Supersimetrija: Program

Ko & Kada je izmislio supersimetriju
Hironari Myazawa, 1966;
J.L. Gervais & B. Sakita, 1971;
Yu.A. Golfand & E.P. Likhtman, 1971;
V.P. Akulov & D.V. Volkov.

Sta supersimetrija jeste …a šta nije

Gde Pa, Svuda. Stvarno

C.F. Doran M.G. Faux, S.J. Gates Jr., T.H. K.M. Iga G.D. Landweber

Se Zašto je neophodna: sine qua non

Kako supersimetrija radi & kako ju proučavati

Šta je supersimetrija Mehanizam

- Antikomutativna transformacija ($\rightarrow \hat{H}$), ne menja sistem.
- Osnovna gradja Prirode:
 Osnovna gradja Prirode:
- Fermioni: kvarkovi, elektroni, neutrini supstancija spin ½, Fermi-Dirac statistika (Pauli-jev princip isključenja)
- **Bozoni:** \mathbb{H} , γ , (W^{\pm} , Z^{0}), gluoni, i gravitoni interakcije
 - spin 0, 1, i 2; Bose-Einstein statistika (kondenzacija)

Ujedinjenje (npr.): γ & (W[±], Z⁰) = Elektroslaba sila, i (kvarkovi + leptoni) u "familijama" (1980 Nobel-ova)
EW + Jaka Nuklearna = Velika Ujedinjena Teorija (?)
... a gravitacija? ... kvantizacija zahteva stringove
Čak i tako, kvantno-mehanički nestabilno...

Gde se supersimetrija pojavljuje Primene

- <u>Elementarne čestice</u> (teorijska, naravno, a nadamo se... 🔞 🤞 🌖
- <u>Atomska jezgra</u> se sastoje od protona i neutrona (= nukleona):
 - \mathbb{P} i p^+ i n^0 su spin- $\frac{1}{2}$ fermioni;
 - \geq 38 godina! \bigcirc jezgra sa parnim (neparnim) brojem nukleona = bozoni (fermioni);
 - prelaz izmedju "susednih" izotopa/izobara = supersimetrija!
 - <u>Atomi</u> se sastoje od p^+ , n^0 i e^- :
 - elektroni (e^-) su spin- $\frac{1}{2}$ fermioni;
 - Section atomi sa (ne)parnim brojem "sastojaka" (p^+ , n^0 , e^-) su bozoni (fermioni);
 - \forall jonizacija neparnog broja $e^- =$ supersimetrija!
 - Molekuli se sastoje od bozonskih i fermionskih atoma...
- Grafen (kond. materija!) ima i bozonske i fermionske "fonone"; specijalni granični uslovi ↔ supersimetrija! (+ narušenje)

Gde se supersimetrija pojavljuje Primene

- <u>Elementarne čestice</u> (teorijska, naravno, a nadamo se... 🔞 🤞 🌖
- <u>Atomska jezgra</u> se sastoje od protona i neutrona (= nukleona):
 - $^{\bigcirc}$ i p^+ i n^0 su spin- $\frac{1}{2}$ fermioni;
 - \geq 38 godina! jezgra sa parnim (neparnim) brojem nukleona = bozoni (fermioni);

Chirality

😡 nrelaz izmedin "cucednih" izotona/izohara = cupercimetrijal Handedness

zigzag

Metallic Semiconducting

Gde se supersimetrija pojavljuje

- Laseri (fizika kondenzovane materije):
- Sad već *tli-ipo-godišnjak*: https://arxiv.org/abs/1812.10690
 funcionalan stvarni aparat, znatno poboljšan supersimetrijom
 Osnova: slično Â_{LHO} = ħω(â[†]â+¹/₂) ↔ Â_{LHO} = ħω(ââ[†]+¹/₂)
 gde je [â, â[†]]=1, pa â[†]â+¹/₂ = ââ[†]-¹/₂ = (ââ[†]+¹/₂)-1
 a gde je â:= √(mw)/(2ħ) x̂+i √(1)/(2ħmw) p̂ i â[†]:= √(mw)/(2ħ) x̂-i √(1)/(2ħmw) p̂

Solution Simplify Simplify An equation $\widehat{H}, \widehat{H}'$) A ima ∞ mnogo, samo su â i â[†] komplikovanije smene promenljivih

Supersymmetrija:

- Jedini (znani) univerzalan mehanizam koji stabilizuje vakum
 - \bigcirc Minimum energije = 0 tačno kada je sistem supersimetričan
 - Minimum energije > 0 kada je supersimetrija spontano narušena
 - Ako sistem uključuje gravitaciju, energija nije globalno definisana
- Po definiciji <u>ujedinjuje fermione</u> (supstancija) <u>i bozone</u> (interakcije)
 Tobničko produceti:
- <u>Tehničke prednosti</u>:
 - Smanjuje (ili čak poništava) potrebu za renormalizacijom
 - Sprečava mešanje raznih (i raznorodnih) karakterističnih energija
 - Čuva (neobično) male/velike količnike

$$rac{m_{
u_e}}{M_P} \lesssim 10^{-28}, \quad rac{m_e}{M_P} \sim 10^{-23}, \quad rac{m_u}{M_P} \sim 10^{-22} \qquad M_P = \sqrt{rac{\hbar c}{G_N}}$$

Prava, kompletna teorija je verovatno (i nadamo se) jednostavno konačna (nema potrebu za renormalizacijom — kao superstringovi).

Divergira!!

- Čak i za slobodono polje:
 - $E_{\text{vakum}} = \frac{1}{2} \sum_{\vec{k}} \hbar \omega_{\vec{k}} \quad \text{sa } \overrightarrow{\nabla}_{\vec{k}} \omega_{\vec{k}} \ge 0$
 - Renormalizacija pomaže.....osim za gravitaciju.
 - Kvantnost Prirode stabilizuje atome, i ujedinjuje čestice i talase.
 - Relativnost ujedinjuje prostor i vreme, energiju & impuls, električno i magnetno polje, gravitaciju & ubrzanje, ...
 - Stringovi *ujedinjuju* gravitaciju, sve ostale interakcije i materiju!
 - Supersimetrija stabilizuje vakum, i *ujedinjuje* bozone i fermione.
 - Stoga je supersimetrija jednako neophodna kao i kvantnost. (Kvantnost stabilizuje atome, supersimetrija stabilizuje vakum.)

Energija vakuma:

Razmotrimo slobodno skalarno polje
 $\mathscr{L}_{\text{KGB}} = \frac{1}{2} \eta^{\mu\nu} (\partial_{\mu} \phi) (\partial_{\nu} \phi) - \frac{1}{2} \left(\frac{mc}{\hbar}\right)^2 \phi^2 = \frac{1}{2c^2} \dot{\phi}^2 - \frac{1}{2} \left[\vec{\nabla}^2 + \left(\frac{mc}{\hbar}\right)^2\right] \phi^2.$ Euler-Lagrange-ova jednačina kretanja je

$$\left[\frac{1}{c^2}\partial_t^2 - \vec{\nabla}^2 + \left(\frac{mc}{\hbar}\right)^2\right]\phi(\mathbf{x}) = 0,$$

čiji Fourier transform daje

$$\begin{split} \phi(\mathbf{x}) &= \frac{1}{(2\pi)^{3/2}} \int d^3 \vec{k} \, \phi_{\vec{k}}(\mathbf{x}), \qquad \phi_{\vec{k}}(\mathbf{x}) \coloneqq f_{\vec{k}}(t) \, e^{i \vec{k} \cdot \vec{r}}, \\ & \left[\partial_t^2 + \left(\vec{k}^2 c^2 + \frac{m^2 c^4}{\hbar^2} \right) \right] f_{\vec{k}}(t) = 0. \end{split}$$

To je kolekcija LHO:

$$E_{n,\vec{k}} = E_{\vec{k}}(n+\frac{1}{2}), \qquad E_{\vec{k}} := \hbar c \sqrt{\vec{k}^2 + \frac{m^2 c^2}{\hbar}} = \sqrt{(\hbar \vec{k})^2 c^2 + m^2 c^4}$$

Energija vakuma je onda

$$E_{\text{vacuum}} = \frac{1}{2} \int d^3 \vec{k} \ E_{\vec{k}} = 2\pi \int_0^\infty k^2 dk \ \sqrt{\hbar^2 k^2 c^2 + m^2 c^4}$$

Solution Sto divergira $\sim k^4$, kada $k \to \infty$

Za slobodno elektromagnetno polje, m=0 pa $E_{\vec{k}}=\hbar c |\vec{k}|$...i divergencija energije vakuma ostaje.

> A da odgovorimo na pitanje, moramo da znamo **kako** to supersimetrija funkcioniše.

- Da li se sećate LHO?
- Prvo, smena promenljivih:

$$a := \sqrt{\frac{m\omega}{2\hbar}} x + \frac{i}{\sqrt{2m\omega\hbar}} p \quad a^{\dagger} := (a)^{\dagger} \quad [a, a^{\dagger}] = 1$$

tako da je $H_{\text{LHO}} := \frac{1}{2}\hbar\omega\{a^{\dagger}, a\} = \hbar\omega(a^{\dagger}a + \frac{1}{2})$ Stanja pozitivne norme:

$$0\rangle: a|0\rangle = 0 |n\rangle := \frac{(a^{\dagger})^{n}}{\sqrt{n!}}|0\rangle \quad H_{\text{LHO}}|n\rangle = E_{n}|n\rangle, \quad E_{n} = \hbar\omega(n+\frac{1}{2}).$$

$$\mathscr{H}_{\text{LHO}} = \left\{ |n\rangle: \langle n|n'\rangle = \delta_{n,n'}, \quad \sum_{n} |n\rangle\langle n| = 1, \quad n, n' \in 0, 1, 2, \dots \right\}$$

...i...

$$a|n\rangle = \sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$$

LHO: fermionsko proširenje

Uvedemo još jedan par operatora, tako da je

 ${b, b^{\dagger}} = 1$ i ${b, b} = 0 = {b^{\dagger}, b^{\dagger}}, \Rightarrow b^{2} = 0 = b^{\dagger 2},$ $[a, b] = 0, [a, b^{\dagger}] = 0, [a^{\dagger}, b] = 0, [a^{\dagger}, b^{\dagger}] = 0,$ \Im ...i proširimo Hamiltonijan:

$$egin{aligned} \mathcal{H}_{ ext{LHO}^+} &= rac{1}{2}\hbar\omega\{a^\dagger,a\} + rac{1}{2}\hbar\widetilde{\omega}[b^\dagger,b] \ &= \hbarig(\omega\,a^\dagger a + \widetilde{\omega}\,b^\dagger big) + rac{1}{2}\hbarig(\omega - \widetilde{\omega}ig). \end{aligned}$$

Valja primetiti da je energija vakuma postala proporcionalna razlici izmedju dve frekvencije.

Baš kao u standardnom (bozonskom) LHO, analiziramo listu i strukturu svih stanja sa pozitivnom normom.

Počnemo od: $b^{\dagger}b |\nu\rangle_f = \nu |\nu\rangle_f$.

LHO: fermionsko proširenje $\{b, b^{\dagger}\} = 1$ i $\{b, b\} = 0 = \{b^{\dagger}, b^{\dagger}\}, \Rightarrow b^{2} = 0 = b^{\dagger 2}$ $b^{\dagger}b |v\rangle_{f} = v |v\rangle_{f}.$

- $\overset{\bigcirc}{} A \text{ kako } b \text{ i } b^{\dagger} \text{ deluju?} \\ b^{\dagger} b(b^{\dagger} | v \rangle_{f}) = b^{\dagger} (1 b^{\dagger} b) | v \rangle_{f} = \begin{cases} b^{\dagger} (1 v) | v \rangle_{f} = (1 v) (b^{\dagger} | v \rangle_{f}) \\ b^{\dagger} | v \rangle_{f} b^{\dagger 2} b | v \rangle_{f} = (b^{\dagger} | v \rangle_{f}) & b^{\dagger 2} \equiv 0 \end{cases}$
- So znači da $(1-\nu)b^{\dagger}|\nu\rangle_{f} = b^{\dagger}|\nu\rangle_{f}$ pa $\nu b^{\dagger}|\nu\rangle_{f} = 0$.
 Dakle, ili $b^{\dagger}|\nu\rangle_{f} = 0$ ili $\nu = 0$ a $b^{\dagger}|0\rangle_{f} \propto |1\rangle_{f}$

Slično,

$$b^{\dagger}b(b|\nu\rangle_{f}) = \begin{cases} b^{\dagger}\underline{b}\underline{b}|\nu\rangle_{f} \equiv 0, \quad b^{2} \equiv 0;\\ (1-bb^{\dagger})b|\nu\rangle_{f} = b(1-b^{\dagger}b)|\nu\rangle_{f} = b(1-\nu)|\nu\rangle_{f} = (1-\nu)(b|\nu\rangle_{f}) \end{cases}$$

 \square ...pa je ili $b|\nu\rangle_f = 0$ ili $\nu = 1$ a $b|1\rangle_f \propto |0\rangle_f$

Stoga:Pauli-jev princip isključenja $b|0\rangle_f \equiv 0,$ $b^{\dagger}|0\rangle_f = |1\rangle_f,$ $b|1\rangle_f = |0\rangle_f,$ $b^{\dagger}|1\rangle_f \equiv 0.$

Kako supersimetrija funkcioniše LHO: fermionsko proširenje

Dakle LHO+ osciluje i bozonski i fermionski:

$$\begin{split} |n,\nu\rangle &:= |n\rangle \otimes |\nu\rangle_{f}, \qquad n = 0, 1, 2, 3, \dots \quad \nu = 0, 1, \\ \mathscr{H}_{\text{LHO}^{+}} &:= \Big\{ |n,\nu\rangle : \langle n,\nu|m,\mu\rangle = \delta_{n,m}\delta_{\nu,\mu}, \sum_{n,\nu} |n,\nu\rangle\langle n,\nu| = \mathbb{1} \Big\}, \\ H_{\text{LHO}^{+}} |n,\nu\rangle = E_{n,\nu} |n,\nu\rangle, \quad E_{n,\nu} = \hbar \big[\omega(n+\frac{1}{2}) + \widetilde{\omega}(\nu-\frac{1}{2}) \big]. \end{split}$$

Energija osnovnog stanja je sada $E_{0,0} = \frac{1}{2}\hbar(\omega - \widetilde{\omega})$ \bigcirc Pošto $(a^{\dagger})^2 \neq 0$, a^{\dagger} -modovi nisu podložni Pauli-jevom principu isključenja, i a^{\dagger} -oscilacije su bozonske ekscitacije.

Pošto $(b^{\dagger})^2 = 0$, b^{\dagger} -modovi jesu podložni Pauli-jevom principu isključenja, b^{\dagger} -modovi predstavljaju fermionske ekscitacije.

Sva stanja $\sum_{n} B_{n}(t) | n, 0 \rangle$ su bozonska, a $\sum_{n} F_{n}(t) | n, 1 \rangle$ fermionska.

LHO: fermionsko proširenje

Dve slike vrede 2000 reči:

Setimo se: može biti ilį jedna ili nijedna fermionska oscilacija fizičkom) stanju (pozitivne normé). Odsustvo fermionske **C**ilacije spušta energiju. **D**<u>i</u>sustvo</u> fermionske escilacije podiže e<u>h</u>ergiju. Fermionsko-bozonski razmak (jaz).

Kako supersłmetrija funkcioniše LHO: fermionsko proširenje $H_{\rm LHO^+} = \hbar (\omega a^{\dagger} a + \widetilde{\omega} b^{\dagger} b) + \frac{1}{2} \hbar (\omega - \widetilde{\omega})$ Sa operatorima a, a^{\dagger}, b $\phi^{\dagger}, definisemo bilinear ne operatore$ $(b^{\dagger}a)$ i $(a^{\dagger}b)$, i proverimed njihove komutatore: $[H_{\rm LHO^+}, b^{\dagger}a] = \hbar(\widetilde{\omega} - \omega)b^{\dagger}a,$ $[H_{\rm LHO^+}, a^{\dagger}b] = \hbar(\omega - \widetilde{\omega})a^{\dagger}b,$ $[a^{\dagger}bb^{\dagger}a] = a^{\dagger}a + b^{\dagger}b.$ Vidimo da se nešto interesantno dogodi kada su dve frekvencije podešene da se poklope: $\widetilde{\omega} \to \omega$ $H := \hbar \omega (a^{\dagger} a + b^{\dagger} b), \quad Q := \sqrt{2\hbar \omega} a^{\dagger} b, \quad Q^{\dagger} := \sqrt{2\hbar \omega} b^{\dagger} a,$ Ovi operatori onda zatvaraju sledeće algebarske relacije: $\{Q^{\dagger}, Q\} = 2H,$ $[H, Q] = 0 = [H, Q^{\dagger}].$ Kao što: $[J_{+}, J_{-}] = 2J_{3},$ $[J_{3}, J_{\pm}] = \pm J_{\pm}.$...osssim što...

LHOOfermionsko proširenje

 \bigcirc A kako Q i Q[†] deluju na $|n, \nu\rangle$ stanja?

$$Q^{\dagger}|n+1,0\rangle = \sqrt{2\hbar\omega(n+1)}|n,1\rangle,$$
$$Q|n,1\rangle = \sqrt{2\hbar\omega(n+1)}|n+1,0\rangle,$$
$$\frac{1}{2}\{Q^{\dagger},Q\}|n,\nu\rangle = H|n,\nu\rangle = \hbar\omega(n+\nu)|n,\nu\rangle$$
$$E_{n,\nu} = \hbar\omega(n+\nu).$$

To jest, $|n+1,0\rangle$ i $|n,1\rangle$ čine degenerisani bozon-fermionski par stanja za svako n = 0, 1, 2, ...

$$|Q|n,\nu\rangle|^2 = \frac{1}{2}\langle n,\nu|\{Q^{\dagger},Q\}|n,\nu\rangle = \langle n,\nu|H|n,\nu\rangle = E_{n,\nu}$$

 \bigcirc ...dok $|0,0\rangle$ ostaje nespareno, bozonsko, i sa energijom nula.

Supersimetrična stanja (po definiciji $Q | n, \nu \rangle = 0 = Q^{\dagger} | n, \nu \rangle$) imaju energiju nula — i obratno.

LHO+

LHO: fermionsko proširenje

Tri slike vrede 3000 reči:

LHO

 $E_n \bigwedge$ $E_{n,\nu}$ $\frac{9}{2}\hbar\omega$ \langle $|4\rangle$ $\hbar \left(\frac{9}{2} \omega - \frac{1}{2} \widetilde{\omega} \right)$ $\hbar \left(\frac{1}{2} \omega + \frac{1}{2} \widetilde{\omega} \right)$ $|4,0\rangle$ $|3,1\rangle$ $\frac{7}{2}\hbar\omega$ \langle |3 \rangle $\hbar(\frac{7}{2}\omega-\frac{1}{2}\widetilde{\omega})$ |3,0) $\hbar(\frac{5}{2}\omega+\frac{1}{2}\widetilde{\omega})$ $|2,1\rangle$ $\frac{5}{2}\hbar\omega$ $|2\rangle$ $\hbar(\frac{5}{2}\omega - \frac{1}{2}\widetilde{\omega})$ $|2,0\rangle$ $\hbar(\frac{3}{2}\omega+\frac{1}{2}\widetilde{\omega})$ $|1,1\rangle$ $\frac{3}{2}\hbar\omega$ \langle $|1\rangle$ $\hbar(\frac{3}{2}\omega - \frac{1}{2}\widetilde{\omega})$ $|1,0\rangle$ $\hbar(\frac{1}{2}\omega+\frac{1}{2}\widetilde{\omega})$ $|0,1\rangle$ $\frac{1}{2}\hbar\omega \left\langle 0 \right\rangle$ $\frac{1}{2}\hbar(\omega-\widetilde{\omega})$ d $|0,0\rangle$

 $E_{n,\nu} \wedge \overleftrightarrow{}^{Q'}$ $4\hbar\omega \left(|4,0\rangle; |3,1\rangle \right)$ $3\hbar\omega \left(|3,0\rangle; |2,1\rangle \right)$ $2\hbar\omega \left(|2,0\rangle; |1,1\rangle \right)$ $\hbar\omega \left(|1,0\rangle; |0,1\rangle \right)$ $0(|0,0\rangle; -)$

SuSy LHO

Zašto je supersimetrija neophodna Nenegativnost

Supersimetrija u svim dimenzijama mora da sadrži:

$$\begin{cases} Q^{\dagger i}, Q_j \} = \delta_j^i H, \quad \sum_i \{Q^{\dagger i}, Q_i\} = NH, \quad \operatorname{Tr}[\delta_j^i] = N, \\ & \circ \text{ pa je} \qquad 0 = \langle \Omega | H | \Omega \rangle = \left\langle \Omega | \frac{1}{N} \sum_i \{Q^{\dagger i}, Q_i\} | \Omega \right\rangle \\ & = \frac{1}{N} \sum_i \left\{ |Q_i|\Omega\rangle|^2 + |Q^{\dagger i}|\Omega\rangle|^2 \right\}, \end{cases}$$

...što je suma ne-negativnih doprinosa.

Stoga $H|\Omega\rangle = 0 \quad \Leftrightarrow \quad Q_i|\Omega\rangle = 0 = Q^{\dagger i}|\Omega\rangle.$ S druge strane, $U_{\epsilon,\overline{\epsilon}}|\Omega\rangle = |\Omega\rangle, \quad U_{\epsilon,\overline{\epsilon}} := \exp\left\{-i(\epsilon \cdot Q + \epsilon^{\dagger} \cdot Q^{\dagger})\right\}$

Supersimetrična stanja imaju energiju = 0.svako je osnovnostanje globalni min(E).

Zašto je supersimetrija neophodna Narušenje

Spontano narušenje superimmetrije

- Ako je Hamilton-ovo dejstvo supersimetrično
- ali nema supersmetričnog osnovnog stanja
- Mogućnost je otkrio O'Raifeartaigh:
- \bigcirc zahteva ≥ 3 kompleksna (spin-0 | spin-½) parova polja/čestica
- 🥯 i vrlo, Vrlo, VRLO specifičan izbor potencijala (mase i interakcije)
- Posredovano narušenje superimmetrije
- Dinamički efekat u nekom sub-sektoru modela
- …indukuje narušenje supersimetrije

Eksplicitno narušenje supersimetrije

- Dodavanje "rukom" članova koji krše supersimetriju
- Lagranžijani sa jednakim brojem i masom slobodnih čestica su automatski supersimetrični
- pa dakle, interakcije narušavaju supersimetriju

Kako proučavati supersimetriju Opšta slika

U opštem, *n*-dimenzionom prostor-vremenu:

 $\{\overline{Q}, Q\} = 2 \, \mathbb{\Gamma}^i P_i =: 2 \, \mathbb{P} \qquad [P_i, Q] = 0$

Dimenziono redukujemo do samo vremena:
ispustimo *P*, rotacije i boost-ove, i koristimo *P*₀ = *H*;
onda, kasnije, rekonstruišemo rotacije i boost-ove.
Na svetskoj liniji, imamo (za *I* = 1,...,*N*):

 $\{Q_I, Q_J\} = 2\delta_{IJ}H \qquad [H, Q_I] = 0 \qquad (Q_I)^{\dagger} = Q_I$

...dok rotacije i boost-ove posmatramo kao "spoljne" simetrije, da bi ih povratili kasnije.

Off-shell supermultipleti Subtitle

Sa N supersmetrija, pravimo supermultiplete:

 $\phi = \phi(t)\,$: početno komponentno polje

$$\psi_I := Q_I(\phi) : drugi "sloj"$$

 $\phi_{[IJ]} := Q_I(\psi_J) = Q_{[I}Q_{J]}(\phi) : treći "sloj"$
itd.

(digresija)

 $Q_I Q_J = \frac{1}{2} \left[Q_I, Q_J \right] + \frac{1}{2} \left\{ Q_I, Q_J \right\} = Q_{[I} Q_{J]} + \delta_{IJ} (H = i\hbar \partial_{\tau})$

Tako je (φ | ψ_I | φ_[IJ] | ψ_[IJK] | ... | φ_[I...IN]) supermultiplet.
To je takodje zatvorena *Q*-orbita, označena ∧*Q*((*t*)).
Pošto je [*Q*] = (H)^{1/2}, polja iz različitih "slojeva" imaju različite fizičke jedinice. ∴ *Z*-"raslojena" dimenzija.

Kako proučavati supersimetriju Grafovi

Supermultiplete možemo predstaviti grafički:

$$\delta_Q \phi = i \epsilon \psi \\ \delta_Q \psi = \epsilon \dot{\phi}$$
 \Leftrightarrow $\dot{\delta}$, Adinkra

Ovo prikazuje jednostavnu N = 1 supersimetriju, upareni bozon (beo čvor) i fermion (crni čvor).

Za N = 2, ovo se uopštava

$$\begin{split} \delta_Q \beta &= \epsilon^I B_I ,\\ \delta_Q B_I &= i \varepsilon_{IJ} \epsilon^J \varphi + i \delta_{IJ} \epsilon^J \dot{\beta} ,\\ \delta_Q \varphi &= -\varepsilon_{IJ} \epsilon^I \dot{B}^J , \end{split}$$

$$\Leftrightarrow \qquad \overbrace{}$$

Kako proučavati supersimetriju Klasifikacija

 \Im Za N = 4, medjutim, nešto interesantno se dogodi. \Im Ovo su dve adinkre sa različitim topologijama:

Kako proučavati supersimetriju Duplo parni binarni kodovi

- N[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa M[N,k]: k binarnih vektora dužine $N: v_i = [b_1, \dots, b_N]$ sa
 - \bigcirc Relativni ugao: $(v_1 \cdot v_2) = 2n$
 - ^{\bigcirc} To su kodovi koji detektuju 2 greške, a ispravljaju jednu. \bigcirc N × k matrica kodira, a njena (levo-) inverzna dekodira
 - Svaki [N,k]-kod je subkod nekog $[N,\varkappa(N)]$ -koda.

$$\varkappa(N) := \begin{cases} 0 & \text{for } 0 \le N < 4; \\ \lfloor \frac{(N-4)^2}{4} \rfloor + 1 & \text{for } N = 4, 5, 6, 7; \\ \varkappa(N-8) + 4 & \text{for } N > 7, \text{ recursively.} \end{cases}$$

Za $N \ge 8$, lanac subkodova nije više jedinstven/linearan. Klasifikujemo maksimalne detekciono-ispravljajuće kodove, pa onda i mreže subkodova.

Kako proučavati supersimetriju

Duplo parni binarni kodovi

OTKUD SAD TO?!

...i subkodovi:

	Jaj -				N	T				
51/	1	2 3 4 5 6 7						8		
Ħ	$\begin{bmatrix} I^1 \\ (1;1) \end{bmatrix}$	I^2 (2;2)	$\left \begin{array}{c}I^3\\(4;4)\end{array}\right $	$ \begin{array}{c} I^4\\ (8;8) \end{array} $	$egin{array}{c} I^5 \ (16;16) \end{array}$	$\left \begin{array}{c}I^{6}\\(32;32)\end{array}\right $	$\left \begin{array}{c}I^7\\(64;64)\end{array}\right $	$ I^{8} \\ (128;128) $		
17	7			D_4 (4;4)	$ \begin{array}{c} I^1 \times D_4 \\ (8;8) \end{array} $	$\begin{vmatrix} I^2 \times D_4 \\ (16;16) \end{vmatrix}$	$\begin{vmatrix} I^3 \times D_4 \\ (32;32) \end{vmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$I^4 \times D_4 \qquad A_8$	Ne-jedinstvenost
X						$\begin{vmatrix} D_6\\(8;8)\end{vmatrix}$	$ \begin{array}{c c} I^1 \times D_6 \\ (16;16) \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$D_4 \times D_4 I^2 \times D_6$	(+ne-linearnost) mreže
No.	5/1						$\begin{vmatrix} E_7\\(8;8)\end{vmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D_8 I^1 \times E_7$	subkodeova.
20	7							$\begin{bmatrix} E_8\\(8;8)\end{bmatrix}$	E_8	

Kako proučavati supersimetriju

Duplo parni binarni kodovi

OTKUD SAD TO?!

Sledeći maksimalni DPB kodovi, za $8 < N \leq 14$: N = 12N = 13N = 9N = 10N = 14N = 11 $E_8 \times I^3$ $E_8 \times D_4 \times I^1$ $E_8 \times I^1$ $E_8 \times I^2$ $E_8 \times D_4$ $E_8 \times D_6$ $D_{10} \times I^1$ $D_{12} \times I^1$ D_{10} D_{12} D_{14} $D_4 \times E_7$ $D_6 \times E_7$ $E_7 \times E_7$...i N = 15, 16: N = 16 E_{13} E_{14} $E_8 \times E_7$ $E_8 \times E_8$ su (dobro poznate) jedine dve parne, unimodularne rešetke E_{15} E_{16}

Kako proučavati supersimetriju

Duplo parni binarni kodovi

sa Robert Miller-om

Lista DPB kodova izračunatih do sada:

N	=	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
	T	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#
	2			#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#
	3				#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#
	4	•				#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	+
12	5	•				•				#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	+	+
	6	•					•					#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	+	+
	7	•		E	8		•						#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	+	+	+
	8			•	•	· · · · · ·						·		#	#	#	# #	#	#	#	+ +						+			
к	9								\overline{D}			•						#	#	#	1012 kodova		va		+	+	+			
7	10	•				Ľ	8×		3, 1	\mathbf{c}_1	6									#								+		+
10	П	•																			#	#	#	#	#	#	+	+	+	+
_	12	•																				#	#	#	#	#	#	+	+	+
	13	•												9) k	00	lo	va		•			•			#	#	#	+	+
)	14	•					•							•	·	·	·	·	·				•				•	#	#	+
	15	•									•									•	85 kodovo							•	#	#
	16	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	OJ KUUUVA							•		#

...i to se računa i računa i računa...

izbacili su nas Moguće je da će račun zahtevati i do 12 CPU-godina. Ohio Supercomputing Center nam je dao pristupa, što će pomoći u kompletiranju izlistavanja svih $N \le 32$ DPB kodova u roku od 10–100 meseci? Za sada, v. <u>http://www.rlmiller.org/de_codes/</u>.

U 1+1 dimenziji Parno podeljeni DPB kodovi

Vreme + jedna dimenzija prostora: $Spin(1,1)_{Lorentz} = abelovska$ \bigcirc <u>Def.</u> $\xi^{\pm\pm} := ct \pm x, \ \partial_{\pm\pm} := \frac{1}{2} \left[\frac{1}{c} \partial_t \pm \partial_x \right]$ — nezavisne $\Theta \text{ Onda: } \left[\partial_x^2 - \frac{1}{c^2} \partial_t^2 \right] F(x,t) = 0 \Rightarrow F(x,t) = \frac{f_L(\xi^+) + f_R(\xi^-)}{f_L(\xi^+) + f_R(\xi^-)}$ Supersimetrija: $\{Q_{+i}, Q_{+i}\} = 2i\delta_{ij}\partial_{+}$ i $\{Q_{-i}, Q_{-i}\} = 2i\delta_{ij}\partial_{-}$ Supermultipleti: $(\phi_I, \psi_I, \ldots) \boxtimes (\phi_R, \psi_R, \ldots)$ [arXiv:1104.3135] \mathcal{P} gde su $(\phi_I, \psi_I, ...)$ i $(\phi_R, \psi_R, ...)$ "1-dimenzione Adinkre" Strogi matematički dokaz: K. Iga & Y. Zhang [<u>arXiv:1508.00491]</u> Kodovi koji definišu 1+1-dimenzione supermultiplete

imaju dodatni zahtev: parno su podeljeni $[(\bullet ... \bullet)_L | (\bullet ... \bullet)_D]$

Oprez: Binarni kodovi se pojavljuju u *klasifikaciji* supermultipleta. Ta strukturna informacija ograničava (ali ne zadaje) moguće interakcije. Stoga se ti kodovi ne pojavljuju neposredno u dinamici/fizici.

Kafica?

Sada ili posle pauze? Zoom-foto

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC Department of Mathematics, University of Maryland, College Park, MD Department of Physics, Faculty of Natural Sciences, Novi Sad, Serbia <u>https://tristan.nfshost.com/</u>