Supersimetrija:

Program

© Ko \& Kada je izmislio supersimetriju
© ~ Hironari Myazawa, 1966;
© J.L. Gervais \& B. Sakita, 1971;
© Yu.A. Golfand \& E.P. Likhtman, 1971;
© V.P. Akulov \& D.V. Volkov.
© Sta supersimetrija jeste ...a šta nije

© Gde Pa, Svuda. Stvarno
© Zašto je neophodna: sine qua non
© Kako supersimetrija radi \& kako ju proučavati

Sta je supersimetrija

Mehanizam
${ }^{9}$ Antikomutativna transformacija $(\rightarrow \hat{H})$, ne menja sistem.
Osnovna gradja Prirode:
Osim ako se i ovo ujedini.
${ }^{9}$ Fermioni: kvarkovi, elektroni, neutrini - supstancija

- spin ${ }^{1 / 2}$, Fermi-Dirac statistika (Pauli-jev princip isključenja)

Q Bozoni: $\mathbb{H}, \gamma,\left(W^{ \pm}, Z^{0}\right)$, gluoni, i gravitoni - interakcije - spin 0, 1, i 2; Bose-Einstein statistika (kondenzacija)

Ujedinjenje (npr.): γ \& $\left(W^{ \pm}, Z^{0}\right)=$ Elektroslaba sila, i (kvarkovi + leptoni) u "familijama" (1980 Nobel-ova) EW + Jaka Nuklearna = Velika Ujedinjena Teorija (?) ... a gravitacija? ... kvantizacija zahteva stringove Čak i tako, kvantno-mehanički nestabilno...

Gde se supersimetria pojarlivie

Primene

Elementarne čestice (teorijska, naravno, a nadamo se...
Atomska jezgra se sastoje od protona i neutrona (= nukleona):
${ }^{-} \mathrm{i} p^{+}$i n^{0} su spin- $1 / 2$ fermioni;
9 jezgra sa parnim (neparnim) brojem nukleona = bozoni (fermioni);
${ }^{\ominus}$ prelaz izmedju "susednih" izotopa/izobara $=$ supersimetrija!
Atomi se sastoje od p^{+}, n^{0} i e^{-}:
Q elektroni (e^{-}) su spin- $1 / 2$ fermioni;
${ }^{Q}$ atomi sa (ne)parnim brojem "sastojaka" (p^{+}, n^{0}, e^{-}) su bozoni (fermioni);
Q jonizacija neparnog broja $e^{-}=$supersimetrija!
Molekuli se sastoje od bozonskih i fermionskih atoma...
Grafen (kond. materija!) ima i bozonske i fermionske "fonone"; specijalni granični uslovi \leftrightarrow supersimetrija! (+ narušenje)

Gde se supersimetrija pojavliuje

Primene

${ }^{2}$ Elementarne čestice (teorijska, naravno, a nadamo se... \&)
Atomska jezgra se sastoje od protona i neutrona (= nukleona):
${ }^{2} \mathrm{i} p^{+}$i n^{0} su spin- $1 / 2$ fermioni;

$$
\geq 38 \text { godina! }
$$

- jezgra sa parnim (neparnim) brojem nukleona = bozoni (fermioni);

Q nrolat immedi11"c11cednih" īntnna/imnhara $=$ c11nercimptriial

Electronic type

armchair

zigzag
Metallic

Chirality

Handedness

16 godina!

Gde se supersimetrija pojavliuje

Primene

${ }^{2}$ Laseri (fizika kondenzovane materije):
Q Sad već tli-ipo-godišnjak: https://arxiv.org/abs/1812.10690

- funcionalan stvarni aparat, znatno poboljšan supersimetrijom
- Osnova: slično $\hat{H}_{L H O}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right) \leftrightarrow \hat{H}_{L H O}^{\prime}=\hbar \omega\left(\hat{a} \hat{a}^{\dagger}+\frac{1}{2}\right)$

Q gde je $\left[\hat{\mathrm{a}}, \hat{a}^{\dagger}\right]=1$, pa $\hat{a}^{\dagger} \hat{a}+\frac{1}{2}=\hat{a} \hat{a}^{\dagger}-\frac{1}{2}=\left(\hat{a} \hat{a}^{\dagger}+\frac{1}{2}\right)-1$
Q a gde je â $:=\sqrt{\frac{m \omega}{2 \hbar}} \hat{x}+i \sqrt{\frac{1}{2 \hbar m \omega}} \hat{p} \quad$ i $\quad \hat{a}^{\dagger}:=\sqrt{\frac{m \omega}{2 \hbar}} \hat{x}-i \sqrt{\frac{1}{2 \hbar m \omega}} \hat{p}$
Monohromatski

- ... $\mathrm{a}\left(\hat{H}, \hat{H}^{\prime}\right) \quad$ a ima ∞ mnogo, samo su âi â ${ }^{\dagger}$ komplikovanije smene promenljivih

Zašto je supersimetrija neophodna

 Motivacija${ }^{2}$ Supersymmetrija:

- Jedini (znani) univerzalan mehanizam koji stabilizuje vakum

Q Minimum energije $=0$ tačno kada je sistem supersimetričan

- Minimum energije >0 kada je supersimetrija spontano narušena
- Ako sistem uključuje gravitaciju, energija nije globalno definisana
${ }^{Q}$ Po definiciji ujedinjuje fermione (supstancija) i bozone (interakcije)
${ }^{-}$Tehničke prednosti:
- Smanjuje (ili čak poništava) potrebu za renormalizacijom
- Sprečava mešanje raznih (i raznorodnih) karakterističnih energija
- Čuva (neobično) male/velike količnike

$$
\frac{m_{v_{e}}}{M_{P}} \lesssim 10^{-28}, \quad \frac{m_{e}}{M_{P}} \sim 10^{-23}, \quad \frac{m_{u}}{M_{P}} \sim 10^{-22} \quad M_{P}=\sqrt{\frac{\hbar c}{G_{N}}}
$$

- Prava, kompletna teorija je verovatno (i nadamo se) jednostavno konačna (nema potrebu za renormalizacijom - kao superstringovi).

Zašto je supersimetrija neophodna

 Motivacija9 Čak i za slobodono polje:

$$
E_{\text {vakum }}=\frac{1}{2} \sum_{\vec{k}} \hbar \omega_{\vec{k}} \quad \text { sa } \vec{\nabla}_{\vec{k}} \omega_{\vec{k}} \geqslant 0
$$

Q Renormalizacija pomaže......osim za gravitaciju.
Q Kvantnost Prirode stabilizuje atome, i ujedinjuje čestice i talase.

- Relativnost ujedinjuje prostor i vreme, energiju \& impuls, električno i magnetno polje, gravitaciju \& ubrzanje, ...
© Stringovi ujedinjuju gravitaciju, sve ostale interakcije i materiju!
Qupersimetrija stabilizuje vakum,
i ujedinjuje bozone i fermione.
Stoga je supersimetrija jednako neophodna kao i kvantnost.
(Kvantnost stabilizuje atome, supersimetrija stabilizuje vakum.)

Zašto je supersimetrija neophodna

 Motivacija${ }^{9}$ Energija vakuma:
Q Razmotrimo slobodno skalarno polje

$$
\mathscr{L}_{\mathrm{KGB}}=\frac{1}{2} \eta^{\mu \nu}\left(\partial_{\mu} \phi\right)\left(\partial_{\nu} \phi\right)-\frac{1}{2}\left(\frac{m c}{\hbar}\right)^{2} \phi^{2}=\frac{1}{2 c^{2}} \dot{\phi}^{2}-\frac{1}{2}\left[\vec{\nabla}^{2}+\left(\frac{m c}{\hbar}\right)^{2}\right] \phi^{2} .
$$

Euler-Lagrange-ova jednačina kretanja je

$$
\left[\frac{1}{c^{2}} \partial_{t}^{2}-\vec{\nabla}^{2}+\left(\frac{m c}{\hbar}\right)^{2}\right] \phi(\mathrm{x})=0,
$$

čiji Fourier transform daje

$$
\begin{gathered}
\phi(\mathrm{x})=\frac{1}{(2 \pi)^{3 / 2}} \int \mathrm{~d}^{3} \vec{k} \phi_{\vec{k}}(\mathrm{x}), \quad \phi_{\vec{k}}(\mathrm{x}):=f_{\vec{k}}(t) e^{i \vec{k} \cdot \vec{r}}, \\
{\left[\partial_{t}^{2}+\left(\vec{k}^{2} c^{2}+\frac{m^{2} c^{4}}{\hbar^{2}}\right)\right] f_{\vec{k}}(t)=0 .}
\end{gathered}
$$

To je kolekcija LHO:

$$
E_{n, \vec{k}}=E_{\vec{k}}\left(n+\frac{1}{2}\right), \quad E_{\vec{k}}:=\hbar c \sqrt{\vec{k}^{2}+\frac{m^{2} c^{2}}{\hbar}}=\sqrt{(\hbar \vec{k})^{2} c^{2}+m^{2} c^{4}}
$$

Zašto je supersimetrija neophodna

 MotivacijaEnergija vakuma je onda

$$
E_{\text {vacuum }}=\frac{1}{2} \int \mathrm{~d}^{3} \vec{k} E_{\vec{k}}=2 \pi \int_{0}^{\infty} k^{2} \mathrm{~d} k \sqrt{\hbar^{2} k^{2} c^{2}+m^{2} c^{4}}
$$

što divergira $\sim k^{4}$, kada $k \rightarrow \infty$
Za slobodno elektromagnetno polje, $m=0$ pa $E_{\vec{k}}=\hbar c|\vec{k}|$
...i divergencija energije vakuma ostaje.

A da odgovorimo na pitanje, moramo da znamo kako to supersimetrija funkcioniše.

Kako supersimetrija funkcioniše

LHO: potsetnik

${ }^{Q}$ Da li se sećate LHO?
Prvo, smena promenljivih:

$$
a:=\sqrt{\frac{m \omega}{2 \hbar}} x+\frac{i}{\sqrt{2 m \omega \hbar}} p \quad a^{\dagger}:=(a)^{\dagger} \quad\left[a, a^{\dagger}\right]=1
$$

tako da je $H_{\text {LHO }}:=\frac{1}{2} \hbar \omega\left\{a^{\dagger}, a\right\}=\hbar \omega\left(a^{\dagger} a+\frac{1}{2}\right)$
Stanja pozitivne norme:

$$
\begin{aligned}
|0\rangle: a|0\rangle & =0 \quad|n\rangle:=\frac{\left(a^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle \quad H_{\mathrm{LHO}}|n\rangle=E_{n}|n\rangle, \quad E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) . \\
\mathscr{H}_{\mathrm{LHO}} & =\left\{|n\rangle:\left\langle n \mid n^{\prime}\right\rangle=\delta_{n, n^{\prime}}, \quad \sum_{n}|n\rangle\langle n|=\mathbb{1}, \quad n, n^{\prime} \in 0,1,2, \ldots\right\}
\end{aligned}
$$

...i...

$$
a|n\rangle=\sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle
$$

Kako supersimetrija funkcioniše

 LHO: fermionsko proširenje${ }^{2}$ Uvedemo još jedan par operatora, tako da je

$$
\begin{gathered}
\left\{b, b^{\dagger}\right\}=1 \quad \text { i } \quad\{b, b\}=0=\left\{b^{\dagger}, b^{\dagger}\right\}, \quad \Rightarrow \quad b^{2}=0=b^{+2} \\
{[a, b]=0, \quad\left[a, b^{\dagger}\right]=0, \quad\left[a^{\dagger}, b\right]=0, \quad\left[a^{\dagger}, b^{\dagger}\right]=0}
\end{gathered}
$$

...i proširimo Hamiltonijan:

$$
\begin{aligned}
H_{\mathrm{LHO}^{+}} & =\frac{1}{2} \hbar \omega\left\{a^{\dagger}, a\right\}+\frac{1}{2} \hbar \widetilde{\omega}\left[b^{\dagger}, b\right] \\
& =\hbar\left(\omega a^{\dagger} a+\widetilde{\omega} b^{\dagger} b\right)+\frac{1}{2} \hbar(\omega-\widetilde{\omega}) .
\end{aligned}
$$

Valja primetiti da je energija vakuma postala proporcionalna razlici izmedju dve frekvencije.

Baš kao u standardnom (bozonskom) LHO, analiziramo listu i strukturu svih stanja sa pozitivnom normom.
Počnemo od: $b^{\dagger} b|v\rangle_{f}=v|v\rangle_{f}$.

Kako supersimetrija funkcioniše

LHO: fermionsko proširenje $\quad\left\{b, b^{\dagger}\right\}=1 \quad$ i $\quad\{b, b\}=0=\left\{b^{\dagger}, b^{\dagger}\right\}, \quad \Rightarrow \quad b^{2}=0=b^{+2}$. $b^{\dagger} b|v\rangle_{f}=v|v\rangle_{f}$.
${ }^{9}$ A kako b i b^{\dagger} deluju?

Q To znači da $(1-\nu) b^{\dagger}|\nu\rangle_{f}=b^{\dagger}|\nu\rangle_{f}$ pa $\nu b^{\dagger}|\nu\rangle_{f}=0$.
Dakle, ili $b^{\dagger}|\nu\rangle_{f}=0$ ili $\nu=0$ a $b^{\dagger}|0\rangle_{f} \propto|1\rangle_{f}$
Slično,
...pa je ili $b|\nu\rangle_{f}=0$ ili $\nu=1$ a $b|1\rangle_{f} \propto|0\rangle_{f}$
Stoga:

$$
b|0\rangle_{f} \equiv 0, \quad b^{\dagger}|0\rangle_{f}=|1\rangle_{f}, \quad b|1\rangle_{f}=|0\rangle_{f}, \quad b^{\dagger}|1\rangle_{f} \equiv 0
$$

Pauli-jev princip isključenja

Kako supersimetrija funkcioniše

 LHO: fermionsko proširenje${ }^{9}$ Dakle LHO^{+}osciluje i bozonski i fermionski:

$$
\begin{gathered}
|n, v\rangle:=|n\rangle \otimes|v\rangle_{f}, \quad n=0,1,2,3, \ldots \quad v=0,1, \\
\mathscr{H}_{\mathrm{LHO}^{+}}:=\left\{|n, v\rangle:\langle n, v \mid m, \mu\rangle=\delta_{n, m} \delta_{v, \mu}, \quad \sum_{n, v}|n, v\rangle\langle n, v|=\mathbb{1}\right\}, \\
H_{\mathrm{LHO}}{ }^{+}|n, v\rangle=E_{n, v}|n, v\rangle, \quad E_{n, v}=\hbar\left[\omega\left(n+\frac{1}{2}\right)+\widetilde{\omega}\left(v-\frac{1}{2}\right)\right] .
\end{gathered}
$$

Energija osnovnog stanja je sada $E_{0,0}=\frac{1}{2} \hbar(\omega-\widetilde{\omega})$
Q Pošto $\left(a^{\dagger}\right)^{2} \neq 0$, a^{\dagger}-modovi nisu podložni Pauli-jevom principu isključenja, i a^{\dagger}-oscilacije su bozonske ekscitacije.

- Pošto $\left(b^{\dagger}\right)^{2}=0, b^{\dagger}$-modovi jesu podložni Pauli-jevom principu isključenja, b^{\dagger}-modovi predstavljaju fermionske ekscitacije.

Q Sva stanja $\Sigma_{n} B_{n}(t)|n, 0\rangle$ su bozonska, a $\Sigma_{n} F_{n}(t)|n, 1\rangle$ fermionska.

Kako supersimetrija funkcioniše

 LHO: fermionsko proširenje${ }^{2}$ Dve slike vrede 2000 reči:

Setimo se: može biti ili jedna ili nijedna fermionska oscilacija u (fizičkom) stanju (pozitivne norme).
Odsustvo fermionske oscilacije spušta energiju.
Prisustvo fermionske oscilacije podiže energiju.
Fermionsko-bozonski razmak (jaz).

Kako supersimetrija funkcioniše

LHO: fermionsko proširenje

$$
H_{\mathrm{LHO}^{+}}=\hbar\left(\omega a^{\dagger} a+\widetilde{\omega} b^{\dagger} b\right)+\frac{1}{2} \hbar(\omega-\widetilde{\omega})
$$

${ }^{9}$ Sa operatorima a, a^{\dagger}, b i b^{\dagger}, definišemo bilinearne operatore $\left(b^{\dagger} a\right)$ i ($a^{\dagger} b$), i proverimo njihove komutatore:

$$
\begin{aligned}
{\left[H_{\mathrm{LHO}^{+}}, b^{\dagger} a\right] } & =\hbar(\widetilde{\omega}-\omega) b^{\dagger} a, \\
{\left[H_{\mathrm{LHO}^{+}}, a^{+} b\right] } & =\hbar\left(\dot{c}^{+1}-\widetilde{\omega}\right) a^{\dagger} b, \\
{\left[a^{\dagger} b, b^{\dagger} a\right] } & \ddots a^{+\dagger} a+b^{\dagger} b .
\end{aligned}
$$

Vidimo da se nešto interesántno dogodi kada su dve frekvencije podešene dấ se poklope:
$\widetilde{\omega} \rightarrow \omega$

$$
\begin{aligned}
& \rightarrow \omega H:=\hbar \omega\left(a^{\dagger} a+b^{\dagger} b\right), \quad Q:=\sqrt{2 \hbar \omega} a^{\dagger} b, \quad Q^{\dagger}:=\sqrt{2 \hbar a} \\
& \text { Ovi operatori onda zatvaraju sledeće algebarske relacije: } \\
& \qquad\left\{Q^{\dagger}, Q\right\}=2 H, \quad[H, Q]=0=\left[H, Q^{\dagger}\right] .
\end{aligned}
$$

Kao što:

$$
\left[J_{+}, J_{-}\right]=2 J_{3}, \quad\left[J_{3}, J_{ \pm}\right]= \pm J_{ \pm}
$$

Kako supersimetrija funkcioniše

 LHO: fermionsko proširenje${ }^{9}$ A kako Q i Q^{\dagger} deluju na $|n, \nu\rangle$ stanja?

$$
\begin{aligned}
Q^{\dagger}|n+1,0\rangle & =\sqrt{2 \hbar \omega(n+1)}|n, 1\rangle, \\
Q|n, 1\rangle & =\sqrt{2 \hbar \omega(n+1)}|n+1,0\rangle, \\
\frac{1}{2}\left\{Q^{\dagger}, Q\right\}|n, v\rangle & =H|n, v\rangle=\hbar \omega(n+v)|n, v\rangle, \\
E_{n, v} & =\hbar \omega(n+v) .
\end{aligned}
$$

Q To jest, $|n+1,0\rangle$ i $|n, 1\rangle$ čine degenerisani bozon-fermionski par stanja za svako $n=0,1,2, \ldots$

$$
|Q| n, v\rangle\left.\right|^{2}=\frac{1}{2}\langle n, v|\left\{Q^{\dagger}, Q\right\}|n, v\rangle=\langle n, v| H|n, v\rangle=E_{n, v}
$$

Q ...dok $|0,0\rangle$ ostaje nespareno, bozonsko, i sa energijom nula.
${ }^{\ominus}$ Supersimetrična stanja (po definiciji $Q|n, \nu\rangle=0=Q^{\dagger}|n, \nu\rangle$) imaju energiju nula - i obratno.

Kako supersimetrija funkcioniše

LHO: fermionsko proširenje
Q Tri slike vrede 3000 reči:

$\begin{gathered} E_{n} \\ \frac{9}{2} \hbar \omega \end{gathered}$		$E_{n, v} \uparrow \stackrel{Q^{+}}{\stackrel{Q^{+}}{\rightleftarrows}}$
	$\begin{gathered} \hbar\left(\frac{2}{2} \omega-\frac{1}{2} \omega\right) \\ \hbar\left(\frac{1}{2} \omega+\frac{1}{2} \widetilde{\omega}\right) \end{gathered} \int^{\|4,0\rangle}\|3,1\rangle$	$4 \hbar \omega \bigcirc \bigcirc\left(\|4,0\rangle^{Q} ;\|3,1\rangle\right)$
$\frac{7}{2} \hbar \omega \bigcirc\|3\rangle$	$\hbar\left(\frac{7}{2} \omega-\frac{1}{2} \widetilde{\omega}\right) \quad\|3,0\rangle$	
	$\hbar\left(\frac{5}{2} \omega+\frac{1}{2} \widetilde{\omega}\right) \bigcirc\|2,1\rangle$	$3 \hbar \omega \mathrm{O} \bullet(\|3,0\rangle ;\|2,1\rangle)$
$\frac{5}{2} \hbar \omega \bigcirc\|2\rangle$	$\hbar\left(\frac{5}{2} \omega-\frac{1}{2} \widetilde{\omega}\right) \quad\|2,0\rangle$	
	$\hbar\left(\frac{3}{2} \omega+\frac{1}{2} \widetilde{\omega}\right) \bigcirc\|1,1\rangle$	$2 \hbar \omega \bigcirc \bigcirc(\|2,0\rangle ;\|1,1\rangle)$
ω O \|1 ${ }^{\text {c }}$	$\hbar\left(\frac{3}{2} \omega-\frac{1}{2} \widetilde{\omega}\right) \quad\|1,0\rangle$	
	$\hbar\left(\frac{1}{2} \omega+\frac{1}{2} \widetilde{\omega}\right) \bigcirc\|0,1\rangle$	$\hbar \omega \bigcirc \bigcirc(\|1,0\rangle ;\|0,1\rangle$
$\begin{gathered} \frac{1}{2} \hbar \omega \\ { }_{0} \uparrow \end{gathered}$	$\frac{1}{2} \hbar(\omega-\widetilde{\omega}) q_{0}{ }^{0,0\rangle}$	O-0
LHO	LHO+	SuSy LHO

Zašto je supersimetrija neophodna

Nenegativnost

Q Supersimetrija u svim dimenzijama mora da sadrži:
pa je

$$
\begin{gathered}
\left\{Q^{\dagger i}, Q_{j}\right\}=\delta_{j}^{i} H, \quad \sum_{i}\left\{Q^{\dagger i}, Q_{i}\right\}=N H, \quad \operatorname{Tr}\left[\delta_{j}^{i}\right]=N, \\
0=\langle\Omega| H|\Omega\rangle=\langle\Omega| \frac{1}{N} \sum_{i}\left\{Q^{\dagger i}, Q_{i}\right\}|\Omega\rangle \\
\left.\left.=\left.\frac{1}{N} \sum_{i}\left\{\left|Q_{i}\right| \Omega\right\rangle\right|^{2}+\left|Q^{\dagger i}\right| \Omega\right\rangle\left.\right|^{2}\right\},
\end{gathered}
$$

...što je suma ne-negativnih doprinosa.
Stoga

$$
\begin{aligned}
& H \mid S \\
& \text { ne, }
\end{aligned}
$$

$$
U_{\epsilon, \bar{\epsilon}}|\Omega\rangle=|\Omega\rangle, \quad U_{\epsilon, \bar{\epsilon}}:=\exp \left\{-i\left(\epsilon \cdot Q+\epsilon^{\dagger} \cdot Q^{\dagger}\right)\right\}
$$

Supersimetrična stanja imaju energiju $=0$.
svako je osnovno stanje globalni $\min (E)$.

Zašto je supersimetrija neophodna

Narušenje

${ }^{2}$ Spontano narušenje superimmetrije

- Ako je Hamilton-ovo dejstvo supersimetrično

Q ali nema supersmetričnog osnovnog stanja

- Mogućnost je otkrio O'Raifeartaigh:
- zahteva ≥ 3 kompleksna (spin-0 | spin-1⁄2) parova polja/čestica

Q i vrlo, Vrlo, VRLO specifičan izbor potencijala (mase i interakcije)
Posredovano narušenje superimmetrije
Dinamički efekat u nekom sub-sektoru modela
Q ...indukuje narušenje supersimetrije
Eksplicitno narušenje supersimetrije
Q Dodavanje "rukom" članova koji krše supersimetriju
${ }^{\ominus}$ Lagranžijani sa jednakim brojem i masom slobodnih čestica su automatski supersimetrični
${ }^{Q}$ pa dakle, interakcije narušavaju supersimetriju

Kako proučavati supersimetriju

 Opšta slika9 U opštem, n-dimenzionom prostor-vremenu:

$$
\{\bar{Q}, Q\}=2 \mathbb{\Gamma}^{i} P_{i}=: 2 \not P \quad\left[P_{i}, Q\right]=0
$$

Dimenziono redukujemo do samo vremena:
Q ispustimo \vec{P}, rotacije i boost-ove, i koristimo $P_{0}=H$;

- onda, kasnije, rekonstruišemo rotacije i boost-ove.

Na svetskoj liniji, imamo (za $I=1, \ldots, N$):
$\left\{Q_{I}, Q_{J}\right\}=2 \delta_{I J} H \quad\left[H, Q_{I}\right]=0 \quad\left(Q_{I}\right)^{\dagger}=Q_{I}$
...dok rotacije i boost-ove posmatramo kao "spoljne" simetrije, da bi ih povratili kasnije.

Off-shell supermultipleti

Subtitle

Sa N supersmetrija, pravimo supermultiplete:

$$
\begin{aligned}
\phi= & \phi(t): \text { početno komponentno polje } \\
\psi_{I}:= & Q_{I}(\phi): \text { drugi "sloj" } \\
\phi_{[I J]}:= & Q_{I}\left(\psi_{J}\right)=Q_{[I} Q_{J]}(\phi) \text { : treći "sloj" } \\
& \text { itd. }
\end{aligned}
$$

$$
Q_{I} Q_{J}=\frac{1}{2}\left[Q_{I}, Q_{J}\right]+\frac{1}{2}\left\{Q_{I}, Q_{J}\right\}=Q_{[I} Q_{J]}+\delta_{I J}\left(H=i \hbar \partial_{\tau}\right)
$$

Tako je $\left(\phi\left|\psi_{l}\right| \phi_{[I J]} \mid \psi_{[U L K]}\|\ldots\| \phi_{\left[l_{i} \ldots[k]\right.}\right)$ supermultiplet. To je takodje zatvorena Q-orbita, označena $\wedge Q((t))$.
Pošto je [Q] $\equiv(\mathrm{H})^{1 / 2}$, polja iz različitih "slojeva" imaju različite fizičke jedinice. $\therefore \mathbb{Z}$-"raslojena" dimenzija.

Kako proučavati supersimetriju

 Grafovi${ }^{9}$ Supermultiplete možemo predstaviti grafički:

$$
\left.\begin{array}{rl}
\delta_{Q} \phi & =i \epsilon \psi \\
\delta_{Q} \psi & =\epsilon \dot{\phi}
\end{array}\right\}
$$

\Leftrightarrow

Q Ovo prikazuje jednostavnu $N \equiv 1$ supersimetriju, upareni bozon (beo čvor) i fermion (crni čvor).

Za $N=2$, ovo se uopštava

$$
\left.\begin{array}{rl}
\delta_{Q} \beta & =\epsilon^{I} B_{I} \\
\delta_{Q} B_{I} & =i \varepsilon_{I J} \epsilon^{J} \varphi+i \delta_{I J} \epsilon^{J} \dot{\beta} \\
\delta_{Q} \varphi & =-\varepsilon_{I J} \epsilon^{I} \dot{B}^{J},
\end{array}\right\}
$$

Kako proučavati supersimetriju

 KlasifikacijaQ $\mathrm{Za} N \equiv 4$, medjutim, nešto interesantno se dogodi.
Ovo su dve adinkre sa različitim topologijama:

F14641

...i, B242 \cong F14641/[1111]],
gde je [1111] $\rightarrow \underline{\text { kod }}$ za rel. " $Q_{1}{ }^{1} Q_{2}{ }^{1} Q_{3} Q_{4} Q_{4}^{1} \cong \pm e_{4}^{2 "}$,
Za $N \geqq 4,\left[b_{1}, \ldots, b_{N}\right]$: duplo-parni binarni kod.

Kako proučavati supersimetriju

Duplo parni binarni kodovi
${ }^{9}[N, k]: k$ binarnih vektora dužine $N: v_{i} \equiv\left[b_{1}, \ldots, b_{N}\right]$ sa
${ }^{Q}$ Hamming-ovom težinom $=4 n$ (tj., $4 n$ ' 1 ' u svakom v_{i})
Q Relativni ugao: $\left(u_{1} \cdot u_{2}\right)=2 n$

- To su kodovi koji detektuju 2 greške, a ispravljaju jednu.
- $N \times k$ matrica kodira, a njena (levo-) inverzna dekodira

Svaki [$N, k]$-kod je subkod nekog $[\mathbf{N}, \varkappa(\mathrm{N})]$-koda.

$$
\varkappa(N):= \begin{cases}0 & \text { for } 0 \leq N<4 \\ \left\lfloor\frac{(N-4)^{2}}{4}\right\rfloor+1 & \text { for } N=4,5,6,7 \\ \varkappa(N-8)+4 & \text { for } N>7, \text { recursively }\end{cases}
$$

Za $N \geqq 8$, lanac subkodova nije više jedinstven/linearan.
${ }^{\text {Q }}$ Klasifikujemo maksimalne detekciono-ispravljajuće kodove, pa onda i mreže subkodova.

Kako proučavati supersimetriju

Duplo parni binarni kodovi

${ }^{2}$ Prvih osam maksimalnih DPB kodova:
$I^{1} \quad I^{2}$
I^{3}
D_{4}
$I^{1} \times D_{4}$
D_{6}

1111
...i subkodovi:

01111

001111
111100

E_{8}

00001111 00111100 01010101

Kako proučavati supersimetriju

Duplo parni binarni kodovi

- Sledeći maksimalni DPB kodovi, za $8<N \leq 14$:

su (dobro poznate) jedine dve parne, unimodularne rešetke

Kako proučavati supersimetriju

Duplo parni binarni kodovi

Lista DPB kodova izračunatih do sada:

...i to se računa i računa i računa...

Moguće je da će račun zahtevati i do 12 CPU-godina. Ohio Supercomputing Center nam je dao pristupa, što će pomoći u kompletiranju izlistavanja svih $N \leq 32$ DPB kodova u roku od 10-100 meseci?
Za sada, v. http://www.rlmiller.org/de codes/.

U 1+1 dimenziji

Parno podeljeni DPB kodovi

Vreme + jedna dimenzija prostora: $\operatorname{Spin}(1,1)_{\text {Lorentz }}=$ abelovska
Q Def. $\xi^{ \pm \pm}:=c t \pm x, \partial_{ \pm \pm}:=\frac{1}{2}\left[\frac{1}{c} \partial_{t} \pm \partial_{x}\right]-$ nezavisne
Q Onda: $\left[\partial_{x}^{2}-\frac{1}{c^{2}} \partial_{t}^{2}\right] F(x, t)=0 \Rightarrow F(x, t)=f_{L}\left(\xi^{+}\right)+f_{R}\left(\xi^{=}\right)$
${ }^{\text {Q }}$ Supersimetrija: $\left\{Q_{+i}, Q_{+j}\right\}=2 i \delta_{i j} \partial_{\#}$ i $\left\{Q_{-i}, Q_{-j}\right\}=2 i \delta_{i j} \partial_{=}$
Supermultipleti: $\left(\phi_{L}, \psi_{L}, \ldots\right) \boxtimes\left(\phi_{R}, \psi_{R}, \ldots\right)$ [arXiv:1104.3135]
${ }^{\ominus}$ gde su $\left(\phi_{L}, \psi_{L}, \ldots\right)$ i $\left(\phi_{R}, \psi_{R}, \ldots\right)$ "1-dimenzione Adinkre"
Q Strogi matematički dokaz: K. Iga \& Y. Zhang [arXiv:1508.00491]
Q Kodovi koji definišu 1+1-dimenzione supermultiplete imaju dodatni zahtev: parno su podeljeni $\left[(\bullet \ldots \bullet)_{L} \mid(\bullet \ldots \bullet)_{D}\right]$
Oprez: Binarni kodovi se pojavljuju u klasifikaciji supermultipleta. Ta strukturna informacija ograničava (ali ne zadaje) moguće interakcije. Stoga se ti kodovi ne pojavljuju neposredno u dinamici/fizici.

Kafica?

posle pauze?

Tristan Hübsch
Department of Physics and Astronomy, Howard University, Washington DC Department of Mathematics, University of Maryland, College Park, MD Department of Physics, Faculty of Natural Sciences, Novi Sad, Serbia https://tristan.nfshost.com/

