of Planck size [1]. For many of the mod-
els that were originally thought not to have such
a geometric interpretation, one has been found
since. This includes generalizations involving ad-
ditional vector bundles or sheaves, and possibly
also generalizing the category of geometries (as
will be seen below). We’ll adopt a fairly cava-
lier point of view on this issue and use hereafter
the geometric insight as a general tool, in the be-
lief that perhaps a suitable reformulation of our
arguments will always apply.

1.1. Approaches and some results
The first mental picture about superstring the-

ory regards the world-sheet of the string as a
(punctured) Riemann surface which is embedded
in the (target) spacetime. Here, the spacetime
must have 10 dimensions and may be chosen to
be of the form Ms,1 × K9−s, where K9−s is a
9−s-dimensional compact space, and Ms,1 is the
s+1-dimensional Minkowski (flat) spacetime. For
s = 3, we get the usual Ansatz, and requiring
N = 1 supersymmetry in the effective field theory
on M3,1 forces K6 to be a complex compact man-
ifold of precisely SU(3) holonomy (rather than a
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subgroup thereof)—Calabi-Yau manifolds [1].
Note however that the other solutions for K6

(K3 × T 2 and T 6), while producing more super-
symmetry (N = 2 andN = 4, respectively), share
one crucial property: all these are Ricci-flat. Fur-
thermore, note that the Minkowski spacetime it-
self is Ricci-flat.

The second mental picture about superstring
theory regards the world-sheet of the string as the
spacetime of the underlying 2-dimensional field
theory. The degrees of freedom parametrizing the
spacetime for the effective field theory to be com-
pared with the real world then comes as a certain
subset of the field space in this 2-dimensional field
theory. The (very degenerate) ground states of
superstring theory with N = 1 supersymmetry
in the effective ‘real world’ M3,1 were identified
with certain (2,0)-superconformal field theories.

From this second point of view, the analogue of
Ricci-flatness is an anomaly cancellation require-
ment, as is perhaps most easily seen in the linear
σ-models [2,3]. In fact, Ricci-flatness seems to be
a required characteristic in all string theory, al-
though rigorous results to this effect exist only for
special cases [4–9].
• We will assume Ricci-flatness to be a general
(stringy) required characteristic.

The third mental picture about superstring
theory is rather novel and so still very prelimi-
nary. It involves the equally sketchy M- and F-
theories, about which only particular facts are
known and only regarding special compactifica-
tions of these. However, it is clear that the
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effective spacetime in these is (total) 11- and
12-dimensional; while the first one is consis-
tently identified as (a compactification of) the 11-
dimensional supergravity, the latter will presum-
ably turn out to be a constraint theory (perhaps
topological in some sense) [10,11]. In any case,
it is quite clear that this approach will radically
contribute to the general understanding of string
theory, whereas it already is contributing on the
technical side.

1.2. New techniques and some results
While the relationship between the first (geo-

metrical) and the second (2-d field theory) ap-
proaches has long been studied, the linear σ-
models finally put this on a really firm ground.
In fact they show that the two classes of mod-
els are not identical, but rather a sort of analytic
continuation of each other in the space of ‘radial’
deformations. Quite importantly then, questions
independent of these ‘radial’ moduli can be an-
swered in whichever model it turns out easier to
calculate, and more exactly.

Similarly, ‘mirror symmetry’ relates models the
geometrical interpretation of which is radically
different, in a way that certain ‘easy’ results in
one model correspond to ‘hard’ results in the
other, and the other way around. Thereby again,
certain questions can be answered in whichever
model it turns out easier to calculate, and more
exactly. ‘Mirror symmetry’ was also discovered
by correlating models in the first (geometrical)
and the second (2-d field theory) approach [12].

More recently, but similarly to ‘mirror symme-
try’, various dualities have been found to relate
even very different (super)string theories (or their
sectors), including the M- and the F-theory. Typ-
ically, these dualities provide information that
pertains to stringy non-perturbative sectors of
a class of models and so are without precedent
in the development of string theory. In addi-
tion, studying models with more than the phe-
nomenologically interesting N = 1 supersymme-
try and/or higher-dimensional un-compactified
factor of the spacetime produces similarly un-
precedented understanding of at least some non-
perturbative effects.

Furthermore, the linear σ-model is maximally

adapted to a reinterpretation in terms of toric ge-
ometry. A generic such construction involves typ-
ically many different types of models, geometric-
and non-geometric-looking, but the straightfor-
ward links to toric geometry (and some ‘mirror
symmetry’ considerations) provide a rigorous ge-
ometric interpretation to all of them [17]. This
process however necessarily generalizes the cat-
egory of possible K6 into objects called ‘strat-
ified pseudomanifolds’—which are n-dimensional
manifolds with m-dimensional (m < n−1) ‘glued’
onto them.
• The inclusion of stratified pseudomanifolds as
candidate K6 provides a geometrical interpreta-
tion to the largest class of models known to date.

1.3. Stringy cosmic strings
Clearly, this assumption of simple factoriza-

tion (or, equivalently, that the compact ‘internal’
space K9−s is constant over Ms,1) is by far not
the generic case.

The analysis of a simple model [13] where K6

has a T 2 factor, showed that models where this T 2

varies over 2 dimensions ofM3,1 are perfectly con-
sistent solutions (assuming that the total space-
time is smooth). Ref. [14] then showed that it
is possible—and in fact easy—to make all Ricci-
flat spaces K6 variable in spacetime. For tech-
nical reasons, this required to Wick-rotate the
Minkowski M3,1 into an Euclidean space X4 and
assume that it is in fact a complex 2-space. The
Ricci-flat K6 is then fibred over X4, in such a way
that this non-compact space is also Ricci-flat and
(for technical reasons) smooth.

The novel feature of these spacetimes is that
they exhibit cosmic strings in the M3,1 space-
time. Unlike their Grand-Unified Theory rela-
tives, these cosmic strings have a finite mass per
unit length and the genus and the number of self-
intersections of this cosmic world-sheet are easily
calculable topological invariants of the whole 10-
dimensional spacetime. Moreover, at the core of
the cosmic string the ‘internal’ K6 singularizes in
precisely the fashion proven to connect topologi-
cally distinct K6’s [15].

At least for compactifications of Type II strings
(with N = 2 supersymmetry, which enables the
mechanism), the physical mechanism behind the
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conifold transitions [15] is also understood [16].
In this context at least, the physics of stringy
cosmic string spacetimes [14] is perfectly well
understood—including the previously puzzling
core of the cosmic strings.
• We assume that a generalization (still a mys-
tery) of this mechanism will similarly apply in
cases of N = 1 supersymmetry.

The bottom line in these models is that the to-
tal, 10-dimensional spacetime (upon euclideaniza-
tion) becomes a non-compact Ricci-flat complex
5-fold, in agreement with our assumption in § 1.1.
These spaces are all fibrations of K6 over (the
euclideanized version of) M3,1, where it is still
perfectly consistent to think of K6 as small—of
Planck size—while the non-compact M3,1 is nat-
urally (infinitely) big.

2. GENERIC STRINGY SPACETIMES

Clearly, such a undemocratic distribution of
size poses a tough question: why should have 3+1
spacetime dimensions undergo an inflationary ex-
pansion, while other 6 remained curled up and
small?

In the generic case, of course, all 10 dimen-
sions have expanded more or less alike, and we
end up with a 10-dimensional spacetime of possi-
bly complicated topology, but all of which is big.
Whether or not such models can even pretend to
have a reasonable physical interpretation, these
are the generic models, and it behooves us to fa-
miliarize ourselves with them, if we are to chart
out all possible stringy vacua. Note that there
are two types of such models:

1. The 10-dimensional spacetime is compact,
but much larger than the horizon distance,
and so appears flat—at least in four dimen-
sions (see below).

2. The 10-dimensional spacetime is at least
partially non-compact, akin to the stringy
cosmic string spacetimes.

The discussion below pertains to both, the mod-
ifications being technical [18].

2.1. Surprise!
For the purposes of this note, we are looking for

at least one generic feature of Ricci-flat 10-spaces.
In the context of stratified pseudomanifolds

(and certainly including ordinary manifolds) and
the accompanying intersection homology the-
ory [19], there is the notion of a ‘small map’. It
provides what is known as a ‘small resolution’. In
complex 5-folds, the mildest (and so most typical)
kinds of singular points have a small resolution—
which replaces the singular point with a complex
2-fold, i.e., a real 4-space. The crucial property
of these 4-spaces is that they are isolated, i.e.,
rigid. This is in exact analogy to the fact that
in 3-dimensional Ricci-flat manifolds there exist
so-called (−1,−1)-curves, which have no defor-
mation; they resemble ridges or creases in the
manifold.

Given such isolated 4-spaces, a whole subset
of the cohomology of the 10-space will be sup-
ported only on one such 4-space. That is, there
are forms that vanish elsewhere, and are perfectly
well-behaved precisely on this 4-space. This is
perhaps easiest seen in a residue-type formalism,
as it was used recently to provide an explicit rep-
resentation of all (physically interesting) coho-
mology on Calabi-Yau 3-folds [20].

Given such a 4-space, the massless fields cor-
responding to this local cohomology would exist
only on this 4-space, not elsewhere. In a favor-
able such 4-space, there could also exists a ‘di-
agonal’ cohomology basis for the whole 10-space
in which the cohomology elements local to the 4-
space would have no Yukawa couplings with those
supported elsewhere in the 10-space. This pro-
vides a novel candidate cosmology, one in which
the other dimensions are inaccessible not because
they are curled up and small, but because we can-
not exist there.
• The matter and radiation made up of these
massless fields local to the 4-space would be topo-
logically constrained to the 4-space and would not
detect the rest of the 10-space or matter and fields
therein.

The foregoing assumed all the time that N = 1
supersymmetry is maintained in the M3,1 space-
time of the effective field theory. This of course
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puts constraints on the type of the normal bun-
dle of the exceptional 4-space inside the 10-space.
Further constraints are provided by the desired
particle content. Assuming that this can all be
satisfied, there remain two remarks to make at
this preliminary level.

The 10-space metric produces standard 10-
dimensional gravity, the Coulomb force of which
decays as ∼ 1/r8. (If background configura-
tions for other gauge fields are required as in
the usual Ansatz, there are similar corresponding
very short range Coulomb fields to be detected.)
The question remains, whether it is possible to
find a consistent N = 1 supersymmetric back-
ground field configuration where there is also a
‘little’ metric: a component that vanishes out-
side the 4-space, but therein produces the usual
4-dimensional gravity.

The other remark has to do with supersymme-
try breaking, is needless to say highly specula-
tive at this stage and is included for the Reader’s
amusement.

The topological constraints mentioned above
stem from holomorphy of the euclideanized
Ansatz, which in turn stems from supersymme-
try. Therefore, when supersymmetry is broken at
a scale ∼ MS , the previous rigorous constraint
becomes a type of a a finite potential well—and
therefore can be overcome by sufficiently ener-
getic fields, possibly enveloping and object—this
being a gedanken-prototype of a “warp bubble”.
Now the normal bundle of the 4-space inside the
10-space has a peculiar topology likened often to a
helicoidal stairwell where the vertical shaft would
correspond to the 4-space. If then a 4-space ob-
ject can be sent, however near, outside the 4-space
and returned at a different hyper-angle, it will
reappear at a different point in the 4-space. This
then would be a gedanken-prototype of a “hyper-
space jump-gate”.
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