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7.2.3 Coupling of Gravity and Matter

Finally, the operations so far defined may be combined and produce a relevant result for our
present purposes:

Conclusion 7.3 In the general case, Hamilton’s action is

S[fi(x)] :=
Z p

�g d4x L
�
fi(x), (Dµfi(x)), · · · ; x

�
, (7.50)

g := det[g(x)], d4x := 1
4! #µnrsdxµdxndxrdxs, (7.51)

where L is the “Lagrangian density” (in the sense of “Lagrangian per unit 4-volume”).
In turn, both

p�g d4x and L are scalars, i.e., invariants with respect to general coor-
dinate transformations [+ definition 7.6, p. 341].

Comment 7.5 Lagrangian densities L
�
fi(x), (∂µfi(x)), · · · ; x

�
constructed within the

special-relativistic field theory may continue to be used, with but “covariantizing” the
derivatives, ∂µ 7! Dµ := ∂µ + IGµ, where IGµ is the formal Levi-Civita connection
4-vector, which when acting on tensors may be represented by the Christoffel sym-
bol (7.26).

In the general case, the covariant derivative is Dµ = ∂µ + IGµ + Âk
igk
h̄ c A(k)

µ ·Q(k),
where Q

(k)
ak are generators of the kth factor in the Yang-Mills group of gauge symme-

tries with the coupling parameter gk, and A(k) ak
µ are the corresponding gauge 4-vector

potentials.

In the general case, let LM be the Lorentz-invariant Lagrangian density for any type
of matter—here, “matter” denotes everything except the metric tensor gµn, the Levi-Civita
connection 4-vector potential IGµ, and the Riemann tensor Rµnr

s and quantities constructed
from these. The corresponding model that is invariant with respect to general coordinate
transformations has the Hamilton action

Z p
�g d4x

h c3

16p GN
R �LM

i
, (7.52)

where all the derivatives in the Lagrangian density LM are “covariantized” as discussed in
comment 7.5, p. 349. Varying this action by the components of the inverse metric tensor
yields

dR
dgµn +

Rp�g
d(
p�g)
dgµn = �16p GN

c3
1p�g

d(
p�g LM)

dgµn , (7.53)

that is [407, 49, 298, 440, 52, 75],

Rµn � 1
2 gµnR =

8p GN

c4 Tµn, (7.54)

where the rank-2 and type-(0, 2) tensor

Tµn := � 2cp�g
d(
p�g LM)

dgµn (7.55)
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üb

sc
h,

th
ub

sc
h@

ho
w

ar
d.

ed
u,

w
ith

an
y

co
m

m
en

ts
/

su
gg

es
tio

ns
/

co
rr

ec
tio

ns
;t

ha
nk

yo
u!

—
D

R
A

FT

Variranjem OKT-kovarijantizovanog dejstva po gμν daje

gde je

Prisustvo materije (supstancije) zakrivljuje prostor-vreme.
: gustina energijeT00

: gustina impulsaT0i =Ti0
: stres smicanjaTik =Tki, i≠k

 (bez sume): normalni stres, 
“pritisak” ako su sva tri jednaka
Tii

=
∂xr

∂ys

∂yk

∂xµ

∂yl

∂xn Gs
kl(y) +

∂xr

∂ys

∂

∂xµ

∂ys

∂xn .

(∂µgnr) =
�
∂µ(~xn·~xr)

�
= Gs

µn~xs·~xr +~xn·Gs
µr~xs = gsrGs

µn + gsnGs
µr ()

Gr
µn = 1

2 grs⇥(∂µgns) + (∂ngµs)� (∂sgµn)
⇤

Dµ gnr = 0 = Dµ gnr.

Rµnr
s :=

⇥
Dµ , Dn

⇤
r

s =
⇥�

ds
l∂n + Gs

nl

�
Gl

µr

⇤
�

⇥�
ds

l∂µ + Gs
µl

�
Gl

nr

⇤
, ()

= ∂nGs
µr � ∂µGs

nr + Gs
nlGl

µr � Gs
µlGl

nr. ()

Tr[Fµn] = 0 Fµn = �Fnµ #klµnDlFµn = 0

Gµn := Rµn � 1
2 gµnR = 0.

S[fi(x)] =
Z

d4x L (fi, (∂µfi), · · · ; x; Ca)

!
Z p

|g|d4x
h c3

16pGN
R �L (fi, (Dµfi), · · · ; x; Ca)

i

Tµn := gµrTrsgns DµTµn = 0

=
∂xr

∂ys

∂yk

∂xµ

∂yl

∂xn Gs
kl(y) +

∂xr

∂ys

∂

∂xµ

∂ys

∂xn .

(∂µgnr) =
�
∂µ(~xn·~xr)

�
= Gs

µn~xs·~xr +~xn·Gs
µr~xs = gsrGs

µn + gsnGs
µr ()

Gr
µn = 1

2 grs⇥(∂µgns) + (∂ngµs)� (∂sgµn)
⇤

Dµ gnr = 0 = Dµ gnr.

Rµnr
s :=

⇥
Dµ , Dn

⇤
r

s =
⇥�

ds
l∂n + Gs

nl

�
Gl

µr

⇤
�

⇥�
ds

l∂µ + Gs
µl

�
Gl

nr

⇤
, ()

= ∂nGs
µr � ∂µGs

nr + Gs
nlGl

µr � Gs
µlGl

nr. ()

Tr[Fµn] = 0 Fµn = �Fnµ #klµnDlFµn = 0

Gµn := Rµn � 1
2 gµnR = 0.

S[fi(x)] =
Z

d4x L (fi, (∂µfi), · · · ; x; Ca)

!
Z p

|g|d4x
h c3

16pGN
R �L (fi, (Dµfi), · · · ; x; Ca)

i

Tµn := gµrTrsgns DµTµn = 0

Noether-ina Teorema

S[ϕ(x)]= ∫ d4x[ c3

16πGN
R − ℒ(ϕ, ($μϕ), …; x; Ca)]
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I obratno, varijacije dejstva po %i(x) daje jednačine kretanja za 
polja %i(x), spregnuta sa gμν.
Na primer,

Ovo se može razumeti na dva dualna načina:
Objekti se kreću po geodezijskim (ekstremnim) trajektorijama, sledeći 
zakrivljenost samog prostor-vremena. (Geometrija)
Objekti se kreću pod uticajem gravitacione sile. (Fizika)

Potonje pretpostavlja postojanje praznog prostor-vremena u kome 
je gravitaciono polje rasprostranjeno a objekti se kreću.

=
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h c3
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Tµn := gµrTrsgns DµTµn = 0

LM = m
r

gµn
∂xµ

∂t
∂xn

∂t
⇒
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Indeed, if we take16 LM = m
q

gµn
∂xµ

∂t
∂xn

∂t , which is the Lagrangian density [+ defini-
tion L0 in digression 1.7, p. 99, and definition (7.15)] for a particle that moves in spacetime
with the metric tensor gµn, then varying (7.52) by xµ yields

d2xr

dt2 + Gr
µn

dxµ

dt
dxn

dt
= 0, (7.57)

that are the differential equations that determine the so-called geodesic (extremal) lines. In
flat spacetime, gµn = �hµn and the Christoffel symbol vanishes, so (7.57) gives ..xµ = 0,
i.e., xµ = xµ

0 + vµ
0t: straight lines in spacetime. Rearranging the second term we obtain the

analogue of the second Newton’s law:

m
d2xr

dt2 = Fr
grav := �m Gr

µn
dxµ

dt
dxn

dt
, (7.58)

where the right-hand side provides the gravitational force that curves the trajectory of the
particle the acceleration of which appears on the left-hand side.

The possibility of reinterpretation of an essentially geometric information [spacetime
curvature in (7.57)] as an essentially physical information [definition of the force and in-
teraction in (7.58)] points at the fundamental equivalence of these tow ways of thinking
and explaining natural phenomena. Of course, this is merely one of the simplest examples,
but it should be clear that now even in the most general context, the coupled system of
the Einstein equations and the general-relativistically covariant Euler-Lagrange equations of
motion may be reinterpreted:

1. either in a purely geometric sense, where objects move along geodesic (extremal)
trajectories defined by the curvature of the spacetime itself,

2. or in a purely “physicsy” sense, where objects move under the influence of forces with
which these objects affect one on another.

It behooves us to keep in mind that this latter way of interpreting natural phenomena im-
plicitly presupposes the existence of an “empty” spacetime in which these objects move.
Therefore, the first, geometric way of interpretation is more economical, and represents
the basis of “geometrizing” physics: the notion of force may be replaced by the notion of
curvature in spacetime.

Digression 7.5: Relation (7.34) gives a formal correspondence between Yang-Mills gauge theo-
ries and the general theory of relativity:

[Aµ]a
a  ! Gr

µn, and so also [Fµn]a
a  ! Rµn r

s. (7.59a)

This formal correspondence is also qualitatively correct, and foremost in its geometric sense,
where the tensors Fµn and Rµn r

s represent the curvature of the effective spacetime for the
purposes of field propagation and particle motion.

16 Here, t denotes an arbitrary parameter of the dimension of time, and which varies along the worldline of the
given particle.
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Lako prepišemo kao:

svako ne-metričko/ne-Christoffel-ovo polje
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Po konstrukciji,

Dok su (  ) i (  ) ireducibilne reprezentacije  

(tj. rotacija × kalibracione grupe),
&0i &ij SO(3)R×GYM

(  ) i (  ) nisu ireducibilne reprezentacije ni    (rotacija) 
a tek ne    (čitave Lorentz-ove grupe).

ℝ0i ℝij SO(3)R
SO(1,3)

Mada su (  ) i (  ) konceptualno analogni, ova 
analogija je tehnički ograničena.

)μ ↔ IΓμ &μν ↔ℝμν

E&M:  ;  nAYM:  ;  gravitacija:  ⃗E & ⃗B ⃗Ea, ⃗Ba & (Φa, c ⃗Aa) gμν(x), Rμνρ
σ

=
∂xr

∂ys

∂yk

∂xµ

∂yl

∂xn Gs
kl(y) +

∂xr

∂ys

∂

∂xµ

∂ys

∂xn .

(∂µgnr) =
�
∂µ(~xn·~xr)

�
= Gs

µn~xs·~xr +~xn·Gs
µr~xs = gsrGs

µn + gsnGs
µr ()

Gr
µn = 1

2 grs⇥(∂µgns) + (∂ngµs)� (∂sgµn)
⇤

Dµ gnr = 0 = Dµ gnr.

Rµnr
s :=

⇥
Dµ , Dn

⇤
r

s =
⇥�

ds
l∂n + Gs

nl

�
Gl

µr

⇤
�

⇥�
ds

l∂µ + Gs
µl

�
Gl

nr

⇤
, ()

= ∂nGs
µr � ∂µGs

nr + Gs
nlGl

µr � Gs
µlGl

nr. ()

Tr[Fµn] = 0 Fµn = �Fnµ #klµnDlFµn = 0

Gµn := Rµn � 1
2 gµnR = 0.

S[fi(x)] =
Z

d4x L (fi, (∂µfi), · · · ; x; Ca)

!
Z p

|g|d4x
h c3

16pGN
R�L (fi, (Dµfi), · · · ; x; Ca)

i

Tµn := gµrTrsgns DµTµn = 0

LM = m
r

gµn
∂xµ

∂t
∂xn

∂t
[Aµ]ab  ! Gr

µn,

[Fµn]ab  ! Rµn r
s

[ [
~E = (F0i), ~B = (Fij) R0i r

s, Rij r
s
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∂xr

∂ys

∂yk
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r
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�
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jeste od koristi!Korisno, pošto je 
kalibraciono-invarijantno

&  u QM(Φ, ⃗A)
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S druge strane…
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obe su Noether-ine struje oba su “najosnovnija” polja
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Da sumiramo:

Kalibracija faza 
EM & YM

Kalibracija Opšte Koord.  Transf.

konceptualno inžinjerski

— gμν —

potencijal )μ ℾμ gμν

polje &μν  ℝμν ℾμ

izvor /μ ∝ 0μ& μν 0μ ℝμνρ
σ = ? “0(μℾν)” ∝ Tμν

7.2. How is Gravity Different from Yang-Mills Interactions 349

7.2.3 Coupling of Gravity and Matter

Finally, the operations so far defined may be combined and produce a relevant result for our
present purposes:

Conclusion 7.3 In the general case, Hamilton’s action is

S[fi(x)] :=
Z p

�g d4x L
�
fi(x), (Dµfi(x)), · · · ; x

�
, (7.50)

g := det[g(x)], d4x := 1
4! #µnrsdxµdxndxrdxs, (7.51)

where L is the “Lagrangian density” (in the sense of “Lagrangian per unit 4-volume”).
In turn, both

p�g d4x and L are scalars, i.e., invariants with respect to general coor-
dinate transformations [+ definition 7.6, p. 341].

Comment 7.5 Lagrangian densities L
�
fi(x), (∂µfi(x)), · · · ; x

�
constructed within the

special-relativistic field theory may continue to be used, with but “covariantizing” the
derivatives, ∂µ 7! Dµ := ∂µ + IGµ, where IGµ is the formal Levi-Civita connection
4-vector, which when acting on tensors may be represented by the Christoffel sym-
bol (7.26).

In the general case, the covariant derivative is Dµ = ∂µ + IGµ + Âk
igk
h̄ c A(k)

µ ·Q(k),
where Q

(k)
ak are generators of the kth factor in the Yang-Mills group of gauge symme-

tries with the coupling parameter gk, and A(k) ak
µ are the corresponding gauge 4-vector

potentials.

In the general case, let LM be the Lorentz-invariant Lagrangian density for any type
of matter—here, “matter” denotes everything except the metric tensor gµn, the Levi-Civita
connection 4-vector potential IGµ, and the Riemann tensor Rµnr

s and quantities constructed
from these. The corresponding model that is invariant with respect to general coordinate
transformations has the Hamilton action

Z p
�g d4x

h c3

16p GN
R �LM

i
, (7.52)

where all the derivatives in the Lagrangian density LM are “covariantized” as discussed in
comment 7.5, p. 349. Varying this action by the components of the inverse metric tensor
yields

dR
dgµn +

Rp�g
d(
p�g)
dgµn = �16p GN

c3
1p�g

d(
p�g LM)

dgµn , (7.53)

that is [407, 49, 298, 440, 52, 75],

Rµn � 1
2 gµnR =

8p GN

c4 Tµn, (7.54)

where the rank-2 and type-(0, 2) tensor

Tµn := � 2cp�g
d(
p�g LM)

dgµn (7.55)
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Razmotrimo Einstein-ove jednačine:

…čiji trag izjednačuje

zbog čega su Einstein-ove jednačine ekvivalentne

Stoga,

Ricci-ravno prostor-vreme ne zahteva/implicira potporu materijom
Odsustvo materije implicira/zahteva Ricci-ravno prostor-vreme

Jedan brzi rezultat…
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Razmotrimo prazno prostor-vreme:  ,  tj.  Rμν− 1
2 gμνR=0 Tμν =0

To jest, prostor-vreme bez materije.
1915, Karl Schwatzschild (sa Ruskog fronta, kao nemački vojnik): 
prvo i najpoznatije Ricci-ravno rešenje Einstein-ovih jednačina.

Ali, ako tu nema nikakve materije, čija je to M masa?
To je masa singulariteta—“defekta” u prostor-vremenu—u 
ishodištu.

“Nematerijalna” (Ricci-ravna) rešenja
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Poginuo je u toku te godine.
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7.3 Special Solutions

It is always pleasant to present exact solutions in a simple form.
— Karl Schwarzschild

Solutions of the Einstein equations (7.54) represent various spacetime geometries—various
Universes18—of which each one may serve as a background/arena in which all “other”
physics happens, including the elementary particle physics as it was analyzed so far. Be-
sides, the Einstein equations—as a system of differential equations for the metric tensor
components—are nonlinear, making the existence of a growing class of exact solutions all
the more interesting.

7.3.1 The Schwarzschild Solution

Only a month after the publication of Einstein’s theory of general relativity and gravitation,
in 1915, Karl Schwarzschild published the first and best known exact solution to the Einstein
equations. Six years later, the mathematician George David Birkhoff proved a theorem19

whereby any spherically symmetric solution of the Einstein equations without matter (7.49)
must be stationary and asymptotically flat, i.e., the geometry of the outer region of spacetime
must be described by the Schwarzschild metric tensor (see Refs. [298, 217, 79, 440, 105]
and also [102, 475, 101]), given here in spherical coordinates:

Schwarzschild:

⇢ [gµn] = diag
�
� fS(r), 1

fS(r)
, r2, r2 sin2(q)

�
,

ds2 = � fS(r)c2dt2 + 1
fS(r)

dr2 + r2�dq2 + sin2(q)dj2�,
(7.61a)

where
fS(r) :=

⇣
1 � rS

r

⌘
, rS =

2GN M
c2 . (7.61b)

As the metric tensor (7.61) satisfies the Einstein equations with Tµn = 0, it follows that
the Schwarzschild solution describes empty spacetime, in the sense that this is a possible
geometry of spacetime in absence of any matter. The mass M := c2rS

2GN
that may be ascribed to

the point-like object at the origin of the coordinate system then does not represent a particle
of matter that is placed there, but is a characteristic of spacetime itself [+ digression 7.6,
p. 359], that is for observers outside rS curved as if there existed an object of mass M.

The meaning of the Schwarzschild radius, rS, is as follows: The well-known expression
for the (first) escape velocity, i.e., the velocity of separation from a plane of mass M at a
distance r from the center of the planet is

v1 =

r
2GN M

r
. (7.62)

18 The distinction between a “spacetime geometry” and a “Universe”—as the latter word is used in this chapter—
is far from strict: the latter term is used merely for emphasis at its global meaning. A “Universe,” after all,
has an all-encompassing ring to it and so allows “spacetime geometry” to have either just a local reference,
if desired, or a fully global one. In recent times however, the terms “Multiverse” and “Metaverse” came into
vogue, denoting a collection—sometimes indefinitely large—of Universes [410, 411, 412, 447, for starters].
Especially when these Universes within a Multiverse are connected, the connotation of global-ness of a single
Universe is restricted in some way or another, at the least. Herein at least, a “Universe” will be used to denote
a closed, isolated and geodesically complete spacetime, unless explicitly stated otherwise.

19 It was recently discovered that this theorem, many years known under Birkhoff’s name, was proven two years
earlier (in 1919) by the Norwegian physicist Jørg Tofte Jebsen [240].
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It is always pleasant to present exact solutions in a simple form.
— Karl Schwarzschild

Solutions of the Einstein equations (7.54) represent various spacetime geometries—various
Universes18—of which each one may serve as a background/arena in which all “other”
physics happens, including the elementary particle physics as it was analyzed so far. Be-
sides, the Einstein equations—as a system of differential equations for the metric tensor
components—are nonlinear, making the existence of a growing class of exact solutions all
the more interesting.

7.3.1 The Schwarzschild Solution

Only a month after the publication of Einstein’s theory of general relativity and gravitation,
in 1915, Karl Schwarzschild published the first and best known exact solution to the Einstein
equations. Six years later, the mathematician George David Birkhoff proved a theorem19

whereby any spherically symmetric solution of the Einstein equations without matter (7.49)
must be stationary and asymptotically flat, i.e., the geometry of the outer region of spacetime
must be described by the Schwarzschild metric tensor (see Refs. [298, 217, 79, 440, 105]
and also [102, 475, 101]), given here in spherical coordinates:

Schwarzschild:

⇢ [gµn] = diag
�
� fS(r), 1

fS(r)
, r2, r2 sin2(q)
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,

ds2 = � fS(r)c2dt2 + 1
fS(r)

dr2 + r2�dq2 + sin2(q)dj2�,
(7.61a)

where
fS(r) :=

⇣
1 � rS

r

⌘
, rS =

2GN M
c2 . (7.61b)

As the metric tensor (7.61) satisfies the Einstein equations with Tµn = 0, it follows that
the Schwarzschild solution describes empty spacetime, in the sense that this is a possible
geometry of spacetime in absence of any matter. The mass M := c2rS

2GN
that may be ascribed to

the point-like object at the origin of the coordinate system then does not represent a particle
of matter that is placed there, but is a characteristic of spacetime itself [+ digression 7.6,
p. 359], that is for observers outside rS curved as if there existed an object of mass M.

The meaning of the Schwarzschild radius, rS, is as follows: The well-known expression
for the (first) escape velocity, i.e., the velocity of separation from a plane of mass M at a
distance r from the center of the planet is

v1 =

r
2GN M

r
. (7.62)

18 The distinction between a “spacetime geometry” and a “Universe”—as the latter word is used in this chapter—
is far from strict: the latter term is used merely for emphasis at its global meaning. A “Universe,” after all,
has an all-encompassing ring to it and so allows “spacetime geometry” to have either just a local reference,
if desired, or a fully global one. In recent times however, the terms “Multiverse” and “Metaverse” came into
vogue, denoting a collection—sometimes indefinitely large—of Universes [410, 411, 412, 447, for starters].
Especially when these Universes within a Multiverse are connected, the connotation of global-ness of a single
Universe is restricted in some way or another, at the least. Herein at least, a “Universe” will be used to denote
a closed, isolated and geodesically complete spacetime, unless explicitly stated otherwise.

19 It was recently discovered that this theorem, many years known under Birkhoff’s name, was proven two years
earlier (in 1919) by the Norwegian physicist Jørg Tofte Jebsen [240].
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Prazno prostor-vreme može da ima masu, čak i klasično!

nAYM:  
 

“glueballs”

$μ& μν =0
ελμνρ$μ&νρ =0



Specialna rešenja

Singularitet??

Kako u r = rS tako i u r = 0, komponenta metrike divergira.
U r = rS,  fS(r) = 0, dt2-član iščezava a dr2-član divergira.
U r = 0,  fS(r) = ∞, dt2-član divergira a dr2-član iščezava.
No, to bi mogla da bude posledica “loših” koordinata! Metričke 
komponente nisu invarijante — čine tenzor tipa (0,2)!

Zaista, 1933. je Georges Lemaître našao da koordinatni sistem 
koji je Arthur Eddington uveo još 1924. pokazuje da je r = rS 
lokacija savršeno dosadna… osim što je granica bez povratka.
S druge strane, Kretschmann-ova invarijanta

“Nematerijalna” (Ricci-ravna) rešenja
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7.3 Special Solutions

It is always pleasant to present exact solutions in a simple form.
— Karl Schwarzschild

Solutions of the Einstein equations (7.54) represent various spacetime geometries—various
Universes18—of which each one may serve as a background/arena in which all “other”
physics happens, including the elementary particle physics as it was analyzed so far. Be-
sides, the Einstein equations—as a system of differential equations for the metric tensor
components—are nonlinear, making the existence of a growing class of exact solutions all
the more interesting.

7.3.1 The Schwarzschild Solution

Only a month after the publication of Einstein’s theory of general relativity and gravitation,
in 1915, Karl Schwarzschild published the first and best known exact solution to the Einstein
equations. Six years later, the mathematician George David Birkhoff proved a theorem19

whereby any spherically symmetric solution of the Einstein equations without matter (7.49)
must be stationary and asymptotically flat, i.e., the geometry of the outer region of spacetime
must be described by the Schwarzschild metric tensor (see Refs. [298, 217, 79, 440, 105]
and also [102, 475, 101]), given here in spherical coordinates:

Schwarzschild:

⇢ [gµn] = diag
�
� fS(r), 1

fS(r)
, r2, r2 sin2(q)

�
,

ds2 = � fS(r)c2dt2 + 1
fS(r)

dr2 + r2�dq2 + sin2(q)dj2�,
(7.61a)

where
fS(r) :=

⇣
1 � rS

r

⌘
, rS =

2GN M
c2 . (7.61b)

As the metric tensor (7.61) satisfies the Einstein equations with Tµn = 0, it follows that
the Schwarzschild solution describes empty spacetime, in the sense that this is a possible
geometry of spacetime in absence of any matter. The mass M := c2rS

2GN
that may be ascribed to

the point-like object at the origin of the coordinate system then does not represent a particle
of matter that is placed there, but is a characteristic of spacetime itself [+ digression 7.6,
p. 359], that is for observers outside rS curved as if there existed an object of mass M.

The meaning of the Schwarzschild radius, rS, is as follows: The well-known expression
for the (first) escape velocity, i.e., the velocity of separation from a plane of mass M at a
distance r from the center of the planet is

v1 =

r
2GN M

r
. (7.62)

18 The distinction between a “spacetime geometry” and a “Universe”—as the latter word is used in this chapter—
is far from strict: the latter term is used merely for emphasis at its global meaning. A “Universe,” after all,
has an all-encompassing ring to it and so allows “spacetime geometry” to have either just a local reference,
if desired, or a fully global one. In recent times however, the terms “Multiverse” and “Metaverse” came into
vogue, denoting a collection—sometimes indefinitely large—of Universes [410, 411, 412, 447, for starters].
Especially when these Universes within a Multiverse are connected, the connotation of global-ness of a single
Universe is restricted in some way or another, at the least. Herein at least, a “Universe” will be used to denote
a closed, isolated and geodesically complete spacetime, unless explicitly stated otherwise.

19 It was recently discovered that this theorem, many years known under Birkhoff’s name, was proven two years
earlier (in 1919) by the Norwegian physicist Jørg Tofte Jebsen [240].
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7.3 Special Solutions

It is always pleasant to present exact solutions in a simple form.
— Karl Schwarzschild

Solutions of the Einstein equations (7.54) represent various spacetime geometries—various
Universes18—of which each one may serve as a background/arena in which all “other”
physics happens, including the elementary particle physics as it was analyzed so far. Be-
sides, the Einstein equations—as a system of differential equations for the metric tensor
components—are nonlinear, making the existence of a growing class of exact solutions all
the more interesting.

7.3.1 The Schwarzschild Solution

Only a month after the publication of Einstein’s theory of general relativity and gravitation,
in 1915, Karl Schwarzschild published the first and best known exact solution to the Einstein
equations. Six years later, the mathematician George David Birkhoff proved a theorem19

whereby any spherically symmetric solution of the Einstein equations without matter (7.49)
must be stationary and asymptotically flat, i.e., the geometry of the outer region of spacetime
must be described by the Schwarzschild metric tensor (see Refs. [298, 217, 79, 440, 105]
and also [102, 475, 101]), given here in spherical coordinates:

Schwarzschild:

⇢ [gµn] = diag
�
� fS(r), 1

fS(r)
, r2, r2 sin2(q)

�
,

ds2 = � fS(r)c2dt2 + 1
fS(r)

dr2 + r2�dq2 + sin2(q)dj2�,
(7.61a)

where
fS(r) :=

⇣
1 � rS

r

⌘
, rS =

2GN M
c2 . (7.61b)

As the metric tensor (7.61) satisfies the Einstein equations with Tµn = 0, it follows that
the Schwarzschild solution describes empty spacetime, in the sense that this is a possible
geometry of spacetime in absence of any matter. The mass M := c2rS

2GN
that may be ascribed to

the point-like object at the origin of the coordinate system then does not represent a particle
of matter that is placed there, but is a characteristic of spacetime itself [+ digression 7.6,
p. 359], that is for observers outside rS curved as if there existed an object of mass M.

The meaning of the Schwarzschild radius, rS, is as follows: The well-known expression
for the (first) escape velocity, i.e., the velocity of separation from a plane of mass M at a
distance r from the center of the planet is

v1 =

r
2GN M

r
. (7.62)

18 The distinction between a “spacetime geometry” and a “Universe”—as the latter word is used in this chapter—
is far from strict: the latter term is used merely for emphasis at its global meaning. A “Universe,” after all,
has an all-encompassing ring to it and so allows “spacetime geometry” to have either just a local reference,
if desired, or a fully global one. In recent times however, the terms “Multiverse” and “Metaverse” came into
vogue, denoting a collection—sometimes indefinitely large—of Universes [410, 411, 412, 447, for starters].
Especially when these Universes within a Multiverse are connected, the connotation of global-ness of a single
Universe is restricted in some way or another, at the least. Herein at least, a “Universe” will be used to denote
a closed, isolated and geodesically complete spacetime, unless explicitly stated otherwise.

19 It was recently discovered that this theorem, many years known under Birkhoff’s name, was proven two years
earlier (in 1919) by the Norwegian physicist Jørg Tofte Jebsen [240].
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of which the second, so-called Kretschmann invariant for the Schwarzschild metric equals

kRµnr
sk2 =

48GN
2 M2

c4 r6 , (7.65)

and which is indeed divergent at the coordinate origin, r = 0. This proves that the coor-
dinate origin is really a singularity of the geometry. The fact that neither the scalar curva-
ture (7.45) nor the quadratic curvature invariants (7.64) diverge on the event horizon does
not prove that the location r = rS is not a singularity. It remains, in principle, to check
17 other and independent invariants; the divergence of any one of those invariants on the
sphere r = rS would prove that the event horizon is a singularity. However, as a list of 20
independent invariants is not known, such a direct verification is not doable in practice21.

Fortunately, Georges Lemâıtre has in 1933 discovered that the coordinate substitution
(introduced by Arthur Eddington in 1924, without noting the significance)

dt := dt +
r

rS

r
dr/c

(1 � rS
r )

, d$ := dt +
r

r
rS

dr/c
(1 � rS

r )
(7.66a)

changes the appearance of the Schwarzschild metric tensor into

ds2 = �c2dt2 +
⇣ 2rS

3($ � ct)

⌘ 2
3 d$2 + r2�dq2 + sin2(q)dj2� (7.66b)

and so clearly shows that the sphere r = rS, i.e., $ = $S :=
� 2

3 rS+ct
�

is free of singularities.

Thus, the event horizon is a completely nonsingular location in spacetime and the
unlucky observer who drifts through it would notice nothing unusual in his immediate
vicinity—except that she would not be able to return outside the event horizon. This phe-
nomenon is often compared with the fact that the fish that arrived too close to a waterfall
no longer can return upstream.

In turn, the r = 0 location is indeed a real singularity [+ (7.64)], and its existence
explains the fact that the Schwarzschild solution describes empty space, although the coordi-
nate original may be ascribed the mass M—although no matter exists there. Mathematically,
this unusual property stems from the nonlinearity of the Einstein equations and the singu-
larity of the Schwarzschild solution of those equations. Physically, this indicates that the
gravitational field interacts also with itself—which is conceptually very similar to the self-
interaction of non-abelian Yang-Mills gauge fields [+ discussion of the so-called “glueballs”
on p. 251], and this self-interaction mimics a material particle located at the origin.

There is however another important conceptual difference in describing and modeling
Yang-Mills interactions and gravity:

1. The standard models of Yang-Mills interactions [+ Chapters 3–5] are formulated
in flat and indefinitely large spacetime, that has the geometry of R1,3, i.e., real 4-
dimensional spacetime with the flat metric gµn = �hµn.

21 Nor may this suffice even in principle: as discussed in Ref. [217, section 8.1], because of the non-definiteness
of the metric gµn, there could exist singular solutions to the Einstein equations for which all invariant curvature
polynomials (constructed from gµn, gµn, #µnrs and Rµnr

s) are finite. Also, there do exist special solutions such
as the Taub-NUT (Newman, Unti and Tamburino) solution, where the invariant curvature polynomials remain
bounded but the spacetime contains incomplete geodesics within a compact neighborhood of the horizon.
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Fraza “  lokacija je savršeno dosadna” je… neinformativna.r =rS
U stvari, tu se ipak nešto dogodi!  “1. kosmička brzina”: 
 

granična brzina bežanja iz gravitacionog polja mase M. 
 

pa je tu “1. kosmička brzina” nedostižna.
Još jedan detalj! Unutar horizonta dogadjaja,

“Nematerijalna” (Ricci-ravna) rešenja
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7.3 Special Solutions

It is always pleasant to present exact solutions in a simple form.
— Karl Schwarzschild

Solutions of the Einstein equations (7.54) represent various spacetime geometries—various
Universes18—of which each one may serve as a background/arena in which all “other”
physics happens, including the elementary particle physics as it was analyzed so far. Be-
sides, the Einstein equations—as a system of differential equations for the metric tensor
components—are nonlinear, making the existence of a growing class of exact solutions all
the more interesting.

7.3.1 The Schwarzschild Solution

Only a month after the publication of Einstein’s theory of general relativity and gravitation,
in 1915, Karl Schwarzschild published the first and best known exact solution to the Einstein
equations. Six years later, the mathematician George David Birkhoff proved a theorem19

whereby any spherically symmetric solution of the Einstein equations without matter (7.49)
must be stationary and asymptotically flat, i.e., the geometry of the outer region of spacetime
must be described by the Schwarzschild metric tensor (see Refs. [298, 217, 79, 440, 105]
and also [102, 475, 101]), given here in spherical coordinates:

Schwarzschild:

⇢ [gµn] = diag
�
� fS(r), 1
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where
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As the metric tensor (7.61) satisfies the Einstein equations with Tµn = 0, it follows that
the Schwarzschild solution describes empty spacetime, in the sense that this is a possible
geometry of spacetime in absence of any matter. The mass M := c2rS

2GN
that may be ascribed to

the point-like object at the origin of the coordinate system then does not represent a particle
of matter that is placed there, but is a characteristic of spacetime itself [+ digression 7.6,
p. 359], that is for observers outside rS curved as if there existed an object of mass M.

The meaning of the Schwarzschild radius, rS, is as follows: The well-known expression
for the (first) escape velocity, i.e., the velocity of separation from a plane of mass M at a
distance r from the center of the planet is

v1 =

r
2GN M

r
. (7.62)

18 The distinction between a “spacetime geometry” and a “Universe”—as the latter word is used in this chapter—
is far from strict: the latter term is used merely for emphasis at its global meaning. A “Universe,” after all,
has an all-encompassing ring to it and so allows “spacetime geometry” to have either just a local reference,
if desired, or a fully global one. In recent times however, the terms “Multiverse” and “Metaverse” came into
vogue, denoting a collection—sometimes indefinitely large—of Universes [410, 411, 412, 447, for starters].
Especially when these Universes within a Multiverse are connected, the connotation of global-ness of a single
Universe is restricted in some way or another, at the least. Herein at least, a “Universe” will be used to denote
a closed, isolated and geodesically complete spacetime, unless explicitly stated otherwise.

19 It was recently discovered that this theorem, many years known under Birkhoff’s name, was proven two years
earlier (in 1919) by the Norwegian physicist Jørg Tofte Jebsen [240].
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Lokacija bez povratka.



Specialna rešenja

Kada govorimo o Yang-Mills (EM, jakim, slabim) interakcijama, 
pretpostavljamo ravno, -liko prostor-vreme. Čak ni “topološki 
netrivialna” YM rešenja ne menjaju prostor-vreme.

ℝ1,3

U opštoj teoriji relativnosti, netrivijalno prostor-vreme nije .ℝ1,3

U tom opisu gravitacije, možemo iseći delove prostor-vremena
…što onda čini prostor-vreme nekompletnim.
Nezingularnost prostor-vremena je stoga delikatan problem.

Geodezijski kompletno; finije: vremenski,- nul,- prostorno-
Metrički kompletno: konvergencija svih Cauchy-jevih nizova.
B-kompletno: ako je svaka -kriva konačne dužine sadržana.C1

Invarijante zakrivljenosti:   ima 20 nezav. stepeni slobode.Rμνρ
σ

B-kompletnost implicira geodezijsku, a poklapa se sa metričkom 
—samo ako je , ne i za prostor-vreme.gμν >0

“Nematerijalna” (Ricci-ravna) rešenja

13

Ono je arena.

(→  singulariteti)



Masivne crne rupe
Specijalna rešenja i singulariteti

14

1915, Scwarzschild-ovo rešenje… potsetnik:

Primetimo da je

To jest,   je harmonijska funkcija.fs(r)
Ova metrika zadovoljava Einstein-ove jednačine bez materije.
Masa  karakterizuje sâmo prostor-vremeM

…lokalizovana je u ishodištu, gde je singularitet,
…tako da Gauss-ovu sfera može da se “sažme” oko njega.
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7.3 Special Solutions

It is always pleasant to present exact solutions in a simple form.
— Karl Schwarzschild

Solutions of the Einstein equations (7.54) represent various spacetime geometries—various
Universes18—of which each one may serve as a background/arena in which all “other”
physics happens, including the elementary particle physics as it was analyzed so far. Be-
sides, the Einstein equations—as a system of differential equations for the metric tensor
components—are nonlinear, making the existence of a growing class of exact solutions all
the more interesting.

7.3.1 The Schwarzschild Solution

Only a month after the publication of Einstein’s theory of general relativity and gravitation,
in 1915, Karl Schwarzschild published the first and best known exact solution to the Einstein
equations. Six years later, the mathematician George David Birkhoff proved a theorem19

whereby any spherically symmetric solution of the Einstein equations without matter (7.49)
must be stationary and asymptotically flat, i.e., the geometry of the outer region of spacetime
must be described by the Schwarzschild metric tensor (see Refs. [298, 217, 79, 440, 105]
and also [102, 475, 101]), given here in spherical coordinates:

Schwarzschild:

⇢ [gµn] = diag
�
� fS(r), 1

fS(r)
, r2, r2 sin2(q)

�
,

ds2 = � fS(r)c2dt2 + 1
fS(r)

dr2 + r2�dq2 + sin2(q)dj2�,
(7.61a)

where
fS(r) :=

⇣
1 � rS

r

⌘
, rS =

2GN M
c2 . (7.61b)

As the metric tensor (7.61) satisfies the Einstein equations with Tµn = 0, it follows that
the Schwarzschild solution describes empty spacetime, in the sense that this is a possible
geometry of spacetime in absence of any matter. The mass M := c2rS

2GN
that may be ascribed to

the point-like object at the origin of the coordinate system then does not represent a particle
of matter that is placed there, but is a characteristic of spacetime itself [+ digression 7.6,
p. 359], that is for observers outside rS curved as if there existed an object of mass M.

The meaning of the Schwarzschild radius, rS, is as follows: The well-known expression
for the (first) escape velocity, i.e., the velocity of separation from a plane of mass M at a
distance r from the center of the planet is

v1 =

r
2GN M

r
. (7.62)

18 The distinction between a “spacetime geometry” and a “Universe”—as the latter word is used in this chapter—
is far from strict: the latter term is used merely for emphasis at its global meaning. A “Universe,” after all,
has an all-encompassing ring to it and so allows “spacetime geometry” to have either just a local reference,
if desired, or a fully global one. In recent times however, the terms “Multiverse” and “Metaverse” came into
vogue, denoting a collection—sometimes indefinitely large—of Universes [410, 411, 412, 447, for starters].
Especially when these Universes within a Multiverse are connected, the connotation of global-ness of a single
Universe is restricted in some way or another, at the least. Herein at least, a “Universe” will be used to denote
a closed, isolated and geodesically complete spacetime, unless explicitly stated otherwise.

19 It was recently discovered that this theorem, many years known under Birkhoff’s name, was proven two years
earlier (in 1919) by the Norwegian physicist Jørg Tofte Jebsen [240].
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Solutions of the Einstein equations (7.54) represent various spacetime geometries—various
Universes18—of which each one may serve as a background/arena in which all “other”
physics happens, including the elementary particle physics as it was analyzed so far. Be-
sides, the Einstein equations—as a system of differential equations for the metric tensor
components—are nonlinear, making the existence of a growing class of exact solutions all
the more interesting.

7.3.1 The Schwarzschild Solution

Only a month after the publication of Einstein’s theory of general relativity and gravitation,
in 1915, Karl Schwarzschild published the first and best known exact solution to the Einstein
equations. Six years later, the mathematician George David Birkhoff proved a theorem19

whereby any spherically symmetric solution of the Einstein equations without matter (7.49)
must be stationary and asymptotically flat, i.e., the geometry of the outer region of spacetime
must be described by the Schwarzschild metric tensor (see Refs. [298, 217, 79, 440, 105]
and also [102, 475, 101]), given here in spherical coordinates:

Schwarzschild:

⇢ [gµn] = diag
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� fS(r), 1

fS(r)
, r2, r2 sin2(q)
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,

ds2 = � fS(r)c2dt2 + 1
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(7.61a)

where
fS(r) :=
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, rS =

2GN M
c2 . (7.61b)

As the metric tensor (7.61) satisfies the Einstein equations with Tµn = 0, it follows that
the Schwarzschild solution describes empty spacetime, in the sense that this is a possible
geometry of spacetime in absence of any matter. The mass M := c2rS

2GN
that may be ascribed to

the point-like object at the origin of the coordinate system then does not represent a particle
of matter that is placed there, but is a characteristic of spacetime itself [+ digression 7.6,
p. 359], that is for observers outside rS curved as if there existed an object of mass M.

The meaning of the Schwarzschild radius, rS, is as follows: The well-known expression
for the (first) escape velocity, i.e., the velocity of separation from a plane of mass M at a
distance r from the center of the planet is

v1 =

r
2GN M

r
. (7.62)

18 The distinction between a “spacetime geometry” and a “Universe”—as the latter word is used in this chapter—
is far from strict: the latter term is used merely for emphasis at its global meaning. A “Universe,” after all,
has an all-encompassing ring to it and so allows “spacetime geometry” to have either just a local reference,
if desired, or a fully global one. In recent times however, the terms “Multiverse” and “Metaverse” came into
vogue, denoting a collection—sometimes indefinitely large—of Universes [410, 411, 412, 447, for starters].
Especially when these Universes within a Multiverse are connected, the connotation of global-ness of a single
Universe is restricted in some way or another, at the least. Herein at least, a “Universe” will be used to denote
a closed, isolated and geodesically complete spacetime, unless explicitly stated otherwise.

19 It was recently discovered that this theorem, many years known under Birkhoff’s name, was proven two years
earlier (in 1919) by the Norwegian physicist Jørg Tofte Jebsen [240].
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Schwarzschild-ovo rešenje… još nekoliko detalja (zasad):
Gauss-ovu sferu ima smisla sažeti samo do , do horizonta dogadjaja: 
iz unutrašnjosti se informacija ne može “izvući”.

rS

…a, unutar , Gauss-ova sfera bi morala da ima t za radijus.rS

Za sve praktične potrebe, Schwarzschild-ova geometrija važi do ; 
“unutrašnjost” je nedosežna za spoljašnjeg posmatrača.

rS

Rešenje je asimptotski ravno 
i sferno simetrično
tj. za , približno je ravno.r ≫rS

Može postojati mnogo crnih rupa, 
dovoljno daleko jedna od druge 
tako da jedna drugu ne remeti.
Posetite, npr. http://pisces.as.utexas.edu/GenRel/

≈ravno zakrivljeno

Masivne crne rupe

http://pisces.as.utexas.edu/GenRel/
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Schwarzschild-ovo rešenje… još nekoliko detalja (zasad):
Svako gravitaciono polje savija geodezijske linije (putanje 
“slobodnog padanja”)—pa i svetlosne zrake
Zraci svetla emitovani na jednu 
i na drugu stranu crne rupe, iz 
izvora svetla koji prolazi iza, 
se savijaju…
…i proizvode dvostruku sliku.
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1916–1918, Hans Reissner i Gunnar Nordstrøm:

Karakteristična funkcija   iščezava u:fRN(r)

Postoje dva vrlo različita slučaja:
Kada je : koncentrični horizonti2rq <rS
Kada je , tj.  , crna rupa je prenaelektrisana, 

nema horizonta, singularitet je dostupan svim posmatračima.
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If a finite once-differentiable curve with its endpoint(s) contained in the spacetime is a
geodesic, this geodesic is complete in the sense of definition 7.7. If the metric is positive-
definite, b-completeness coincides with metric completeness.

The metric is of course not positive-definite in the physically interesting Lorentzian
spacetime, in which case it turns out that b-completeness of spacetime implies its geodesic
completeness, but the converse is not true [217]. This prompts Hawking and Ellis to define
a spacetime to be singularity free if it is b-complete, and concede that:

. . . one might possibly wish to weaken this condition slightly, to say that space-
time is singularity-free if it is only non-spacelike b-complete, i.e., if there is an
endpoint for all non-spacelike C1 [once-differentiable] curves with finite length
as measured by a generalized affine parameter.

Needless to say, a detailed analysis of singularities in spacetime geometry and the theory
of gravity is much more involved than the purely algebraic considerations around (7.65)
and certainly beyond our present scope. In addition, the study of gravitation, spacetime
geometry, astrophysics and cosmology brings up the questions whether a singularity could
dynamically develop within an initially non-singular spacetime, whether an initially singular
spacetime could dynamically de-singularize, and how might various singularities interact
with each other. The interested Reader is therefore directed to standard references [298,
217, 440, 52, 75], to begin with.

7.3.2 Charged and Rotating Solutions

Already in 1916-1918, Hans Reissner and Gunnar Nordstrøm generalized the Schwarzschild
solution to electrically charged black holes:

Reissner-Nordstrøm:

(
[gµn] = diag

�
� fRN(r), 1

fRN(r) , r2, r2 sin2(q)
�
,

ds2 = � fRN(r)c2dt2 + 1
fRN(r)dr2 + r2�dq2 + sin2(q)dj2�,

(7.67a)
where

fRN(r) :=
⇣

1 � rS

r
+

rq

r

⌘
, rq :=

s
q2 GN

4pe0 c4 . (7.67b)

This solution has a horizon at the location where grr ! •, i.e., where fRN(r) = 0:

r± = 1
2

⇣
rS ±

q
r2

S � 4r2
q

⌘
. (7.68)

For 2rq < rS, the concentric spheres of radii r+ and r� are two concentric horizons. when
2rq = rS, the two horizons coincide, and this case is called the extremal Reissner-Nordstrøm
solution. In the case when 2rq > rS, i.e., when qp

4pe0
> 4

p
GN M and the black hole is

“overcharged,” there are no horizons and the singularity at the coordinate origin would be
visible to the observer at any distance.

Comment 7.6 A singularity that is not enclosed by an event horizon is called “naked.”
The existence of naked singularities would violate Roger Penrose’s cosmic censorship
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Singularitet je nezaklonjen, “go”/”nag”.

harmonijska
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If a finite once-differentiable curve with its endpoint(s) contained in the spacetime is a
geodesic, this geodesic is complete in the sense of definition 7.7. If the metric is positive-
definite, b-completeness coincides with metric completeness.

The metric is of course not positive-definite in the physically interesting Lorentzian
spacetime, in which case it turns out that b-completeness of spacetime implies its geodesic
completeness, but the converse is not true [217]. This prompts Hawking and Ellis to define
a spacetime to be singularity free if it is b-complete, and concede that:

. . . one might possibly wish to weaken this condition slightly, to say that space-
time is singularity-free if it is only non-spacelike b-complete, i.e., if there is an
endpoint for all non-spacelike C1 [once-differentiable] curves with finite length
as measured by a generalized affine parameter.

Needless to say, a detailed analysis of singularities in spacetime geometry and the theory
of gravity is much more involved than the purely algebraic considerations around (7.65)
and certainly beyond our present scope. In addition, the study of gravitation, spacetime
geometry, astrophysics and cosmology brings up the questions whether a singularity could
dynamically develop within an initially non-singular spacetime, whether an initially singular
spacetime could dynamically de-singularize, and how might various singularities interact
with each other. The interested Reader is therefore directed to standard references [298,
217, 440, 52, 75], to begin with.

7.3.2 Charged and Rotating Solutions

Already in 1916-1918, Hans Reissner and Gunnar Nordstrøm generalized the Schwarzschild
solution to electrically charged black holes:

Reissner-Nordstrøm:
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For 2rq < rS, the concentric spheres of radii r+ and r� are two concentric horizons. when
2rq = rS, the two horizons coincide, and this case is called the extremal Reissner-Nordstrøm
solution. In the case when 2rq > rS, i.e., when qp
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GN M and the black hole is

“overcharged,” there are no horizons and the singularity at the coordinate origin would be
visible to the observer at any distance.

Comment 7.6 A singularity that is not enclosed by an event horizon is called “naked.”
The existence of naked singularities would violate Roger Penrose’s cosmic censorship
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A, postoji i marginalni slučaj “izmedju”:
kada je : horizonti se poklope2rq =rS

…za koje je gravitaciono privlačenje i elektrostatičko odbijanje dva 
takva rešenja u ravnoteži — efektivno kao da nema interakcije!
Roger Penrose: “hipoteza kosmičke cenzure”: da je svaki fizički 
singularitet zaklonjen iza horizonta dogadjaja.
Prenaelektrisana Reissner-Nordstrøm crna rupa dakle krši Penrose-ovu 
hipotezu kosmičke cenzure
…zbog čega se veruje da nije moguće konstruisati prenaelektrisanu 
crnu rupu (nezaklonjen/goli singularitet)
…bez obzira, i sama mogućnost a priori postojanja je instruktivna
Fizički jako netrivijalno gμν rešava Einstein-ove jednačine, bez 
materije dodate za potporu/održavanje.

extremno R-N rešenje
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1963, Roy Kerr (1967, Robert H. Boyer + Richard H. Lindquist): 
 
 
 
 

gde je  ugaoni momenat.L
 koordinate nisu ortogonalne.(ct, r, θ, ϕ)

Ima dva para “horizonta”:
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hypothesis (to wit, that every singularity is enclosed within an event horizon and is
accessible to no “outside” observer). In accord with this hypothesis, it is believed that
the gravitational collapse of matter cannot create naked singularities. +

The exact solution for a chargeless, static, spinning black hole was discovered by Roy
Kerr only in 1963, and is now most often specified in the coordinates given by Robert H.
Boyer and Richard W. Lindquist in 1967:

Kerr:

8
>><

>>:

ds2 = �
⇣

1 � rS r
r2

⌘
c2dt2 + r2

⇣ 1
D

dr2 + dq2
⌘

+
⇣

r2 + `2 +
rS r `2

r2 sin2(q)
⌘

sin2(q)dj2 � 2rS r ` sin2(q)
r2 c dt dj,

(7.69a)

where

` :=
L

Mc
, r :=

q
r2 + `2 cos2(q), D := r2 � rS r + `2, (7.69b)

and L is the angular momentum. Note that—unlike in the Schwarzschild (7.61) and Reissner-
Nordstrøm (7.67) solutions—the Kerr metric tensor is not diagonal: the (ct, r, q, j) coordi-
nates are not orthogonal in the Kerr geometry. This solution possesses an event horizon at
the location where grr ! •, which gives a sphere of radius:

r< = 1
2

⇣
rS +

q
r2

S � 4`2
⌘

. (7.70)

Besides, the location where gtt ! 0 is an ellipsoid with

r> = 1
2

⇣
rS +

q
r2

S � 4`2 cos2(q)
⌘

. (7.71)

The space between this ellipsoid and the spherical event horizon is called the ergosphere.
Objects that enter through the surface of the ellipsiod (7.71) must co-rotate with an angular
speed of at least

W = �
gtj

gjj
=

rS r ` c
r2(r2 + `2) + rS r `2 sin2(q)

, (7.72)

even if this implies that they move faster than the speed of light in vacuum, in reference to
the flat vacuum. By the way, such superluminal motion does not contradict the theory of
relativity, as in a real sense the spacetime itself inside the ergosphere co-rotates, and objects
are—in reference to this co-rotating spacetime—not moving faster than c.

However, since the ellipsoid (7.71) is not an event horizon, objects can dip into the
ergosphere and come out of it. As the motion during the passage through the ergosphere is
faster than a “parallel” motion outside the ergosphere, such an object will draw energy from
the spinning black hole. This process of drawing energy from a spinning black hole is called
the Penrose process, after Rodger Penrose, who discovered this possibility. Also, there exist
trajectories that pass through the ergosphere and which make it possible to travel backwards
in time.
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üb

sc
h,

th
ub

sc
h@

ho
w

ar
d.

ed
u,

w
ith

an
y

co
m

m
en

ts
/

su
gg

es
tio

ns
/

co
rr

ec
tio

ns
;t

ha
nk

yo
u!

—
D

R
A

FT

358 Chapter 7. Gravity and the Geometrization of Physics

hypothesis (to wit, that every singularity is enclosed within an event horizon and is
accessible to no “outside” observer). In accord with this hypothesis, it is believed that
the gravitational collapse of matter cannot create naked singularities. +

The exact solution for a chargeless, static, spinning black hole was discovered by Roy
Kerr only in 1963, and is now most often specified in the coordinates given by Robert H.
Boyer and Richard W. Lindquist in 1967:

Kerr:
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>>:
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⇣

1 � rS r
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c2dt2 + r2

⇣ 1
D

dr2 + dq2
⌘

+
⇣

r2 + `2 +
rS r `2

r2 sin2(q)
⌘

sin2(q)dj2 � 2rS r ` sin2(q)
r2 c dt dj,

(7.69a)

where

` :=
L

Mc
, r :=

q
r2 + `2 cos2(q), D := r2 � rS r + `2, (7.69b)

and L is the angular momentum. Note that—unlike in the Schwarzschild (7.61) and Reissner-
Nordstrøm (7.67) solutions—the Kerr metric tensor is not diagonal: the (ct, r, q, j) coordi-
nates are not orthogonal in the Kerr geometry. This solution possesses an event horizon at
the location where grr ! •, which gives a sphere of radius:

r< = 1
2

⇣
rS +

q
r2

S � 4`2
⌘

. (7.70)

Besides, the location where gtt ! 0 is an ellipsoid with

r> = 1
2

⇣
rS +

q
r2

S � 4`2 cos2(q)
⌘

. (7.71)

The space between this ellipsoid and the spherical event horizon is called the ergosphere.
Objects that enter through the surface of the ellipsiod (7.71) must co-rotate with an angular
speed of at least

W = �
gtj

gjj
=

rS r ` c
r2(r2 + `2) + rS r `2 sin2(q)

, (7.72)

even if this implies that they move faster than the speed of light in vacuum, in reference to
the flat vacuum. By the way, such superluminal motion does not contradict the theory of
relativity, as in a real sense the spacetime itself inside the ergosphere co-rotates, and objects
are—in reference to this co-rotating spacetime—not moving faster than c.

However, since the ellipsoid (7.71) is not an event horizon, objects can dip into the
ergosphere and come out of it. As the motion during the passage through the ergosphere is
faster than a “parallel” motion outside the ergosphere, such an object will draw energy from
the spinning black hole. This process of drawing energy from a spinning black hole is called
the Penrose process, after Rodger Penrose, who discovered this possibility. Also, there exist
trajectories that pass through the ergosphere and which make it possible to travel backwards
in time.
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hypothesis (to wit, that every singularity is enclosed within an event horizon and is
accessible to no “outside” observer). In accord with this hypothesis, it is believed that
the gravitational collapse of matter cannot create naked singularities. +

The exact solution for a chargeless, static, spinning black hole was discovered by Roy
Kerr only in 1963, and is now most often specified in the coordinates given by Robert H.
Boyer and Richard W. Lindquist in 1967:

Kerr:

8
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>>:

ds2 = �
⇣

1 � rS r
r2

⌘
c2dt2 + r2

⇣ 1
D

dr2 + dq2
⌘

+
⇣

r2 + `2 +
rS r `2

r2 sin2(q)
⌘

sin2(q)dj2 � 2rS r ` sin2(q)
r2 c dt dj,

(7.69a)

where

` :=
L

Mc
, r :=

q
r2 + `2 cos2(q), D := r2 � rS r + `2, (7.69b)

and L is the angular momentum. Note that—unlike in the Schwarzschild (7.61) and Reissner-
Nordstrøm (7.67) solutions—the Kerr metric tensor is not diagonal: the (ct, r, q, j) coordi-
nates are not orthogonal in the Kerr geometry. This solution possesses an event horizon at
the location where grr ! •, which gives a sphere of radius:

r< = 1
2

⇣
rS +

q
r2

S � 4`2
⌘

. (7.70)

Besides, the location where gtt ! 0 is an ellipsoid with

r> = 1
2

⇣
rS +

q
r2

S � 4`2 cos2(q)
⌘

. (7.71)

The space between this ellipsoid and the spherical event horizon is called the ergosphere.
Objects that enter through the surface of the ellipsiod (7.71) must co-rotate with an angular
speed of at least

W = �
gtj

gjj
=

rS r ` c
r2(r2 + `2) + rS r `2 sin2(q)

, (7.72)

even if this implies that they move faster than the speed of light in vacuum, in reference to
the flat vacuum. By the way, such superluminal motion does not contradict the theory of
relativity, as in a real sense the spacetime itself inside the ergosphere co-rotates, and objects
are—in reference to this co-rotating spacetime—not moving faster than c.

However, since the ellipsoid (7.71) is not an event horizon, objects can dip into the
ergosphere and come out of it. As the motion during the passage through the ergosphere is
faster than a “parallel” motion outside the ergosphere, such an object will draw energy from
the spinning black hole. This process of drawing energy from a spinning black hole is called
the Penrose process, after Rodger Penrose, who discovered this possibility. Also, there exist
trajectories that pass through the ergosphere and which make it possible to travel backwards
in time.
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horizont dogadjaja

∆ = 0: horizont dogadjaja 
Cauchy-ev horizont

+ prstenasti 
singularitet 

u unutrašnjosti

elipsoid “ergosfere”
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hypothesis (to wit, that every singularity is enclosed within an event horizon and is
accessible to no “outside” observer). In accord with this hypothesis, it is believed that
the gravitational collapse of matter cannot create naked singularities. +

The exact solution for a chargeless, static, spinning black hole was discovered by Roy
Kerr only in 1963, and is now most often specified in the coordinates given by Robert H.
Boyer and Richard W. Lindquist in 1967:

Kerr:

8
>><

>>:

ds2 = �
⇣

1 � rS r
r2

⌘
c2dt2 + r2

⇣ 1
D

dr2 + dq2
⌘

+
⇣

r2 + `2 +
rS r `2

r2 sin2(q)
⌘

sin2(q)dj2 � 2rS r ` sin2(q)
r2 c dt dj,

(7.69a)

where

` :=
L

Mc
, r :=

q
r2 + `2 cos2(q), D := r2 � rS r + `2, (7.69b)

and L is the angular momentum. Note that—unlike in the Schwarzschild (7.61) and Reissner-
Nordstrøm (7.67) solutions—the Kerr metric tensor is not diagonal: the (ct, r, q, j) coordi-
nates are not orthogonal in the Kerr geometry. This solution possesses two event horizons
at the location where grr ! •, which gives two concentric spheres of radii:

rH± = 1
2

⇣
rS ±

q
r2

S � 4`2
⌘

, (7.70)

of which rH+ is clearly “the” relevant event horizon for outside observers. In turn gtt ! 0
occurs on the ellipsoid

ergosphere : rE± = 1
2

h
rS ±

q
r2

S � 2`2[1 + cos(q)]
i

(7.71)

The space between this ellipsoid and the spherical event horizon is called the ergoregion.
Objects that enter through the surface of the ergosphere (7.71) must co-rotate with an
angular speed of at least

W = �
gtj

gjj
=

rS r ` c
r2(r2 + `2) + rS r `2 sin2(q)

, (7.72)

even if this implies that they move faster than the speed of light in vacuum, in reference to
the flat vacuum. By the way, such superluminal motion does not contradict the theory of
relativity, as in a real sense the spacetime itself inside the ergoregion co-rotates, and objects
are—in reference to this co-rotating spacetime—not moving faster than c.

However, since the ergosphere (7.71) is not an event horizon, objects can dip into the
ergoregion and come out of it. As the motion during the passage through the ergoregion is
faster than a “parallel” motion outside the ergoregion, such an object will draw energy from
the spinning black hole. This process of drawing energy from a spinning black hole is called
the Penrose process, after Rodger Penrose, who discovered this possibility. Also, there exist
trajectories that pass through the ergoregion, which make it possible to travel backwards in
time.
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hypothesis (to wit, that every singularity is enclosed within an event horizon and is
accessible to no “outside” observer). In accord with this hypothesis, it is believed that
the gravitational collapse of matter cannot create naked singularities. +

The exact solution for a chargeless, static, spinning black hole was discovered by Roy
Kerr only in 1963, and is now most often specified in the coordinates given by Robert H.
Boyer and Richard W. Lindquist in 1967:
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(7.69a)

where

` :=
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Mc
, r :=
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r2 + `2 cos2(q), D := r2 � rS r + `2, (7.69b)

and L is the angular momentum. Note that—unlike in the Schwarzschild (7.61) and Reissner-
Nordstrøm (7.67) solutions—the Kerr metric tensor is not diagonal: the (ct, r, q, j) coordi-
nates are not orthogonal in the Kerr geometry. This solution possesses two event horizons
at the location where grr ! •, which gives two concentric spheres of radii:
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of which rH+ is clearly “the” relevant event horizon for outside observers. In turn gtt ! 0
occurs on the ellipsoid

ergosphere : rE± = 1
2

h
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(7.71)

The space between this ellipsoid and the spherical event horizon is called the ergoregion.
Objects that enter through the surface of the ergosphere (7.71) must co-rotate with an
angular speed of at least

W = �
gtj

gjj
=

rS r ` c
r2(r2 + `2) + rS r `2 sin2(q)

, (7.72)

even if this implies that they move faster than the speed of light in vacuum, in reference to
the flat vacuum. By the way, such superluminal motion does not contradict the theory of
relativity, as in a real sense the spacetime itself inside the ergoregion co-rotates, and objects
are—in reference to this co-rotating spacetime—not moving faster than c.

However, since the ergosphere (7.71) is not an event horizon, objects can dip into the
ergoregion and come out of it. As the motion during the passage through the ergoregion is
faster than a “parallel” motion outside the ergoregion, such an object will draw energy from
the spinning black hole. This process of drawing energy from a spinning black hole is called
the Penrose process, after Rodger Penrose, who discovered this possibility. Also, there exist
trajectories that pass through the ergoregion, which make it possible to travel backwards in
time.
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hypothesis (to wit, that every singularity is enclosed within an event horizon and is
accessible to no “outside” observer). In accord with this hypothesis, it is believed that
the gravitational collapse of matter cannot create naked singularities. +

The exact solution for a chargeless, static, spinning black hole was discovered by Roy
Kerr only in 1963, and is now most often specified in the coordinates given by Robert H.
Boyer and Richard W. Lindquist in 1967:

Kerr:
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⌘

sin2(q)dj2 � 2rS r ` sin2(q)
r2 c dt dj,

(7.69a)

where

` :=
L

Mc
, r :=

q
r2 + `2 cos2(q), D := r2 � rS r + `2, (7.69b)

and L is the angular momentum. Note that—unlike in the Schwarzschild (7.61) and Reissner-
Nordstrøm (7.67) solutions—the Kerr metric tensor is not diagonal: the (ct, r, q, j) coordi-
nates are not orthogonal in the Kerr geometry. This solution possesses two event horizons
at the location where grr ! •, which gives two concentric spheres of radii:

rH± = 1
2

⇣
rS ±

q
r2

S � 4`2
⌘

, (7.70)

of which rH+ is clearly “the” relevant event horizon for outside observers. In turn gtt ! 0
occurs on the ellipsoid

ergosphere : rE± = 1
2

h
rS ±

q
r2

S � 2`2[1 + cos(q)]
i

(7.71)

The space between this ellipsoid and the spherical event horizon is called the ergoregion.
Objects that enter through the surface of the ergosphere (7.71) must co-rotate with an
angular speed of at least

W = �
gtj

gjj
=

rS r ` c
r2(r2 + `2) + rS r `2 sin2(q)

, (7.72)

even if this implies that they move faster than the speed of light in vacuum, in reference to
the flat vacuum. By the way, such superluminal motion does not contradict the theory of
relativity, as in a real sense the spacetime itself inside the ergoregion co-rotates, and objects
are—in reference to this co-rotating spacetime—not moving faster than c.

However, since the ergosphere (7.71) is not an event horizon, objects can dip into the
ergoregion and come out of it. As the motion during the passage through the ergoregion is
faster than a “parallel” motion outside the ergoregion, such an object will draw energy from
the spinning black hole. This process of drawing energy from a spinning black hole is called
the Penrose process, after Rodger Penrose, who discovered this possibility. Also, there exist
trajectories that pass through the ergoregion, which make it possible to travel backwards in
time.
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Region izmedju unutrašnjeg sfernog horizonta dogadjaja i spoljašnjeg 
elipsoida se zove “ergoregion” (ili “ergosfera”)
Unutar ergoregiona, prostor-vreme sâmo rotira sa gledišta spoljašnjeg 
posmatrača, ugaonom brzinom

Objekti koji “uskoče” kroz ergoregion moraju da ko-rotiraju
…čak i ako je to brže od c, 
gledano spolja.
Uskakanje u ergoregion dozvoljava 
obilaženje “paralelnih” objekata spolja
…i ekstraciju energije: Penrose-ov proces.
Iz ergoregiona je moguće izaći pre nego se ušlo.
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hypothesis (to wit, that every singularity is enclosed within an event horizon and is
accessible to no “outside” observer). In accord with this hypothesis, it is believed that
the gravitational collapse of matter cannot create naked singularities. +

The exact solution for a chargeless, static, spinning black hole was discovered by Roy
Kerr only in 1963, and is now most often specified in the coordinates given by Robert H.
Boyer and Richard W. Lindquist in 1967:

Kerr:

8
>><

>>:

ds2 = �
⇣

1 � rS r
r2

⌘
c2dt2 + r2

⇣ 1
D

dr2 + dq2
⌘

+
⇣

r2 + `2 +
rS r `2

r2 sin2(q)
⌘

sin2(q)dj2 � 2rS r ` sin2(q)
r2 c dt dj,

(7.69a)

where

` :=
L

Mc
, r :=

q
r2 + `2 cos2(q), D := r2 � rS r + `2, (7.69b)

and L is the angular momentum. Note that—unlike in the Schwarzschild (7.61) and Reissner-
Nordstrøm (7.67) solutions—the Kerr metric tensor is not diagonal: the (ct, r, q, j) coordi-
nates are not orthogonal in the Kerr geometry. This solution possesses an event horizon at
the location where grr ! •, which gives a sphere of radius:

r< = 1
2

⇣
rS +

q
r2

S � 4`2
⌘

. (7.70)

Besides, the location where gtt ! 0 is an ellipsoid with

r> = 1
2

⇣
rS +

q
r2

S � 4`2 cos2(q)
⌘

. (7.71)

The space between this ellipsoid and the spherical event horizon is called the ergosphere.
Objects that enter through the surface of the ellipsiod (7.71) must co-rotate with an angular
speed of at least

W = �
gtj

gjj
=

rS r ` c
r2(r2 + `2) + rS r `2 sin2(q)

, (7.72)

even if this implies that they move faster than the speed of light in vacuum, in reference to
the flat vacuum. By the way, such superluminal motion does not contradict the theory of
relativity, as in a real sense the spacetime itself inside the ergosphere co-rotates, and objects
are—in reference to this co-rotating spacetime—not moving faster than c.

However, since the ellipsoid (7.71) is not an event horizon, objects can dip into the
ergosphere and come out of it. As the motion during the passage through the ergosphere is
faster than a “parallel” motion outside the ergosphere, such an object will draw energy from
the spinning black hole. This process of drawing energy from a spinning black hole is called
the Penrose process, after Rodger Penrose, who discovered this possibility. Also, there exist
trajectories that pass through the ergosphere and which make it possible to travel backwards
in time.
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1965. je Ezra Newman prilagodio Kerr-ovo rešenje: 
 
 
 
 
 

 koordinate nisu orthogonalne.(ct, r, θ, ϕ)
“Geometrija horizonata” je mnogo komplikovanija.
Ravnoteža izmedju mase, ugaonog momenta, i naelektrisanja.

Ako je , horizont dogadjaja i ergoregionr 2
S >4(ℓ2 + r 2

q )
Ako je , nema ni horizonta dogadjaja ni ergoregionar 2

S <4(ℓ2 + r 2
q )

Pre-naelektrisanje/rotiranje ⇒ nema horizonta, goli singularitet
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Two years later, in 1965, Ezra Newman found a generalization of the Kerr metric
tensor, for an electrically charged spinning black hole:

Kerr-Newman:

8
>><

>>:

ds2 = �
⇣

c dt � ` sin2(q)dj
⌘2 D

r2 + r2
⇣ 1

D
dr2 + dq2

⌘

+
⇣�

r2 + `2�dj � acdt
⌘2 sin2(q)

r2 ,
(7.73a)

where

` :=
L

Mc
, r :=

q
r2 + `2 cos2(q), D := r2 � rS r + `2 + r2

q , rq :=

s
q2 GN

4pe0 c4 , (7.73b)

and L, M, and q are the angular momentum, the mass and the electric charge of the black
hole. Just as the Kerr metric tensor (7.69), the Kerr-Newman metric tensor (7.73) is also not
diagonal, and the (ct, r, q, j) coordinates are not orthogonal in the Kerr-Newman geometry.

Not even a decade later, in 1972-’73, Akira Tomimatsu and Humitaka Sato discovered a
class of exact solutions [417, 418, 223] [+ also [160] for a recent review and applications]
that generalize the Kerr solution (with polar coordinates r :=

p
x2+y2 and j):

Kerr-Tomimatsu-Sato: ds2 = �F
⇥
c dt � `dj

⇤2
+ F�1⇥E (dr2 + dz2) + r2dj2⇤, (7.74a)

where the functions E, F and G are easiest expressed in terms of prolonged spheroidal coor-
dinates :

x = r0

q
(x2�1)(1�h2) cos j, y = r0

q
(x2�1)(1�h2) sin j, z = r0 xh, (7.74b)

so r = r0
p
(x2�1)(1�h2):

E(x, h) :=
A(x, h)

p2d(x2�h2)d2 , F(x, h) :=
A(x, h)
B(x, h)

, `(x, h) :=
2L/mc
A(x, h)

(1�h2)C(x, h),

(7.74c)
where A(x, h), B(x, h) and C(x, h) are polynomials of degree 2d2, 2d2 and (2d2�1), re-
spectively, and where the constants r0 and p are algebraic functions of the mass m, an-
gular momentum L, the integral parameter d and the natural constants [417, 418]. The
Tomimatsu-Sato solutions depend on the parameter d, so that d = 1 gives the Kerr solution,
but for d 6= 1 the Tomimatsu-Sato solutions contain naked singularities.

— ¶ —

It is important to understand that the very nontrivial solutions (7.61), (7.67), (7.69),
(7.73) and (7.74) are but a special—and physically very interesting—representatives of a
general class of solutions of the Einstein equations without matter. In other words, solu-
tions to the Einstein equations (7.49) include very nontrivial geometries that even contain
locations (in the presented case, the so-called black holes) that have the appearance of a
particle: they have a mass, may have electric charge and intrinsic angular momentum.

Digression 7.6: It is reasonable then to inquire if, e.g., the electron could be simply a charged
black hole. However, with the mass and the charge of the electron, one easily obtains:

rS(e�) = 1.353⇥ 10�57 m ⌧ `P, and rq(e�) = 9.152⇥ 10�37 m < `P. (7.75a)
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7.3. Special Solutions 359

Two years later, in 1965, Ezra Newman found a generalization of the Kerr metric
tensor, for an electrically charged spinning black hole:

Kerr-Newman:

8
>><

>>:

ds2 = � D
r2

⇣
c dt � ` sin2(q)dj

⌘2
+ r2

⇣ 1
D

dr2 + dq2
⌘

+
sin2(q)

r2

⇣�
r2 + `2�dj � `cdt

⌘2
,

(7.73a)

where

` :=
L

Mc
, r :=

q
r2 + `2 cos2(q), D := r2 � rS r + `2 + r2

q , rq :=

s
q2 GN

4pe0 c4 , (7.73b)

and L, M, and q are the angular momentum, the mass and the electric charge of the black
hole. Just as the Kerr metric tensor (7.69), the Kerr-Newman metric tensor (7.73) is also not
diagonal, and the (ct, r, q, j) coordinates are not orthogonal in the Kerr-Newman geometry.

Not even a decade later, in 1972-’73, Akira Tomimatsu and Humitaka Sato discovered a
class of exact solutions [417, 418, 223] [+ also [160] for a recent review and applications]
that generalize the Kerr solution (with polar coordinates r :=

p
x2+y2 and j):

Kerr-Tomimatsu-Sato: ds2 = �Fc2⇥dt�w dj
⇤2

+ F�1⇥E (dr2+dz2)+r2dj2⇤, (7.74a)

where the functions E, F and G are easiest expressed in terms of prolonged spheroidal coor-
dinates (x, h, j):

x = r0

q
(x2�1)(1�h2) cos j, y = r0

q
(x2�1)(1�h2) sin j, z = r0 xh, (7.74b)

so r = r0
p
(x2�1)(1�h2):

E(x, h) :=
A(x, h)

p2d(x2�h2)d2 , F(x, h) :=
A(x, h)
B(x, h)

, G(x, h) :=
2L/mc
A(x, h)

(1�h2)C(x, h),

(7.74c)
where A(x, h), B(x, h) and C(x, h) are polynomials of degree 2d2, 2d2 and (2d2�1), respec-
tively, and where the constants r0 and p are algebraic functions of the mass m, angular
momentum L, the integral parameter d and the natural constants [417, 418]:

r0 :=
GN

c2
p
d

m, and p =

s

1 � c2

GN
2

L2

m4 . (7.75)

The Tomimatsu-Sato solutions depend on the parameter d, so that d = 1 gives the Kerr
solution, but for d 6= 1 the Tomimatsu-Sato solutions contain naked singularities.

— ¶ —

It is important to understand that the very nontrivial solutions (7.61), (7.67), (7.69),
(7.73) and (7.74) are but a special—and physically very interesting—representatives of a
general class of solutions of the Einstein equations without matter. In other words, solu-
tions to the Einstein equations (7.49) include very nontrivial geometries that even contain
locations (in the presented case, the so-called black holes) that have the appearance of a
particle: they have a mass, may have electric charge and intrinsic angular momentum.
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1972–1973, Akira Tomimatsu + Humitaka Sato:

u polarnim koordinatama. Funkcije , ,  se lakše zadaju u 
“sferoidnim” koordinatama

E F G

Pa:

gde su , ,  polinomi reda 
,    i  ,  respektivno. 

A(ξ, η) B(ξ, η) C(ξ, η)
2δ2 2δ2 2δ2−1

7.3. Special Solutions 359

Two years later, in 1965, Ezra Newman found a generalization of the Kerr metric
tensor, for an electrically charged spinning black hole:

Kerr-Newman:

8
>><

>>:

ds2 = �
⇣

c dt � ` sin2(q)dj
⌘2 D

r2 + r2
⇣ 1

D
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⌘

+
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r2 ,
(7.73a)

where

` :=
L

Mc
, r :=

q
r2 + `2 cos2(q), D := r2 � rS r + `2 + r2

q , rq :=

s
q2 GN

4pe0 c4 , (7.73b)

and L, M, and q are the angular momentum, the mass and the electric charge of the black
hole. Just as the Kerr metric tensor (7.69), the Kerr-Newman metric tensor (7.73) is also not
diagonal, and the (ct, r, q, j) coordinates are not orthogonal in the Kerr-Newman geometry.

Not even a decade later, in 1972-’73, Akira Tomimatsu and Humitaka Sato discovered a
class of exact solutions [417, 418, 223] [+ also [160] for a recent review and applications]
that generalize the Kerr solution (with polar coordinates r :=

p
x2+y2 and j):

Kerr-Tomimatsu-Sato: ds2 = �F
⇥
c dt�G dj

⇤2
+ F�1⇥E (dr2 +dz2)+ r2dj2⇤, (7.74a)

where the functions E, F and G are easiest expressed in terms of prolonged spheroidal coor-
dinates :

x = r0

q
(x2�1)(1�h2) cos j, y = r0

q
(x2�1)(1�h2) sin j, z = r0 xh, (7.74b)

so r = r0
p
(x2�1)(1�h2):

E(x, h) :=
A(x, h)

p2d(x2�h2)d2 , F(x, h) :=
A(x, h)
B(x, h)

, G(x, h) :=
2L/mc
A(x, h)

(1�h2)C(x, h),

(7.74c)
where A(x, h), B(x, h) and C(x, h) are polynomials of degree 2d2, 2d2 and (2d2�1), re-
spectively, and where the constants r0 and p are algebraic functions of the mass m, an-
gular momentum L, the integral parameter d and the natural constants [417, 418]. The
Tomimatsu-Sato solutions depend on the parameter d, so that d = 1 gives the Kerr solution,
but for d 6= 1 the Tomimatsu-Sato solutions contain naked singularities.

— ¶ —

It is important to understand that the very nontrivial solutions (7.61), (7.67), (7.69),
(7.73) and (7.74) are but a special—and physically very interesting—representatives of a
general class of solutions of the Einstein equations without matter. In other words, solu-
tions to the Einstein equations (7.49) include very nontrivial geometries that even contain
locations (in the presented case, the so-called black holes) that have the appearance of a
particle: they have a mass, may have electric charge and intrinsic angular momentum.

Digression 7.6: It is reasonable then to inquire if, e.g., the electron could be simply a charged
black hole. However, with the mass and the charge of the electron, one easily obtains:

rS(e�) = 1.353⇥ 10�57 m ⌧ `P, and rq(e�) = 9.152⇥ 10�37 m < `P. (7.75a)
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Two years later, in 1965, Ezra Newman found a generalization of the Kerr metric
tensor, for an electrically charged spinning black hole:

Kerr-Newman:

8
>><

>>:

ds2 = �
⇣

c dt � ` sin2(q)dj
⌘2 D

r2 + r2
⇣ 1

D
dr2 + dq2

⌘

+
⇣�

r2 + `2�dj � acdt
⌘2 sin2(q)

r2 ,
(7.73a)

where

` :=
L

Mc
, r :=

q
r2 + `2 cos2(q), D := r2 � rS r + `2 + r2

q , rq :=

s
q2 GN

4pe0 c4 , (7.73b)

and L, M, and q are the angular momentum, the mass and the electric charge of the black
hole. Just as the Kerr metric tensor (7.69), the Kerr-Newman metric tensor (7.73) is also not
diagonal, and the (ct, r, q, j) coordinates are not orthogonal in the Kerr-Newman geometry.

Not even a decade later, in 1972-’73, Akira Tomimatsu and Humitaka Sato discovered a
class of exact solutions [417, 418, 223] [+ also [160] for a recent review and applications]
that generalize the Kerr solution (with polar coordinates r :=

p
x2+y2 and j):

Kerr-Tomimatsu-Sato: ds2 = �F
⇥
c dt�G dj

⇤2
+ F�1⇥E (dr2 +dz2)+ r2dj2⇤, (7.74a)

where the functions E, F and G are easiest expressed in terms of prolonged spheroidal coor-
dinates :

x = r0

q
(x2�1)(1�h2) cos j, y = r0

q
(x2�1)(1�h2) sin j, z = r0 xh, (7.74b)

so r = r0
p
(x2�1)(1�h2):

E(x, h) :=
A(x, h)

p2d(x2�h2)d2 , F(x, h) :=
A(x, h)
B(x, h)

, G(x, h) :=
2L/mc
A(x, h)

(1�h2)C(x, h),

(7.74c)
where A(x, h), B(x, h) and C(x, h) are polynomials of degree 2d2, 2d2 and (2d2�1), re-
spectively, and where the constants r0 and p are algebraic functions of the mass m, an-
gular momentum L, the integral parameter d and the natural constants [417, 418]. The
Tomimatsu-Sato solutions depend on the parameter d, so that d = 1 gives the Kerr solution,
but for d 6= 1 the Tomimatsu-Sato solutions contain naked singularities.

— ¶ —

It is important to understand that the very nontrivial solutions (7.61), (7.67), (7.69),
(7.73) and (7.74) are but a special—and physically very interesting—representatives of a
general class of solutions of the Einstein equations without matter. In other words, solu-
tions to the Einstein equations (7.49) include very nontrivial geometries that even contain
locations (in the presented case, the so-called black holes) that have the appearance of a
particle: they have a mass, may have electric charge and intrinsic angular momentum.

Digression 7.6: It is reasonable then to inquire if, e.g., the electron could be simply a charged
black hole. However, with the mass and the charge of the electron, one easily obtains:

rS(e�) = 1.353⇥ 10�57 m ⌧ `P, and rq(e�) = 9.152⇥ 10�37 m < `P. (7.75a)
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gular momentum L, the integral parameter d and the natural constants [417, 418]. The
Tomimatsu-Sato solutions depend on the parameter d, so that d = 1 gives the Kerr solution,
but for d 6= 1 the Tomimatsu-Sato solutions contain naked singularities.
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It is important to understand that the very nontrivial solutions (7.61), (7.67), (7.69),
(7.73) and (7.74) are but a special—and physically very interesting—representatives of a
general class of solutions of the Einstein equations without matter. In other words, solu-
tions to the Einstein equations (7.49) include very nontrivial geometries that even contain
locations (in the presented case, the so-called black holes) that have the appearance of a
particle: they have a mass, may have electric charge and intrinsic angular momentum.

Digression 7.6: It is reasonable then to inquire if, e.g., the electron could be simply a charged
black hole. However, with the mass and the charge of the electron, one easily obtains:
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and L, M, and q are the angular momentum, the mass and the electric charge of the black
hole. Just as the Kerr metric tensor (7.69), the Kerr-Newman metric tensor (7.73) is also not
diagonal, and the (ct, r, q, j) coordinates are not orthogonal in the Kerr-Newman geometry.

Not even a decade later, in 1972-’73, Akira Tomimatsu and Humitaka Sato discovered a
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where A(x, h), B(x, h) and C(x, h) are polynomials of degree 2d2, 2d2 and (2d2�1), re-
spectively, and where the constants r0 and p are algebraic functions of the mass m, an-
gular momentum L, the integral parameter d and the natural constants [417, 418]. The
Tomimatsu-Sato solutions depend on the parameter d, so that d = 1 gives the Kerr solution,
but for d 6= 1 the Tomimatsu-Sato solutions contain naked singularities.
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It is important to understand that the very nontrivial solutions (7.61), (7.67), (7.69),
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general class of solutions of the Einstein equations without matter. In other words, solu-
tions to the Einstein equations (7.49) include very nontrivial geometries that even contain
locations (in the presented case, the so-called black holes) that have the appearance of a
particle: they have a mass, may have electric charge and intrinsic angular momentum.
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Two years later, in 1965, Ezra Newman found a generalization of the Kerr metric
tensor, for an electrically charged spinning black hole:

Kerr-Newman:
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where

` :=
L

Mc
, r :=

q
r2 + `2 cos2(q), D := r2 � rS r + `2 + r2

q , rq :=

s
q2 GN

4pe0 c4 , (7.73b)

and L, M, and q are the angular momentum, the mass and the electric charge of the black
hole. Just as the Kerr metric tensor (7.69), the Kerr-Newman metric tensor (7.73) is also not
diagonal, and the (ct, r, q, j) coordinates are not orthogonal in the Kerr-Newman geometry.

Not even a decade later, in 1972-’73, Akira Tomimatsu and Humitaka Sato discovered a
class of exact solutions [417, 418, 223] [+ also [160] for a recent review and applications]
that generalize the Kerr solution (with polar coordinates r :=

p
x2+y2 and j):

Kerr-Tomimatsu-Sato: ds2 = �Fc2⇥dt�w dj
⇤2

+ F�1⇥E (dr2+dz2)+r2dj2⇤, (7.74a)

where the functions E, F and G are easiest expressed in terms of prolonged spheroidal coor-
dinates (x, h, j):

x = r0

q
(x2�1)(1�h2) cos j, y = r0

q
(x2�1)(1�h2) sin j, z = r0 xh, (7.74b)

so r = r0
p
(x2�1)(1�h2):

E(x, h) :=
A(x, h)

p2d(x2�h2)d2 , F(x, h) :=
A(x, h)
B(x, h)

, G(x, h) :=
2L/mc
A(x, h)

(1�h2)C(x, h),

(7.74c)
where A(x, h), B(x, h) and C(x, h) are polynomials of degree 2d2, 2d2 and (2d2�1), respec-
tively, and where the constants r0 and p are algebraic functions of the mass m, angular
momentum L, the integral parameter d and the natural constants [417, 418]:

r0 :=
GN

c2
p
d

m, and p =

s

1 � c2

GN
2

L2

m4 . (7.75)

The Tomimatsu-Sato solutions depend on the parameter d, so that d = 1 gives the Kerr
solution, but for d 6= 1 the Tomimatsu-Sato solutions contain naked singularities.

— ¶ —

It is important to understand that the very nontrivial solutions (7.61), (7.67), (7.69),
(7.73) and (7.74) are but a special—and physically very interesting—representatives of a
general class of solutions of the Einstein equations without matter. In other words, solu-
tions to the Einstein equations (7.49) include very nontrivial geometries that even contain
locations (in the presented case, the so-called black holes) that have the appearance of a
particle: they have a mass, may have electric charge and intrinsic angular momentum.
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üb

sc
h,

th
ub

sc
h@

ho
w

ar
d.

ed
u,

w
ith

an
y

co
m

m
en

ts
/

su
gg

es
tio

ns
/

co
rr

ec
tio

ns
;t

ha
nk

yo
u!

—
D

R
A

FT

7.3. Special Solutions 359
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and L, M, and q are the angular momentum, the mass and the electric charge of the black
hole. Just as the Kerr metric tensor (7.69), the Kerr-Newman metric tensor (7.73) is also not
diagonal, and the (ct, r, q, j) coordinates are not orthogonal in the Kerr-Newman geometry.

Not even a decade later, in 1972-’73, Akira Tomimatsu and Humitaka Sato discovered a
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momentum L, the integral parameter d and the natural constants [417, 418]:

r0 :=
GN

c2
p
d

m, and p =

s

1 � c2

GN
2

L2

m4 . (7.75)

The Tomimatsu-Sato solutions depend on the parameter d, so that d = 1 gives the Kerr
solution, but for d 6= 1 the Tomimatsu-Sato solutions contain naked singularities.

— ¶ —

It is important to understand that the very nontrivial solutions (7.61), (7.67), (7.69),
(7.73) and (7.74) are but a special—and physically very interesting—representatives of a
general class of solutions of the Einstein equations without matter. In other words, solu-
tions to the Einstein equations (7.49) include very nontrivial geometries that even contain
locations (in the presented case, the so-called black holes) that have the appearance of a
particle: they have a mass, may have electric charge and intrinsic angular momentum.
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A ima indirektnih problema…

Masivne, nalektrisane i rotirajuće crne rupe
Specijalna rešenja i singulariteti

23

Za , Tomimatsu-Sato rešenje = Kerr-ovomδ=1
Za , Tomimatsu-Sato rešenja imaju gole singulariteteδ≠1
Ova rešenja su tek mali broj iz velike klase znanih, egzaktih rešenja 
Einstein-ovih jednačina bez materijalne potpore
…koja najčešće imaju razne prostor-vremenske singularitete
…i masu, i naelektrisanje i ugaoni momenat.
Pa, da li se elektron može opisati kao naelektrisana crna rupa?
Sa podacima qe = 1.602 176×10–19 C i me = 9.109 382×10–31 kg,

Ovaj model nije pogrešan, već je besmislen: ne može da ima nikakve 
merljive posledice.
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