(Fundamentalna) Fizika Elementarnih Čestica

Dan 07a: Standardni model i struktura masa

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC Department of Mathematics, University of Maryland, College Park, MD Department of Physics, Faculty of Natural Sciences, Novi Sad, Serbia <u>https://tristan.nfshost.com/</u>

Glashow-Weinberg-Salam

Leva h	iralnost (≈he	elicitet)	Desna hiralnost (≈helicitet)				
Ve	νμ	ντ	Ve	Vµ	ντ		
< 2 eV	< 0.19 MeV	< 18.2 MeV	< 2 eV	< 0.19 MeV	< 18.2 MeV		
е	μ	τ	е	μ	τ		
.511 MeV	106 MeV	1.78 GeV	.511 MeV	106 MeV	1.78 GeV		
u,u,u	<i>C,C,C</i>	<i>t,t,t</i>	u,u,u	C , C , C	<i>t,t,t</i>		
1.8–3.0 MeV	1.25–1.3 GeV	173–174 GeV	1.8–3.0 MeV	1.25–1.3 GeV	173–174 GeV		
<i>d,d,d</i>	S , S , S	b , b , b	<i>d,d,d</i>	S , S , S	b , b , b		
4.3–3.3 IVIEV	90-100 Ivie v	4.13–4.09 Gev	4.3–3.3 IVIE V	90-100 Ivie v	4.13–4.09 Gev		
Interakc	ija sa W±	z, Z^0	Ne interaguju sa W^{\pm}, Z^{0}				

Glashow-Weinberg-Salam

- Kako mogu slabe interakcije da razlikuju čestice sa levim helicitetom od čestica sa desnim helicitetom...
- …kada helicitet nije Lorentz-invarijantan?
 - Setimo se Dirac-ove jednačine: $[i\hbar \gamma^{\mu}\partial_{\mu} mc\mathbf{1}]\Psi(\mathbf{x}) = 0$
 - - Θ i projektori $\gamma_{\pm} := \frac{1}{2} [\mathbf{1} \pm \gamma^5]$, koji jesu Lorentz-invarijatni
 - $\widehat{} \operatorname{Kako} \{ \gamma^{\mu}, \gamma^{\nu} \} = 2\eta^{\mu\nu} \quad \text{i} \quad \{ \gamma^{\mu}, \gamma^{5} \} = 0$
 - Θ Onda $\Psi_{\pm} := (\gamma_{\pm} \Psi)$, a $\gamma^{\mu} A_{\mu} \Psi_{-} = \frac{1}{2} \gamma^{\mu} (A_{\mu} (\gamma^{5} A_{\mu})) \Psi$
- Takav se tip interakcije zove "V–A interakcija", — jedinstven je za slabe interakcije!
- a Ψ_≈Ψ_L, jer u ultra-relativističkom limesu (*E*≫*mc*²)
 ...hiralnost → helicitet

 $h := \hat{p} \cdot \vec{S} / \hbar$

Digresija Helicitet i hiralnost

Helicitet zavisi od izbora posmatrača
 Putuje čestica sa spinom...

 $h = + |\vec{S}|/\hbar$

"stacionarni"

"pretiče u formuli-1"

 $h' = -|\vec{S}|/\hbar$

Solution Dakle, <u>predznak</u> heliciteta zavisi od posmatrača pa nije Lorentz-invarijantan (hiralnost $\frac{1}{2}[1 \pm \gamma^5]$ jeste)

Međutim, česticu koja se kreće brzinom svetlosti u vakumu, nikakav posmatrač ne može ni da stigne ni da pretekne

KS'

 $h := \hat{p} \cdot S / \hbar$

Glashow-Weinberg-Salam

 \Im $SU(2)_w \times U(1)_y$ kalibraciona teorija

- \bigcirc Slabi izospin je $SU(2)_w$ naboj, a W^{\pm}_{μ} i W^3_{μ} su 4-vektorski potencijali
- \bigcirc Slabi hipernaboj je $U(1)_y$ naboj, a B_μ je 4-vektorski potencijal

	1	2	3	Q	I_w	Y_w
$\Psi - \alpha \Psi$	$\begin{bmatrix} u \\ d \end{bmatrix}_L$	$\begin{bmatrix} c \\ s \end{bmatrix}_{L}$	$\left[\begin{array}{c}t\\b\end{array}\right]_L$	$+^{2}/_{3}$ $-^{1}/_{3}$	$+\frac{1}{2}$ $-\frac{1}{2}$	$+\frac{1}{3}$ $+\frac{1}{3}$
	$\begin{bmatrix} \nu_e \\ e^- \end{bmatrix}_L$	$\left[\begin{array}{c}\nu_{\mu}\\\mu^{-}\end{array}\right]_{L}$	$\left[\begin{array}{c}\nu_{\tau}\\\tau^{-}\end{array}\right]_{L}$	0 -1	$+\frac{1}{2}$ $-\frac{1}{2}$	-1 -1
(u_R	C_R	t_R	+²/3	0	$+4/_{3}$
$\Psi_+ = \boldsymbol{\gamma}_+ \Psi \Big\{$	d_R	S_R	b_R	- ¹ / ₃	0	$-\frac{2}{3}$
	e_R^-	μ_R^-	$ au_{\!R}^-$	-1	0	-2

porodica fermiona

Glashow-Weinberg-Salam

$$\mathbb{W}_{\mu} \cdot \mathbb{J}_{w}^{\mu} := W_{\mu}^{i} J_{w}^{\mu j} \frac{1}{2} \operatorname{Tr}[\boldsymbol{\sigma}_{i} \boldsymbol{\sigma}_{j}]$$
$$\mathbb{W}_{\mu} := W_{\mu}^{i} \boldsymbol{\sigma}_{i} \& \mathbb{J}_{w}^{\mu} := J_{w}^{\mu i} \boldsymbol{\sigma}_{i}$$
$$\boldsymbol{\sigma}_{\pm} := \frac{1}{2} [\boldsymbol{\sigma}_{1} \pm i \boldsymbol{\sigma}_{2}]$$

 \Im SU(2)_w × U(1)_y kalibraciona teorija

- Slabi izospin je $SU(2)_w$ naboj, a W^{\pm}_{μ} i W^{3}_{μ} su 4-vektorski potencijali
- \bigcirc Slabi hipernaboj je $U(1)_y$ naboj, a B_μ je 4-vektorski potencijal
- Interakcioni član u lagranžijanskoj gustini je $\propto (g_{W} \mathbb{W}_{\mu} \cdot \mathbb{J}_{W}^{\mu} + \frac{1}{2}g_{V}B_{\mu}J_{V}^{\mu}), \text{ gde je}$ $W_{\mu}^{+} \cdot J_{w+}^{\mu} = W_{\mu}^{+} \{ [\bar{u} \gamma^{\mu} d] + \dots \}, \quad W_{\mu}^{-} \cdot J_{w-}^{\mu} = (W_{\mu}^{+} \cdot J_{w+}^{\mu})^{\dagger}$ $W^{3}_{\mu}J^{\mu}_{w3}; \ J^{\mu}_{w3} = \{\frac{1}{2}[\bar{u}\gamma^{\mu}u] - \frac{1}{2}[\bar{d}\gamma^{\mu}d] + \dots\} = \sum_{a} I_{w}(q)[\bar{q}\gamma^{\mu}q]$ $\supseteq i B_{\mu} J_{y}^{\mu} = B_{\mu} \{ \frac{1}{3} [\bar{u}_{L} \gamma^{\mu} u_{L}] + \frac{4}{3} [\bar{u}_{R} \gamma^{\mu} u_{R}] + \dots \} = \sum_{a} Y_{w}(q) [\bar{q} \gamma^{\mu} q]$ Higgs polje interaguje sa \mathbb{W}_{μ} i sa B_{μ} $^{\odot}$ te meša W_{μ}^3 i B_{μ} tako da su A_{μ} i Z_{μ}^0 "normalni modovi"

Glashow-Weinberg-Salam

Naime, lagranžijanska gustina za Higgs-ovo polje je

$$\mathscr{L}_{\mathrm{H}} = \left\| \left(\partial_{\mu} - ig_{w}W_{\mu}^{a}\sigma_{a} - ig_{y}B_{\mu}\right)\mathbb{H} \right\|^{2} + \frac{1}{2}\left(\frac{\mu c}{\hbar}\right)^{2}|\mathbb{H}|^{2} - \frac{1}{4}\lambda^{2}|\mathbb{H}|^{4}$$

gde je H matrica-kolona sa dva kompleksna, skalarna Higgsova polja. Kvadratni član ima obratni predznak.

Minimumi se nalaze u $S^3 \subset \mathbb{C}^2 \approx \mathbb{R}^4$:

$$H_{1r}^2 + H_{1i}^2 + H_{2r}^2 + H_{2i}^2 = \left(\frac{\mu c}{\lambda \hbar}\right)^2 \quad \Rightarrow \quad \mathbb{H} = \frac{\mu c}{\lambda \hbar} \begin{bmatrix} 1\\0 \end{bmatrix}$$

na kojoj sistem mora da odabere jednu tačku.
Simetrija "vakuma" je rotacija oko ose kroz tu tačku.

Glashow-Weinberg-Salam

^{\bigcirc} Taj pravac, ⟨𝔄⟩ ∈ $S^3 ⊂ ℂ^2 ≈ ℝ^4$, odredjuje da je

 $A_{\mu} = \cos(\theta_{w})B_{\mu} + \sin(\theta_{w})W_{\mu}^{3}, \quad \cos(\theta_{w}) := \frac{g_{w}}{\sqrt{g_{w}^{2} + g_{y}^{2}}}$ $Z_{\mu} = -\sin(\theta_{w})B_{\mu} + \cos(\theta_{w})W_{\mu}^{3}, \quad \cos(\theta_{w}) := \frac{g_{w}}{\sqrt{g_{w}^{2} + g_{y}^{2}}}$

[♀] polje fotona (A_{μ}) je kalibraciono polje očuvane "dijagonalne" $U(1)_Q \subset SU(2)_w \times U(1)_y$ simetrije

polje Z^0 čestice je kalibraciono polje komplementarnog dijagonalnog dela narušene $SU(2)_w$ simetrije

Stoga mase W^{\pm} i Z^0 bozona nisu iste: prva ima doprinos samo od W^{\pm} - \mathbb{H} interakcije, dok druga ima doprinose i od mešanja W^3 - \mathbb{H} i B- \mathbb{H} interakcije.

Glashow-Weinberg-Salam

- Sombinacija naboja $Q = I_w + \frac{1}{2}Y_w$ (Gell-Mann-Nishijima) opisuje interakciju sa fotonskim poljem, A_μ .
- Fermionske struje koje interaguju su

$$J_{w+}^{\mu} = \sum_{g} \left[\overline{u}_{gL} \gamma^{\mu} d_{gL} + \overline{v}_{gL} \gamma^{\mu} \ell_{gL} \right],$$

$$J_{em}^{\mu} = \sum_{g} \left[\frac{2}{3} \overline{u}_{gL} \gamma^{\mu} u_{gL} - \frac{1}{3} \overline{d}_{gL} \gamma^{\mu} d_{gL} - \overline{\ell}_{gL} \gamma^{\mu} \ell_{gL} \right],$$

$$J_{w3}^{\mu} = \sum_{g} \left[\frac{1}{2} \overline{u}_{gL} \gamma^{\mu} u_{gL} - \frac{1}{2} \overline{d}_{gL} \gamma^{\mu} d_{gL} + \overline{v}_{gL} \gamma^{\mu} v_{gL} - \overline{\ell}_{gL} \gamma^{\mu} \ell_{gL} \right],$$

$$J_{Z}^{\mu} = \frac{1}{\cos(\theta_{w})} \left[J_{w3}^{\mu} - \sin^{2}(\theta_{w}) J_{em}^{\mu} \right].$$

$$M_{W} = M_{Z} \cos(\theta_{W}).$$
eksperimentalno potvrdjeno!!

Fundamentalna Fizika Elementarnih Čestica Program

- Standardni Model
 - Sadržaj
- Mase fundamentalnih fermiona
 Fenomenologija
 Yukawa interakcije sa Higgs-ovom česticom
 Mešanje neutrina
 Solarni neutrini i spektar
 Fenomen mešanja
 Neutrini i mehanizam klackalice
- Standardni Model, opet
 - Ono što znamo da znamo

(ono što znamo da ne znamo, posle pauze)

Zoom-foto

Fundamentalni fermioni

	poro	dica ferm	iona	naboji			
	1	2	3	Q	I_{w}	Y_w	
$\Psi = \alpha \Psi$	$\begin{bmatrix} u \\ d \end{bmatrix}_L$	$\begin{bmatrix} c \\ s \end{bmatrix}_L$	$\begin{bmatrix} t \\ b \end{bmatrix}_L$	$+^{2}/_{3}$ $-^{1}/_{3}$	$+^{1}/_{2}$ $-^{1}/_{2}$	$+^{1}/_{3}$ $+^{1}/_{3}$	
$\mathbf{I}_{-} = \boldsymbol{\gamma}_{-} \mathbf{I} \left\{ \right.$	$\left[\begin{array}{c} \nu_e \\ e^- \end{array}\right]_L$	$\left[\begin{array}{c} \nu_{\mu} \\ \mu^{-} \end{array}\right]_{L}$	$\left[\begin{matrix} \nu_{\tau} \\ \tau^{-} \end{matrix} \right]_{L}$	0 -1	$+\frac{1}{2}$ $-\frac{1}{2}$	-1 -1	
ſ	u_R	${\cal C}_R$	t_R	$+^{2}/_{3}$	0	$+4/_{3}$	
	d_R	S _R	b_R	$-\frac{1}{3}$	0	$-2/_{3}$	
$1_{+} = \boldsymbol{\gamma}_{+} 1_{+}$	e_R^-	μ_R^-	$ au_{R}^{-}$	-1	0	-2	
l	VeR	$v_{\mu R}$	$v_{\tau R}$	0	0	0	

Fundamentalni fermioni ...nastavak

Ime	q	Masa* (MeV/ c^2)	Q	I_3	B	S	С	B'	T	Ŷ
Up	<i>u</i> :	1.5–3.3	$+^{2}/_{3}$	$+^{1}/_{2}$	1/3	0	0	0	0	$+\frac{1}{3}$
Down	d:	3.5–6.0	$-\frac{1}{3}$	$-\frac{1}{2}$	1/3	0	0	0	0	$+\frac{1}{3}$
Strange	s :	$105\{^{+25}_{-35}$	$-\frac{1}{3}$	0	1/3	-1	0	0	0	$-\frac{2}{3}$
Charm	<i>C</i> :	$1270\{{}^{+70}_{-110}$	$+^{2}/_{3}$	0	1/3	0	+1	0	0	$+4/_{3}$
Bottom	b:	$4200\{{}^{+170}_{-70}$	$-\frac{1}{3}$	0	1/3	0	0	-1	0	$-\frac{2}{3}$
Тор	t:1	$71300\{{}^{+1100}_{-1200}$	$+^{2}/_{3}$	0	¹ / ₃	0	0	0	+1	$+\frac{4}{3}$

* inerciona masa bez vezivne energije, koja zavisi od hadrona

 $Q = I_3 + \frac{1}{2}(Baryon + Strange + Charm + B'eauty + Truth)$

Gell-Mann, Nishijima, Nakano =Y, tzv. (jaki) hipernaboj [v. takođe odeljak 5.2.1]

Interakcije fundamentalnih fermiona

					Gravitaciona kalibraciona interakcija \Rightarrow metrički tenzor ranga 2					
Fundamentalni fermioni/supstancija					Yang-Mills kalibraciona interakcija \Rightarrow kalibr. tenzor ranga 1					
Sups	tancij	a (sp	oin-½ fe	rmioni)	Interakcije	(bozoni)				
Gen.	Lept	oni	Kvar	kovi	γ W^{\pm} Z^{0} {elektromagnetne} interakcije	(spin-1)				
1. 2.	V _e Vu	е [—] и [—]	U C	d s	<i>gluoni</i> jake nuklearne interakcije	(spin-1)				
3.	$\mathcal{V}_{\mathcal{T}}$	τ^{-}	t	Ь	$\delta g_{\mu\nu}$ gravitacija	(spin-2)				

Higgs-ov bozon (spin-0): daje masu česticama sa kojima interaguje

Yukawa interakcija sa Higgs-ovim poljem \Rightarrow Higgs-ov tenzor ranga 0

- Setimo se, medjutim, u opštem slučaju:
- Čestice/talasi = kvanti fluktuacije polja
- Generati Stress Kara Stress Kara

- Solution Electromagnetna kalibr./lokalna $U(1)_Q$ interakcija
 - Supstancije (elektroni i kvarkovi): kompleksne talasne funkcije
 - Faza (talasne funkcije supstancije) se ne može opaziti/meriti
 - \bigcirc Faza slobodno varira u prostor-vremenu \Rightarrow lokalna simetrija

 - Komutator kovarijantnih izvoda:

$$F_{\mu\nu} := \frac{\hbar c}{iq} \left[D_{\mu}, D_{\nu} \right] = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$$

Elektromagnetno polje: $F_{0i} = E_i$, $F_{jk} = -\varepsilon_{jk}^i cB_i$, predstavnik klasičnog dejstva na daljinu (= sila/jedinici naelektr.)

Jednačine kretanja: nog dejstva na daljinu (= sila/jedinici naelektr.)BianchiGauss-Ampère $\varepsilon^{\mu\nu\rho\sigma}(\partial_{\nu}F_{\rho\sigma}) = 0$ $(\partial_{\mu}F^{\mu\nu}) = \frac{1}{4\pi\epsilon_0}\frac{4\pi}{c}j_e^{\nu}$ izvor

With Karana Kar Karana Kara

- Kromodinamička kalibr./lokalna SU(3)_c interakcija
 - Workovi: kompleksna 3-komponentna talasna funkcija
 - Matrične faze kvarkova se ne mogu opaziti/meriti
 - \bigcirc Matrična faza slobodno varira u prostor-vremenu \Rightarrow lokalna simetrija
 - Operator koji meri "brzinu promene" talasnih funkcija mora da se prilagodi ⇒ kalibr. 4-vektor potencijala, $A_{\mu}(x)$.
 - Generation Kovarijantnih izvoda:

$$\mathbb{F}_{\mu\nu} := \frac{\hbar c}{ig_c} \left[D_{\mu}, D_{\nu} \right] = \left(\partial_{\mu} \mathbb{A}_{\nu} - \partial_{\nu} \mathbb{A}_{\mu} \right) + \frac{ig_c}{\hbar c} \left[\mathbb{A}_{\mu} \mathbb{A}_{\nu} \right]$$
Kromo-elektromagnetno polje: $F_{0i}^a = E_i^a$, $F_{jk}^a = -\varepsilon^i_{jk} c B_i^a$,
predstavnik klasičnog dejstva na daljinu (= sila/jedinici boje)
Jednačine
kretanja:
$$\frac{\mathbf{Bianchi}}{\varepsilon^{\mu\nu\rho\sigma} (D_{\nu} \mathbb{F}_{\rho\sigma}) = 0} \left[\left(\partial_{\mu} \mathbb{F}^{\mu\nu} \right) = \left(\mathbb{J}_{(q)}^{\mu} - \frac{ig_c}{\hbar c} [\mathbb{A}_{\mu}, \mathbb{F}^{\mu\nu}] \right)$$

Se Kvantna teorija: Feynman-ov integral i perturbativni dijagrami

- Slaba kalibr./lokalna $SU(2)_w$ interakcija
 - Seabelovska, ~ kromodinamička kalibr./lokalna $SU(3)_c$ inter.
 - Samo sa fermionima leve hiralnosti
 - tj. interakcija V–A tipa (samo $\Psi_{\rm L}$) QED & QCD su V-tipa
 - ^{\bigcirc} Maks. narušenje parnosti(1:<10⁻¹⁰ v sa levom:desnom hiral.)
 - $^{\odot}$ iz 2-čestičnog raspada $\pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}$
 - $^{\bigcirc}$ gde su μ -spin i ν -spin u 100% korelaciji
 - \bigcirc GIM mehanizam (FCNC) & ABJ anomalija ⇒ 4. kvark
 - Slaba svojstvena stanja ≠ slobodno propagirajuća svojstvena stanja
 Cabibbo + Kobayashi & Maskawa "rotacija" (d, s, b) kvarkova
 - \bigcirc Higgs-ovo narušenje simetrije $SU(2)_w \times U(1)_y \rightarrow U(1)_Q$
 - $W^{\pm} = W^1 + iW^2, \ Z^0 = \cos(\theta_W)W^3 \sin(\theta_W)B \ \text{mase:} \ \frac{\mu c}{\sqrt{2}\,\lambda\hbar}, \ \frac{\mu c}{\sqrt{2}\,\lambda\hbar}\sqrt{g_W^2 + g_y^2}$
 - $\Im \gamma = \sin(\theta_W) W^3 + \cos(\theta_W) B$ ostaje bez mase
 - Specifični koeficijenti u Feynman-ovim dijagramima

Mase fundamentalnih fermiona Fenomenologija

	Mase fundame	ntalnih	fermiona	Efektivne mase u				
C	Efektivne		Kvark	Masa	Mezonima	Barionima		
	mase u hadro-		U	4.2	210	262		
	nima, tj.	Laki	d	7.5	510	505		
	"sastavne"		S	150	483	538		
	mase		С	1 1 0 0	×1/C ² 1	500		
C	"(Strujne)	Teški	b	4 200	Mev, 4	700		
1	mase," tj.		t	174 200	$\gtrsim 174$	200		
A	inerciialne							

mase u "duboko elastičnim sudarima"

 $\sim m_e = 0.551 \text{ MeV}/c^2$, $m_\mu = 106 \text{ MeV}/c^2$, $m_\tau = 178 \text{ GeV}/c^2$ $\sim \text{Jednake za fermione leve i desne hiralnosti, spin-gore/dole}$

^{\odot} Mase neutrina <2 eV/ c^2 (šest reda veličine majušnije!)

Mase fundamentalnih fermiona Fenomenologija

Mase fundamentalnih fermiona... na logaritamskoj skali:

Mase fundamentalnih fermiona Fenomenologija

Mase fundamentalnih fermiona... CKM matrica:

$$\begin{vmatrix} d_{w} \\ |s_{w} \\ |b_{w} \rangle \end{vmatrix} := \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{bmatrix}$$

$$= \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{bmatrix} \begin{bmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{bmatrix}$$

$$\theta_{12} = \theta_{ds} = (13.04 \pm 0.05)^{\circ}, \quad \theta_{13} = \theta_{db} = (0.201 \pm 0.011)^{\circ},$$

 $\theta_{23} = \theta_{sb} = (2.38 \pm 0.06)^{\circ}$, $\delta_{13} = \delta_{db} = (1.20 \pm 0.08)^{\circ}$.

Daje vrlo specifičnu matricu:

$$\begin{bmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{bmatrix} \approx \begin{bmatrix} 0.974 & 0.226 & 0.004 \\ 0.226 & 0.973 & 0.041 \\ 0.009 & 0.041 & 0.999 \end{bmatrix}$$

sa netrivijalnim fazama u 2×2 delu dole levo.

Yukawa interakcije sa Higgs-ovom česticom

Kalibr. interakcije putem "minimalne sprege," promenom operatora "brzine promene":

$$D_{\mu} := \mathbb{1}\partial_{\mu} + \frac{ig}{\hbar c} A^{a}_{\mu} Q_{a}$$

- Solution generation \mathbb{Q}_a operator a-tog "naboja", pa je sami "naboj" svojstvena vrednost a-te svojstvene funkcije.
 - Iz dimenzionih razloga, Lagranžijanska gustina za fermione mora da ima (*iħc*-umnožak)
 - $\cdots + \overline{\Psi'} \boldsymbol{\gamma}^{\mu} (\partial_{\mu} + \frac{ig}{\hbar c} A^{a}_{\mu} \boldsymbol{Q}_{a}) \Psi + \cdots = \cdots + \frac{ig}{\hbar c} (\overline{\Psi'} \boldsymbol{\gamma}^{\mu} \boldsymbol{Q}_{a} \Psi) A^{a}_{\mu} + \cdots$

To odgovara elementarnom (virtuelnom) procesu ${}^{\ensuremath{\wp}}$ ulazni fermion Ψ

- emituje/apsorbuje kalibr. vektor A^a_{μ}
- $\$ i postaje izlazni fermion Ψ' .

Yukawa interakcije sa Higgs-ovom česticom

Naelektrisano skalarno polje (kao Higgs-ovo polje) interaguje sa kalibr. vektorom zahvaljujući minimalnoj sprezi:

 $\cdots + \left\| \left(\partial_{\mu} + \frac{ig}{\hbar c} A^{a}_{\mu} Q_{a} \right) \phi \right\|^{2} + \cdots$ = $\cdots + \frac{2g}{\hbar c} \Im m \left[\left(Q_{a} \phi^{*} \right) \left(\partial^{\mu} \phi \right) \right] A^{a}_{\mu} + \frac{g^{2}}{\hbar^{2} c^{2}} \left\| \left(Q_{a} \phi \right) A^{a}_{\mu} \right\|^{2} + \cdots$

uključuje fundamentalne procese predstavljene Feynman-ovim dijagramima: To uvodi procese u kojima fermioni i scalari interaguju:

Yukawa interakcije sa Higgs-ovom česticom

- Ako skalar stekne vakumski očekivanu vrednost, to uvodi procese:
 - efektivnu amplitudu da fundamentalni fermion emituje/ apsorbuje scalarno polje,
 - efektivnu masu za fundamentalne fermione.
 - [−] ⁰ ^{(g²). [−] ^(g²)}

Pošto se te amplitude ionako pojave (kroz kalibr. interakcije), uvode se u samu Lagranžijansku gustinu.

U opštem, članovi oblika

 $\overline{\Psi'}\phi\Psi, \qquad \overline{\Psi'_{\pm}}\phi\Psi_{\mp} = \overline{\Psi'}\gamma_{\mp}\gamma_{\mp}\Psi\phi \neq 0.$

sprežu fermione leve i desne hiralnosti.

Yukawa interakcije sa Higgs-ovom česticom

U Standardnom Modelu

- levo-hiralni fermioni su *SU*(2)_w-doubleti
- \bigcirc desno-hiralni fermioni su $SU(2)_w$ -singlets (invarijante).
- \bigcirc U SU(2), 2⊗2 ⊃ 1, tj. (spin-½)×(spin-½) ⊃(spin-0).
- Stoga, $\overline{\Psi_{L}} \mathbb{H} \Psi_{R}$ i $\overline{\Psi_{R}} \mathbb{H} \Psi_{L}$

Su $SU(2)_w$ -invarijante, pa ih možemo dodati u Lagranžijan kao $\mathbb{H} = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}, \ \mathbb{H}^+ = \begin{bmatrix} H_1^*, H_2^* \end{bmatrix} \quad \Psi = \begin{bmatrix} \nu \\ \ell^- \end{bmatrix}, \begin{bmatrix} U \\ D \end{bmatrix}, \ \overline{\Psi}^+ = \begin{bmatrix} \overline{\nu}, \ell^+ \end{bmatrix}, \begin{bmatrix} \overline{U}, \overline{D} \end{bmatrix}$ Onda je

 $h_e \overline{e_R} \mathbb{H}^+ \begin{bmatrix} v_e \\ e^- \end{bmatrix}_L + h.c. SU(2)_w$ -invarijanta

$$= h_e \overline{e_R^-} (H_1^* \nu_{eL} + H_2^* e_L^-) + h.c.$$

= $\Re e (h_e \langle H_2 \rangle^*) (\overline{e_R^-} e_L^- + \overline{e_L^-} e_R^-) + h_e \overline{e_R^-} (\widetilde{H}_1^* \nu_{eL} + \widetilde{H}_2^* e_L^-)$
= mc^2 interactions

Yukawa interakcije sa Higgs-ovom česticom

Slično za donje kvarkove: $h_D \overline{D_R} \mathbb{H}^{\dagger} \begin{bmatrix} U \\ D \end{bmatrix}_I + h.c.$ $= h_D \overline{D_R} (H_1^* U_L + H_2^* D_L) + h.c.$ $= \Re e(h_D \langle H_2 \rangle^*) (\overline{D_R} D_L + \overline{D_L} D_R) + h_D \overline{D_R} (\widetilde{H}_1^* U_L + \widetilde{H}_2^* D_L)$ $=mc^2$ interactions Pošto $C: \mathbb{H} = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix} \longrightarrow \mathbb{H}^{\mathcal{C}} := -\boldsymbol{\varepsilon} \mathbb{H}^* = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} H_1^* \\ H_2^* \end{bmatrix} = \begin{bmatrix} -H_2^* \\ H_1^* \end{bmatrix},$ isto SU(2)_w-invarijanta $-h_{U}\overline{U_{R}}\left(\mathbb{H}^{c}\right)^{\dagger}\left[\begin{smallmatrix}U\\D\end{smallmatrix}\right]_{I}+h.c.$ $=-h_U\overline{U_R}(-H_2U_L+H_1D_L)+h.c.$ $= \Re e(h_U \langle H_2 \rangle) (\overline{U_R} U_L + \overline{U_L} U_R) + h_U \overline{U_R} (\widetilde{H}_2 U_L - \widetilde{H}_1 D_L)$ $=mc^2$ interactions

Yukawa interakcije sa Higgs-ovom česticom

Slično za neutrine: $-h_{\nu} \overline{\nu_{R}} (\mathbb{H}^{c})^{\dagger} \begin{bmatrix} \nu \\ \ell^{-} \end{bmatrix}_{L} + h.c.$ $= -h_{\nu} \overline{\nu_{R}} (-H_{2}\nu_{L} + H_{1}\ell_{L}^{-}) + h.c.$ $= \underbrace{\Re e(h_{\nu} \langle H_{2} \rangle)}_{=mc^{2}} (\overline{\nu_{R}} \nu_{L} + \overline{\nu_{L}} \nu_{R}) + h_{\nu} \underbrace{\overline{\nu_{R}} (\widetilde{H}_{2}\nu_{L} - \widetilde{H}_{1}\ell_{L}^{-})}_{\text{interactions}}$

Parametri h_U , h_D , h_ℓ i , h_ν kontrolišu kako mase fermiona tako i Yukawa interakcije sa Higgs-ovim poljem.

Otkad je Higgs-ova čestica eksperimentalno nadjena, eksperimenti mere te Yukawa-interakcione parametre.

Osim toga, h_U , h_D , h_ℓ i , h_ν podležu i (računskim) ograničenjima tako da bi Standard Model bio perturbativan.

Solarni neutrini i spektar

Neutrini se proizvode u atmosferi:

$$\pi^+ \to \mu^+ + \nu_{\mu}, \to (e^+ + \nu_e + \overline{\nu}_{\mu}) + \nu_{\mu},$$

$$\pi^- \to \mu^- + \overline{\nu}_{\mu}, \to (e^- + \overline{\nu}_e + \nu_{\mu}) + \overline{\nu}_{\mu}.$$

To implicira dvaput više mionskih (anti)neutrina nego elektronskih...

...ali odnos u stvari zavisi od pravca njihovog kretanja!

- ~horizontalno, blizu 1:1.

Neutrini se takodje proizvode i u zvezdama kao što je Sunce Velike zvezde: katalizator je ugljenik, azot i kiseonik

manje zvezde (kao Sunce): "pp-proces"

Solarni neutrini i spektar

- →
Τ
e
ta,
uth
10 1/ ₃
inog
C
blem"

Fenomen mešanja

Model igračka: $H|1\rangle = E_1|1\rangle$ i $H|2\rangle = E_2|2\rangle$ $|``1+2'';t\rangle = C_1e^{-iE_1t/\hbar}|1\rangle + C_2e^{-iE_2t/\hbar}|2\rangle,$ Onda

$$P_{\alpha} := \left| \left[\cos(\alpha) \langle 1 | + \sin(\alpha) \langle 2 | \right] | "1 + 2"; t \rangle \right|^{2} \\ = |C_{1}|^{2} \cos^{2}(\alpha) + |C_{2}|^{2} \sin^{2}(\alpha) + \sin(2\alpha) \Re e \left[C_{1} C_{2}^{*} e^{-i(E_{1} - E_{2})t/\hbar} \right].$$

Počev od ortogonalnog $-\sin(\alpha)|1\rangle + \cos(\alpha)|2\rangle$,

$$P_{|\alpha+\frac{\pi}{2}\rangle \to |\alpha\rangle} = \sin^2(2\alpha) \frac{\sin^2(\frac{1}{2}\omega_{12}t)}{\cos^2(\frac{1}{2}\omega_{12}t)} = \frac{E_1 - E_2}{\hbar}$$

 $^{\mbox{\footnotesize O}}$ dva stanja nisu degenerisana ($E_1 \!
eq \! E_2$),

 $^{{}_{\Theta}}$ system je izvorno u netrivijalnoj linearnoj kombinaciji (lpha
eq 0).

Fenomen mešanja

Relativistički:

 $E_{1}-E_{2} = \sqrt{|\vec{p}|^{2}c^{2} + m_{1}^{2}c^{4}} - \sqrt{|\vec{p}|^{2}c^{2} + m_{2}^{2}c^{4}} \approx |\vec{p}|c\left[\frac{1}{2}\frac{(m_{1}^{2} - m_{2}^{2})c^{2}}{|\vec{p}|^{2}} + \dots\right],$ $\approx \frac{(m_{1}^{2} - m_{2}^{2})c^{3}}{2|\vec{p}|} + \dots \approx \frac{(m_{1}^{2} - m_{2}^{2})c^{4}}{2\overline{E}},$ $|\nu_{e}\rangle \text{ i } |\nu_{\mu}\rangle \text{ su svojstvene vrednosti slabih interakcija}$ (koje ih stvaraju), ali ne i slobodnog kretanja. $|\nu_{e}\rangle = -\sin(\theta_{\nu})|\nu_{1}\rangle + \cos(\theta_{\nu})|\nu_{2}\rangle, \qquad |\nu_{\mu}\rangle = \cos(\theta_{\nu})|\nu_{1}\rangle + \sin(\theta_{\nu})|\nu_{2}\rangle,$

$$P_{\nu_e \to \nu_{\mu}} \approx \sin^2(2\theta_{\nu}) \sin^2\left(\frac{(m_1^2 - m_2^2)c^4}{4\overline{E}\hbar}t\right)$$

Na razdaljini $(2n+1)z_*$, gde je $z_* = \frac{2\pi \overline{E}\hbar}{(m_1^2 - m_2^2)c^3}$ sa $n=0, 1, 2,...$

 $^{\odot}$ imamo 100% $|\nu_{\mu}\rangle$, dok između, @2nz_*, imamo 100% $|\nu_{e}\rangle$.

Fenomen mešanja

- Saravno, postoji *tri* tipa neutrina,
- …interakcija sa supstancijom menja parametre…
- ...prema modelu Wolfenstein, Mikheyev i Smirnov
- Od 2002, oscilacije neutrina rešavaju "neutrino problem"

$$\Delta_{12}(m_{\nu}^2) \approx 8 \times 10^{-5} \,(\text{eV}/c^2)^2, \qquad \Delta_{23}(m_{\nu}^2) \approx 3 \times 10^{-3} \,(\text{eV}/c^2)^2,$$

- Najopštije mešanje neutrina je kao mešanje donjih kvarkova
 Maki, Nakagawa i Sakata (1962), Pontecorvo (1967):
 PMNS matrica (kao CKM matrica mešanja donjih kvarkova)
 Eksperimentalni rezultati:
 - razlika izmedju kvadrata masa: tahioni?
 - kakva je razlika:

ili

MSW efekt

Neutrini i mehanizam klackalice

Pošto neutrini nemaju ni naelektrisanje ni boju, a $SU(2)_{w} \times U(1)_{v}$ simetrija je narušena, \mathbb{P} ... $\nu \stackrel{?}{=} \overline{\nu}$ bi bila $SU(3)_c \times U(1)_O$ -invarijantna tvrdnja. $I_w(\nu_{eL}) = +^{1}/_{2},$ Onda $\overline{\Psi_{\pm}}(\Psi_{\pm})^{C} = \overline{\Psi} \gamma_{\pm} (\gamma_{\pm})^{\mathsf{T}} \Psi^{C} = \overline{\Psi} \gamma_{\pm} \Psi^{C}$ $I_w(H_2) = -\frac{1}{2},$ 🦻 …je dozvoljen (Majorana) maseni član. 🏾 $I_{w}(\nu_{eR})=0.$ Dirac-ova + Majorana-ina masa $m_{\nu}\left(\overline{\nu_{eR}}\,\nu_{eL}+\overline{\nu_{eL}}\,\nu_{eR}\right)+\frac{1}{2}M_{\nu}\,\overline{\nu_{eR}}\,\nu_{eR}^{c} \quad h_{\nu}\langle H_{2}\rangle=:m_{\nu}$ daje $\begin{bmatrix} 0 & m_{\nu} \\ m_{\nu} & M_{\nu} \end{bmatrix} \xrightarrow{\text{diag.}} m_{\pm} = \frac{1}{2} \begin{bmatrix} M_{\nu} \pm \sqrt{4m_{\nu}^2 + M_{\nu}^2} \end{bmatrix} \approx \begin{cases} M_{\nu}, \\ m_{\nu}^2/M_{\nu}. \end{cases}$ $m_{
u} ~\sim~ 10^2 \, {
m GeV}/c^2 ~M_{
u} \gtrsim~ 10^{15} \, {
m GeV}/c^2 ~m_{-} \lesssim 10^{-11} \, {
m GeV}/c^2 = 10^{-2} \, {
m eV}/c^2$

Neutrini i mehanizam klackalice

Se Ako su neutrini stvarno svoje sopstvene antičestice

 $2d \rightarrow 2(u+e^-+\overline{\nu}_e) \rightarrow 2u+2e^-+(\overline{\nu}_e+\nu_e \rightarrow 0) \rightarrow 2u+2e^-$

je poznato kao "bez-neutrinski dvostruki beta-raspad"...

🥯 ...koji nikada nije detektovan.

Osim toga, Davis & Harmer-ov 1956 zaključak da $\bar{\nu}_e \neq \nu_e$ pošto $(\nu_e + n^0 \rightarrow p^+ + e^-)$ ali $(\bar{\nu}_e + n^0 \not\rightarrow p^+ + e^-)$

je *pretpostavljao* parnost! Ovaj process *može* takodje da je zabranjen otsustvom (vrlo velika masa?) levog antineutrina.

Za mehanizam klackalice, treba masa $M_{\nu} > 10^{13} \text{ GeV}/c^2$,

koja ne može da potiče iz Standardnog Modela,

 \Im ...gde je karakteristična masa $\langle \mathbb{H} \rangle \sim 100 \,\text{GeV}/c^2$.

"neprirodno"

Standardni Model, opet Ono što znamo da znamo

Lagranžijanska gustina Standardnog Modela:

$$\mathscr{L}_{SM} = \mathscr{L}_{F} + \mathscr{L}_{G} + \mathscr{L}_{H} + \mathscr{L}_{Y} + \mathscr{L}_{M_{\nu}},$$

$$\begin{split} \mathscr{L}_{\mathrm{F}} &= i\hbar c \sum_{n} \left[\overline{\Psi_{nL}} \not{\!\!\!/} \Psi_{nL} + \overline{\Psi_{nR}} \not{\!\!\!/} \Psi_{nR} \right], \\ \mathcal{D}_{\mu} &:= \partial_{\mu} + \frac{ig_{c}}{\hbar c} G_{\mu}^{a} \mathcal{Q}_{c\,a} + \frac{ig_{w}}{\hbar c} W_{\mu}^{a} \nabla_{w}^{\dagger} I_{w\,a} \nabla_{w} + \frac{ig_{y}}{\hbar c} B_{\mu} Y_{w}, \\ \mathscr{L}_{\mathrm{G}} &= -\frac{1}{4} \sum_{a=1}^{8} G_{\mu\nu}^{a} G^{a\,\mu\nu} - \frac{1}{4} \sum_{a=1}^{3} W_{\mu\nu}^{a} W^{a\,\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}, \\ \mathscr{L}_{\mathrm{H}} &= \left\| [\partial_{\mu} - \frac{ig_{w}}{\hbar c} W_{\mu}^{a} \sigma_{a} - \frac{ig_{y}}{\hbar c} \mathbb{1}] \mathbb{H} \right\|_{\eta}^{2} - \frac{\varkappa}{2} \left(\frac{\mu c}{\hbar} \right)^{2} \left(\mathbb{H}^{\dagger} \mathbb{H} \right) - \frac{1}{4} \lambda \left(\mathbb{H}^{\dagger} \mathbb{H} \right)^{2}, \\ \mathscr{L}_{\mathrm{Y}} &= \sum_{n} \left(h_{n} \overline{\Psi_{nR}} (\mathbb{H}^{\dagger} \Psi_{nL}) + h_{n}^{*} (\overline{\Psi_{nL}} \mathbb{H}) \Psi_{nR} \right), \\ \mathscr{L}_{M_{\nu}} &= \frac{1}{2} M_{\nu} c^{2} \overline{v_{eR}} v_{eR}^{c}. \leftarrow \dots extra! \quad \text{``neprivod no'''} \quad M_{\nu} / \langle \mathbb{H} \rangle \sim 10^{11} \end{split}$$

Hvele ne perint

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC Department of Mathematics, University of Maryland, College Park, MD Department of Physics, Faculty of Natural Sciences, Novi Sad, Serbia <u>https://tristan.nfshost.com/</u>