(Fundamentalna) Fizika Elementarnih Čestica

Dan 08c: Kosmologija

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC Department of Mathematics, University of Maryland, College Park, MD Department of Physics, Faculty of Natural Sciences, Novi Sad, Serbia <u>https://tristan.nfshost.com/</u>

Fundamentalna Fizika Elementarnih čestica Program

- Kosmološka rešenja i putovanje kroz vreme
 - Standardne geometrije u kosmologiji
 - Kosmološka konstanta i mrak
 - Nestandardne kosmologije: Kasner, Gödel...

SUTRA posle pauze.

Zoom-foto

Inžinjering prostor-vremena i crvotočine
Aditivnost materije, ali ne i prostor-vremena
Energetski uslovi
Einstein-Rosen most
Šta zadaje koordinatni domen
Hirurgija prostor-vremena
Prohodne crvotočine

Alexander Friedman, Georges H.J.E. Lemaître, Howard P. Robertson i Arthur G. Walker (FLRW):

$$ds^{2} = -c^{2}dt^{2} + a^{2}(t)d\Sigma^{2}, \qquad \begin{cases} d\Sigma^{2} := \left[\frac{dr^{2}}{1 - Kr^{2}} + r^{2}d\Omega^{2}\right], \\ d\Omega^{2} := d\theta^{2} + \sin^{2}(\theta)d\varphi^{2} \end{cases}$$

• ...*a*(*t*) je funkcija srazmere, *K* je Gauss-ova krivina kad *a*(*t*) = 1. • Ove (*t*, *r*, θ , φ) koordinate pokrivaju samo pola prostor-vremena • Pa koristimo tzv. "hipersferne" koordinate:

$$\frac{1}{\sqrt{K}}\sin(r\sqrt{K})$$
 $K > 0,$

$$d\Sigma^{2} = dr^{2} + S_{K}^{2}(r)d\Omega^{2}, \quad S_{K}(r) := \begin{cases} r & K = 0, \\ \frac{1}{2} \sinh(r_{\Lambda}/|K|) & K < 0 \end{cases}$$

Kosmološka konstanta i tamne stvari

Standardna forma" Einstein-ovih jednačina $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G_N}{c4}T_{\mu\nu},$

Inije ono što je Einstein izvorno objavio: $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G_N}{c^4}T_{\mu\nu} - g_{\mu\nu}\Lambda$

 \mathbb{P} ...gde je Λ kosmološka konstanta.

Motivacija:

mogućnost dodavanja Einstein-Hilbert-ovom dejstvu

 $\int \sqrt{-g} \mathrm{d}^4 x \; \Lambda$

 $\ensuremath{\mathbb{Q}}$...a Λ dozvoljava stacionarnu ravnu geometriju

Kosmološka rešenja i putovanje kroz vreme Kosmološka konstanta i tamne stvari

Stoga je svaka (materijalna raspodela sa $p = -\rho c^2$) $\simeq \Lambda$.

- У U opštem slučaju (za izotropnu i homogenu materiju) Solution States Tamna energija: bilo šta, što ima $p/\rho < 0$.
 - **Kvintesencija**: bilo šta, što ima $p/\rho < -c^2/3$.
 - **Kosmološka konstanta**: bilo šta, što ima $p/\rho = -c^2$.
 - **Fantomska energija**: bilo šta, što ima $p/\rho < -c^2$.

Od posebnog interesa:

Mi smo ovde. $ds^{2} = \begin{cases} -c^{2}dt^{2} + a_{0}^{2}e^{+2c\sqrt{\Lambda/3}t} d\vec{r}^{2}, & \text{de Sitter;} \\ -c^{2}dt^{2} + d\vec{r}^{2}, & \text{Minkovski;} \\ -c^{2}dt^{2} + \left[\frac{12r_{H}^{2}/|\Lambda|}{(r_{H}^{2} - r^{2})^{2}}\sin^{2}(\sqrt{c^{2}|\Lambda|/3}(t - t_{0}))\right] d\vec{r}^{2}, & \text{anti de Sitter.} \end{cases}$ $ds^{2} = -c^{2} \left(1 \mp \frac{1}{3}\Lambda\rho^{2}\right) d\tau^{2} + \left(1 \mp \frac{1}{3}\Lambda\rho^{2}\right)^{-1} d\rho^{2} + \rho^{2} \left(d\theta^{2} + \sin^{2}(\theta)d\phi^{2}\right)$ $H := 2\sqrt{\Lambda/3} > 0$ je Hubble-ova konstanta.

1921, Edward Kasner (bez potpore materije):

$$ds^{2} = -c^{2}dt^{2} + \sum_{i=1}^{3} \left(\frac{t}{T_{i}}\right)^{2p_{i}} (dx^{i})^{2},$$
$$\sum_{i=1}^{3} p_{i} = 1 = \sum_{i=1}^{3} (p_{i})^{2}.$$

Ako bilo koja dva p_i iščezavaju, ceo Riemann-ov tenzor je nula — a prostor-vreme ipak nije ni ravno ni izotropno.

$$p_{2}^{\pm} = \frac{1}{2} \left(1 - p_{1} \pm \sqrt{1 + 2p_{1} - 3p_{1}^{2}} \right),$$

$$p_{3}^{\pm} = 1 - p_{1} - \frac{1}{2} \left(1 - p_{1} \pm \sqrt{1 + 2p_{1} - 3p_{1}^{2}} \right),$$

Pa $-\frac{1}{3} ≤ p_i ≤ 1$: permutacije (0,0,1) ... ($-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}$).

Prostor-vremenska "zapremina" raste linearno sa koordinatom vremena:

🥯 gde je

$$\sqrt{-g} = ct/(T_1^{p_1}T_2^{p_2}T_3^{p_3})$$

Masivne mirujuće čestice se kreću samo u vremenu.

Izometrije Gödel-ove metrike:

$$X_0 := \frac{1}{\Omega_g} \partial_t, \qquad X_3 := \partial_z, \qquad \text{i} \qquad X_2 := \partial_\phi$$

 I, sasvim ne-očigledno:

$$X_{1,4} := \frac{1}{\sqrt{1 + \left(\frac{r}{r_g}\right)^2}} \left[\frac{r}{\sqrt{2c}} \cos \phi \,\partial_t \pm \frac{r_g}{2} \left[1 + \left(\frac{r}{r_g}\right)^2 \right] \left\{ \frac{\sin \phi}{\cos \phi} \right\} \partial_r + \frac{r_g}{2r} \left[1 + 2\left(\frac{r}{r_g}\right)^2 \right] \left\{ \frac{\cos \phi}{\sin \phi} \right\} \partial_z \right]$$

a pogotovo da:

$$L_{1} := X_{4}, \ L_{2} := X_{1}, \qquad \left\{ \begin{bmatrix} L_{j}, L_{k} \end{bmatrix} = i\varepsilon_{jk}^{\ell}L_{\ell}, \\ L_{3} := -i(X_{0} + X_{2}), \qquad \left\{ \begin{bmatrix} L_{j}, X_{k} \end{bmatrix} = 0 = \begin{bmatrix} L_{j}, X_{3} \end{bmatrix}, \right.$$

generišu $\mathfrak{so}(3) \oplus \mathfrak{tr}(\mathbb{R}^{1,1})$ algebru — 3D rotacije, i (t, z)-boost.

Deluje "tranzitivno": naći geodezijske putanje koje sadrže ishodište …pa transformisati ishodište u bilo koju drugu tačku.

- Gödel-ov Svemir je geodezijski kompletan, a nema singulariteta
- \bigcirc …i ima neobično mnogo izometrija: $\mathfrak{so}(3) \oplus \mathfrak{tr}(\mathbb{R}^{1,1})$.

Einstein-ov tenzor:

 $[R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R] = T_{\mu\nu}$ = $\Omega_g^2 \operatorname{diag}(-1, 1, 1, 1) + 2\Omega_g^2 \operatorname{diag}(1, 0, 0, 0)$

 \bigcirc Prvi deo: "lambda vakum" = rešenje sa Λ .

Drugi deo: ko-rotirajući savršen fluid/prašina.

Primetiti: tenzori energije impulsa su aditivni

...ako materijalna raspodela može fizički da se ko-locira

Einstein-ovi tenzori i tezori gustine energije-impulsa raspodela materije/energije su aditivni; njima odgovarajuće metrike nisu.

Inžinjering prostor-vremena i crvotočine Putovanje kroz vreme

- Ukratko: vremeplov je savršeno moguć u opštoj relativnosti.
- - U Gödel-ovom Svemiru, veliki stepen simetrije omogućuje dokaz da ipak nema narušenja/kršenja kauzalnosti.
 - Putovanje kroz ergoregion Kerr-ove geometrije, ili njen prstenast singularitet, ili mnoge druge konstrukcije...
 - …su semi-klasični: narušenje kauzalnosti je verovatno sprečeno.
 - 1992, Stephen Hawking (hipoteza): "opšti princip zaštite hronologije"
 - 1975, Igor Novikov: jedino samo-konzistentne ZVK su moguće.
- Set narušenja hronologije (SNH?) = tačke kroz koje ZVK prolaze
- Granica SNH je Cauchy-ev horizont, ispisan zatvorenim nul-geodezijskim krivama (kojima svetlost putuje).

Inžinjering prostor-vremena i crvotočine Recept

- Seristi Einstein-ove jedančine kao da su Gauss-Ampère-ove:
- $^{\ensuremath{ \bigcirc }}$ Zadaj geometriju, tj. $\left\{ \left(au, \xi, \eta, \zeta
 ight), g_{\mu
 u}
 ight\}$
- [©] Izračunaj Einstein-ov tenzor $G_{\mu\nu} := R_{\mu\nu} \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G_N}{c^4}T_{\mu\nu}$
- Identifikuj tenzor gustine energije-impulsa -
 - ...kao sumu komponenti materije/energije.
 - Koje su fizičke karakteristike tog rasporeda materje/energije?
 - Može li se ta materija/energija sastaviti iz znanih tipova/ formi materije/energije?
 - …ili ona zateva egzotičnu materiju/energiju?
 - Izvrši! ("Make it so!")

Inžinjering prostor-vremena i crvotočine Energetski uslovi

Za pomoć toj karakterizaciji, definišemo: **vremensko** 4-vektorsko polje sa komponentama $\xi^{\mu}(\mathbf{x})$ za koje važi $g_{\mu\nu}\xi^{\mu}\xi^{\nu} < 0$, $\forall \mathbf{x}$ **svetlosno** odnosno nul-4-vektorsko polje sa komponentama $k^{\mu}(\mathbf{x})$ za koje važi $g_{\mu\nu}k^{\mu}k^{\nu} = 0$, $\forall \mathbf{x}$ **kauzalno** 4-vektorsko polje sa komponentama $\zeta^{\mu}(\mathbf{x})$ za koje važi $g_{\mu\nu}\zeta^{\mu}\zeta^{\nu} \leq 0$, $\forall \mathbf{x}$

Dominantni $g^{\mu\nu}T_{\mu\rho}T_{\nu\sigma}\zeta^{\rho}\zeta^{\sigma} \leq 0$ i $g^{0\mu}T_{\mu\nu}\zeta^{\nu} < 0$	$g_{\mu\nu}\zeta^{\mu}\zeta^{\nu}\leqslant 0, \ (\zeta^0>0)$
Slabi $T_{\mu\nu}\xi^{\mu}\xi^{\nu} \leqslant 0$	$g_{\mu\nu}\xi^{\mu}\xi^{\nu} < 0$
Svetlosni (Nul) $T_{\mu\nu}k^{\mu}k^{\nu} \leqslant 0$	$g_{\mu\nu}k^{\mu}k^{\nu}=0$
Jaki $\left[T_{\mu\nu} - \frac{1}{2}g_{\mu\nu}T\right]\xi^{\mu}\xi^{\nu} \leqslant 0$	$g_{\mu u}\xi^{\mu}\xi^{ u}<0$

Dominantni \Rightarrow Slabi \Rightarrow Svetlosni (Nul) \leftarrow Jaki

Scwarzschild-ovo rešenje:

 $ds^{2} = -f_{S}(r)c^{2}dt^{2} + \frac{1}{f_{S}(r)}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}(\theta) d\varphi^{2}),$ $f_{S}(r) := (1 - \frac{r_{S}}{r}), \qquad r_{S} = \frac{2G_{N}M}{c^{2}}.$

1. vremenski element, $g_{00} = g_{tt} = -(1 - \frac{r_s}{r})c^2$ iščezava,

2. radijalni element, $g_{rr} = -\left(1 - \frac{r_s}{r}\right)^{-1}$ divergira.

Za $r < r_s$,

 $f_s(r) < 0$ paje $g_{tt} = -f_s(r) > 0$ a $g_{rr} = (f_s(r))^{-1} < 0$.

Sa gledišta spoljašnjeg posmatrača,

svo radijalno kretanje uspori do zaustavljanja blizu horizonta

- upadajućim objektima treba beskonačno dugo do horizonta
- \subseteq izlazeće svetlo trpi crveni pomak do $\lambda \to \infty$.

Nekoliko slikovitih prikaza Scwarzschild-ovog rešenja:

Scwarzschild-ovo rešenje, u Kruskal-Szekeres koordinatama:

K-Sz	Sch	warzschild	1950. je J.L. Synge otkrio	
u_I , $-u_{III}$	$= \sqrt{\frac{r}{r_s} - 1} \epsilon$	$e^{r/r_S} \cosh\left(\frac{ct}{2r_S}\right)$	nekompletnost, kao i jedan kompletan sistem koordinata.	
$v_{I}, - v_{III}$	$= \sqrt[7]{\frac{r}{r_S} - 1} \epsilon$	$e^{r/r_S}\sinh\left(\frac{ct}{2r_S}\right)$	1959. je C. Fronsdal (ponovo) otkrio nekompletnost, kao i jedan opis sa algeb. uslovom.	
K-Sz	Sch	warzschild	Fronsdal-ovo rešenie je slično	
$u_{II}, -u_{IV}$	$= \sqrt{1-\frac{r}{r_S}}$	$e^{r/r_S}\sinh\left(\frac{ct}{2r_S}\right)$	M. Kruskal-ovom (posredst– vom Wheeler-a i Finkelstein-a)	
$v_{II}, - v_{IV}$	$= \sqrt{1 - \frac{r}{r_S}} e$	$e^{r/r_S} \cosh\left(\frac{ct}{2r_S}\right)$	1960 je G. Szekeres nezavisno otkrio isto rešenje.	
$\begin{pmatrix} r & 1 \end{pmatrix} e^{r/r_s} = u^2 = v^2 = \int \frac{2r_s}{c} \operatorname{arth}\left(\frac{v}{u}\right)$ u oblastima I i III;				
$\left(\frac{r_s}{r_s}-1\right)e$	-u - 0,	$\frac{l}{c} = \int \frac{2r_s}{c} \operatorname{arth}$	$\left(\frac{u}{v}\right)$ u oblastima II i IV;	

Schwarzschild-ovo rešenje:

Scwarzschild-ovo rešenje ima dve "grane":

Regioni I i III su fizički, a II i IV nisu. "Šav" je u stvari tačka: koord. početak U K-Sz sistemu.

Mada statično, Scwarzschild-ovo rešenje ima dinamiku:

Dve razdvojene "strane" crne rupe, jedna strana viđena iz oblasti I, druga iz oblasti III

Einstein-Rosen-ov most je zatvoren.

Einstein-Rosen-ov most počinje da se zatvara; oblast I i III su još uvek prostorno povezane.

① Einstein-Rosen-ov most maksimalno otvoren.

Einstein-Rosen-ov most delimično otvoren; oblast I i III su prostorno povezane.

Dve "strane" crne rupe, spojene u jednoj tački.

Dve razdvojene "strane" crne rupe, jedna strana viđena iz oblasti I, druga iz oblasti III

Einstein-Rosen-ov most je zatvoren za sve realne čestice.

Ali nije za virtuelne čestice.

- Dinamička priča Scwarzschild-ovog rešenja, tj. Einstein-Rosenovog mosta povezuje dva regiona prostor-vremena koji:
 - 1. imaju po jednu crnu rupu
 - 2. te se dve crne rupe u trenutku spoje;
 - 3. spoj tih crnih rupa se otvori u prostorni "most" (crvotočinu) topologije ("oblika") $S^2 \times \mathbb{R}^1$;
 - 4. taj "most" se zatvori pre nego što bi i svetlost mogla kroz njega da prodje;
 - 5. ostanu dve razdvojene oblasti, sa po jednom crnom rupom.

Prirodno je upitati se: da li postoje prolazni "mostovi"?

- Takozvane "Lorentz-ijanske crvotočine"
- Tipično zahtevaju materiju za potporu.
- Tipično zahtevaju egzotičnu materiju u "grlu" (sprečava kolaps).

Inžinjering prostor-vremena i crvotočine Prohodne crvotočine

Jednostavan primer:

 $ds^{2} = -c^{2}dt^{2} + d\ell^{2} + (k^{2} + \ell^{2})(d\theta^{2} + \sin^{2}(\theta)d\varphi^{2}),$ $r = \pm \sqrt{k^{2} + \ell^{2}} \qquad k > 0 \text{ je konstanta.}$

• Ovo daje Einstein-ov tenzor $[G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R] = \frac{k^2}{(k^2 + \ell^2)^2} \operatorname{diag}[-c^2 + 1, (k^2 + \ell^2), (k^2 + \ell^2) \sin^2(\theta)]$

...koji može da pripada samo egzotičnoj materiji

...koju moramo obezbediti da (p)održi prostor-vremensku zakrivljenost ove geometrije.

Inžinjering prostor-vremena i crvotočine Prohodne crvotočine

Jednostavan primer:

$$ds^{2} = -c^{2}dt^{2} + d\ell^{2} + (k^{2} + \ell^{2})(d\theta^{2} + \sin^{2}(\theta)d\varphi^{2}),$$

$$r = \pm\sqrt{k^{2} + \ell^{2}}$$

Ovo daje Einstein-ov tenzor $[G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R] = \frac{k^2}{(k^2 + \ell^2)^2} \operatorname{diag}\left[-c^2 + \frac{1}{2}, (k^2 + \ell^2), (k^2 + \ell^2) \sin^2(\theta)\right]$ i tako daje tenzor gustine energije-impulsa. Pošto $T_{rr} < 0$, znači da je ova materija/energija egzotična održava otvoreno grlo.

Inžinjering prostor-vremena i crvotočine Prohodne crvotočine

- Primetimo da je metrika zadata preko kvadrata radijalne koordinate, dozvoljavajući dve "grane/sloja" rešenja.
- Ovo se jednako dogadja ako metrika zavisi od bilo koje druge parne/simetrične funkcije radijalne koordinate.
- Solution Na primer, ako metrika zavisi of $|\xi \xi_*|$, onda:
 - postoje dve "grane/sloja" rešenja
 - ${}^{\scriptsize {{}_{\scriptstyle \odot}}}$ koje se sreću u lokaciji gde je $\xi\!=\!\xi_*$
 - Θ Christoffel-ov simbol će zavisiti od stepenaste funkcije $\vartheta(\xi \xi_*)$
 - \Im Riemann-ov tenzor će zavisiti od Dirac-ove delta-funkcije $\delta(\xi \xi_*)$
 - ...kao i Ricci-jev tenzor, skalarna zakrivljenost, i Einstein-ov tenzor
 - …pa onda i gustina tenzora energije-impulsa!
 - Onda, glatki deo predstavlja "zapreminsku" materiju/energiju
 - \subseteq a deo sa δ -funkcijom materiju/energiju lokalizovanu na mestu $\xi = \xi_*$.

Hvele ne perint

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC Department of Mathematics, University of Maryland, College Park, MD Department of Physics, Faculty of Natural Sciences, Novi Sad, Serbia <u>https://tristan.nfshost.com/</u>