(Fundamentalna) Fizika Elementarnih Čestica

Dan 06: Spontano narušenje i hiralna asimetrija slabih interakcija

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC Department of Mathematics, University of Maryland, College Park, MD Department of Physics, Faculty of Natural Sciences, Novi Sad, Serbia <u>https://tristan.nfshost.com/</u>

Narušenje simetrija i slabe interakcije

Program za danas:

Narušenje simetrija

Jedan jednostavni model-igračka...
 ...sa temperaturom
 Kontinualne simetrije
 Goldstone-ov mod

Kalibracioni bozon "guta" Goldstone-ov mod

Petak 20. V 2022 posle pauze: 7,00m-foto

Slaba nuklearna interakcija

Simetrijska struktura: $SU(2)_w \times U(1)_y \to U(1)_Q$

Glashow-Weinberg-Salam-ov model

Prvo, nekoliko "filozofskih" napomena

Simetrije prožimaju fiziku i teorijski opis prirode

Približne i efektivne simetrije su korisne

- Iz vremena potrebnog da se guska ispeče može da se proceni (koristeći aproksimaciju da je guska sferno crno telo → kalorijski kapacitet) koliko daleko guska može da odleti bez sletanja i hrane. [J.A. Wheeler]
- Sukcesivnom aproksimacijom naelektrisanog krompira se dobije multipolni razvoj, gde je prvih n(r) članova dovoljno, gledano sa dovoljne razdaljine r, a n(r) je opadajuća (strogo ne-rastuća) funkcija razdaljine r
- $\subseteq SU(3)_f$ simetrija je korisna i zbog klasifikacije hadrona...
- 🥯 ...a i što je ukazala na:
- postojanje kvarkova
- (uz spin-statistiku tj. Pauli-ev princip isključenja) na postojanje boje
- $^{\odot}$ koja je presudna za osobenosti jakih interakcije ($ightarrow SU(3)_{c}$)

Prvo, nekoliko "filozofskih" napomena

- Narušenje simetrija je nešto drugo; prati fazne promene. S jedne strane:
 - Sector Raspodela brzina (3-impulsi) molekula vode je izotropna, i ima rotacionu $C^{(3)}$ simetriju *SO*(3).
 - $^{\odot}$ 3-impulsi u ledu imaju samo diskretnu simetriju kristalne rešetke Λ^* (dualne/inverzne kristalnoj rešetci samog leda).
 - ^ω Ledjenje je korelisano sa narušenjem simetrije *SO*(3) → Λ*.
 - S druge strane:
 - Pozicije molekula leda imaju diskretnu simetriju kristalne rešetke, X.
 Pozicije molekula vodo nomećno il 1
 - 😡 Pozicije molekula vode nemaju nikakvu simetriju, 🔨
 - $^{igodoldsymbol{arphi}}$ Topljenje je korelisano sa narušenjem sim $igodoldsymbol{arphi}$ Λ $\rightarrow 0$

Prvo, nekoliko "filozofskih" napomena

U opisu narušenja simetrije, bitno je naznačiti:
 <u>Šta</u> je tačno objekat čije simetrije diskutujemo?
 Voda/led, tj. H₂O.

<u>Koje</u> se osobine objekta menjaju u procesu?

- Series Npr.: "raspodele brzina molekula" ili "pozicije molekula".
- <u>Kako</u> se te osobine menjaju?
 - Ledjenjem, (statistička) raspodela brzina postane ograničenija
 - Topljenjem, (egzaktne) pozicije postanu slobodnije

* <u>Kada</u> se simetrija naruši*

Second States Weights and $T > T_c$: parametar uredjenja.

Prvo, nekoliko "filozofskih" napomena

Približne simetrije su korisne za približne račune:

- Približna "sfernost" i "crno-telnost" guske
- Približna "sfernost," "linijnost," itd., u multipolnom razvoju
- \bigcirc Približna $SU(3)_f$ simetrija {d, u, s} kvark-sistema...

Narušene simetrije su fundamentalnije:

- Mikroskopski, fundamentalno-fizički opis se radikalno menja
- Sama promena mikrofizičkog opisa je ne-perturbativna
- Efektivne osobine sistema: distribucija brzina molekula, pozicione simetrije, magnetizacija...
- 🥯 ...se daju opisati efektivno...
- 😡 🖙 Landau-Ginzburg modeli usrednjenog polja
- Fenomenološki opis: lako uporediv sa eksperimentima

okvirne osobenosti za fundamentalnu teoriju da proizvede

Narušena simetrija Model-igračka

Uzmimo, za početak $M(\vec{r}, t)$ kao magnetizaciju.

- Ovo $M(\vec{r}, t)$ se dobija usrednjavanjem vrednosti (čak molekularno) malih, magnetskih domena po oblastima koje su
- Iovoljno male da predstavljaju magnetizaciju u tačkama magneta,
- ali dovoljno velike da usrednjavanje ima smisla.

Sledi da promene u $M(\vec{r}, t)$ putuju kao ("*c*" ovde nije 3×10^8 m/s)

$$\left[\vec{\nabla}^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right]M = \dots$$

...što je jednačina dobivena variranjem "relativističkog" Hamilton-ovog dejsva

$$S_{\text{kin.}} = \frac{1}{2} \int d^4 x \sum_{\mu=0}^3 (\partial_\mu M)^2$$

Narušena simetrija Model-igračka

Detalji izostavljeni u

$$\left[\vec{\nabla}^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right]M = \dots$$

...se opisuju dodavanjem potencijala:

tako da:

$$S_{\text{pot.}} = \int d^4 x \ V(M)$$

$$\left[\vec{\nabla}^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right] M = \frac{\partial V}{\partial M}$$

Na primer, $V(M) = \frac{1}{2}\mu^2 M^2$ daje analog linearnog harmonijskog oscilatora

i harmonijske oscilacije magnetizacije oko M=0.

Dodamo temperaturnu zavisnost

Odaberemo potencijal koji zavisi od temperature:

$$V(M) = \frac{1}{2}(T^2 - \mu^2)M^2 + \frac{1}{4}\lambda M^4$$

i interesuje nas srednja (očekivana) vrednost magnetizacije,

$$\langle M \rangle = \int \mathrm{d}M \; M \; e^{i(S_{\mathrm{kin.}} + S_{\mathrm{pot.}})/\hbar}$$

Sve dok je T² > µ², znamo —bez računanja— da je ⟨M⟩=0.
 Medjutim, kada T² < µ², onda je ⟨M⟩≠0:

$$M_{\rm min.} = \pm \sqrt{(\mu^2 - T^2)/\lambda}$$

Dodamo temperaturnu zavisnost

Potencijal zavisi od temperature:

Dodamo temperaturnu zavisnost

- T>T_c: -\frac{\partial V}{\partial M} < 0 blizu M=0; stabilan minimum.
 T<T_c (= \mu):
 Dok je -\frac{\partial V}{\partial M}\Big|_{M=0} < 0: nestabilan maksimum,
 -\frac{\partial V}{\partial M}\Big|_{M=M_{min}} > 0: stabilan minimum.
 - Ako postoji makar i mala nestabilnost u M=0 extremumu,
 - ^{\bigcirc} za *T* < *T_c* = µ se sistem "otkotrlja" od *M* = 0 do *M* = *M*_{min}.
 - To se naziva "spontano" narušenje simetrije
 - ^{*Q*} u ovom slučaju, \mathbb{Z}_2 : *M* → −*M*, je simetrija koja je narušena...
 - …a i transformacija koja prevodi jedan minimum u drugi;
 - Inestabilnost je neophodna, a može biti i kvantna fluktuacija.

Landau-Ginzburg potencijal:

$$V(M) = \frac{1}{2}(T^2 - \mu^2)M^2 + \frac{1}{4}\lambda M^4 + \frac{1}{6}\varkappa M^6$$

Dodamo temperaturnu zavisnost

Izbor potencijala je bio proizvoljan To je odlika fenomenoloških Lagranžijana ✓ Cilj: izvesti potencijal iz "mikroskopske" (fundamentalne) teorije Ako je početna kvantna fluktuacija i dovoljna da sistem pokrene iz M=0 u $M=M_{\min}$... Sector construction de la constr $\langle M \rangle = 0$ —globalno— ipak ostaje na snazi, mada u bilo kom od dva moguća konkretna slučaja, $M \neq 0$ Zaključak je da simetriju narušava ne dinamika, već granični odnosno početni uslovi — ma koliko mala nesavršenost 🥪 ...možda kvantna fluktuacija

Digresija Degeneracija osnovnog stanja

 \sim Kada je min[V(M)] = $\pm M_{\min}$, postoje dva "vakuma",

pa i dva Hilbert-ova prostora (sektora):

$$\mathscr{H}_{\pm} := \left\{ |n_{\pm}\rangle := \frac{(\hat{a}^{\dagger})^{n}}{\sqrt{n}} |0_{\pm}\rangle, n = 0, 1, 2, \dots \right\}$$

 $|0_{-}\rangle$ i $|0_{+}\rangle$

Naravno, postoje i linearne superpozicije dva "vakuma", pa i svih stanja iz ta dva različita "sektora".

Za potrebe *perturbativnog* računa je potrebno odabrati jedan, konkretan "vakum".

Kontinualna simetrija

Očigledan a jednostavan primer:

Kontinualna simetrija

Vratimo se na pravu magnetizaciju:

$$V(\vec{M}) = \frac{1}{2} (T^2 - \mu^2) \vec{M}^2 + \frac{1}{4} \lambda^4 (\vec{M}^2)^2 + \frac{1}{6} \varkappa^6 (\vec{M}^2)^3$$

- Pošto je magnetizacija vektor—i jedini vektor, potencijal može da zavisi samo od "intenziteta" vektora.
- Potencijal (a i kinetički član, pa dakle čitav lagranžijan) je stoga automatski rotaciono simetričan.
- Za $T < T_c = \mu$, potencijala ima minimum na čitavoj sferi "poluprečnika" koji daje potencijalu minimalnu vrednost.
- Medjutim, sistem ne može da bude svuda na toj sferi, pa mala (pa i kvantna) nestabilnost ili spoljni uticaj "odabere" konkretnu tačku
- \mathbb{P} —i tim izborom naruši \overrightarrow{M} -rotacionu simetriju.
- Grupa koja je time narušena preslikava jedan minimum u drugi

Kontinualna simetrija

Dva skalarna polja u prostor-vremenu:

 $\mathscr{L}_{2d} = \frac{1}{2} \eta^{\mu\nu} \delta^{ij} (\partial_{\mu} \phi_i) (\partial_{\nu} \phi_j) - \frac{1}{2} \left(\frac{mc}{\hbar}\right)^2 (\delta^{ij} \phi_i \phi_j) - \frac{1}{4} \lambda (\delta^{ij} \phi_i \phi_j)^2.$

Simetrija:

$$\overset{\boldsymbol{\varpi}}{\alpha} : \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} \to \begin{bmatrix} \phi_1' \\ \phi_2' \end{bmatrix} := \begin{bmatrix} \cos \alpha - \sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix}$$

Promenom predznaka kvadratnog člana:

$$\widetilde{\mathscr{L}}_{2d} = \frac{1}{2} \eta^{\mu\nu} \delta^{ij} (\partial_{\mu} \phi_i) (\partial_{\nu} \phi_j) + \frac{1}{2} \left(\frac{mc}{\hbar}\right)^2 (\delta^{ij} \phi_i \phi_j) - \frac{1}{4} \lambda (\delta^{ij} \phi_i \phi_j)^2,$$

potencijal stiče kontinuum minimuma:

$$(\phi_1,\phi_2)_{\min} = \left(\frac{mc}{\hbar\sqrt{\lambda}}\cos\theta,\frac{mc}{\hbar\sqrt{\lambda}}\sin\theta\right),$$

Kontinualna simetrija

Sedefinicijom, za $(\phi_1, \phi_2) \rightarrow (\frac{mc}{\hbar\sqrt{\lambda}}, 0),$ $\varphi_1 := \phi_1 - \frac{mc}{\hbar\sqrt{\lambda}}, \quad \varphi_2 := \phi_2$

• Lagranžijanska gustina postaje: $\mathscr{L}_{2d} = \frac{1}{2} \eta^{\mu\nu} \delta^{ij} (\partial_{\mu} \varphi_{i}) (\partial_{\nu} \varphi_{j}) - \left(\frac{mc}{\hbar}\right)^{2} \varphi_{1}^{2} \\
- \frac{mc\sqrt{\lambda}}{\hbar} \varphi_{1} (\varphi_{1}^{2} + \varphi_{2}^{2}) - \frac{1}{4} \lambda (\varphi_{1}^{2} + \varphi_{2}^{2})^{2} + \frac{m^{4}c^{4}}{4\lambda\hbar^{4}}, \\
= \frac{1}{2} \eta^{\mu\nu} (\partial_{\mu} \varphi_{1}) (\partial_{\nu} \varphi_{1}) - \left(\frac{mc}{\hbar}\right)^{2} \varphi_{1}^{2} - \frac{mc\sqrt{\lambda}}{\hbar} \varphi_{1}^{3} - \frac{1}{4} \lambda \varphi_{1}^{4} \\
+ \frac{1}{2} \eta^{\mu\nu} (\partial_{\mu} \varphi_{2}) (\partial_{\nu} \varphi_{2}) - \frac{1}{4} \lambda \varphi_{2}^{4} \\
- \frac{mc\sqrt{\lambda}}{\hbar} \varphi_{1} \varphi_{2}^{2} - \frac{1}{2} \lambda \varphi_{1}^{2} \varphi_{2}^{2} + \frac{m^{4}c^{4}}{4\lambda\hbar^{4}}, \quad \text{nema ``} \varphi_{2}^{2''} \\$

Kontinualna simetrija

Goldstone-ov mod je jasniji u polarnoj parametrizaciji

 $\phi_1 = \rho \cos \theta, \qquad \phi_2 = \rho \sin \theta,$ $\widetilde{\mathscr{L}}_{2d} = \frac{1}{2} \eta^{\mu\nu} \left[(\partial_{\mu} \rho) (\partial_{\nu} \rho) + \rho^2 (\partial_{\mu} \theta) (\partial_{\nu} \theta) \right] + \frac{1}{2} \left(\frac{mc}{\hbar} \right)^2 \rho^2 - \frac{1}{4} \lambda \rho^4,$ Solve generation generation of the second s $\widetilde{\mathscr{L}}_{2d} = \frac{1}{2} \eta^{\mu\nu} (\partial_{\mu}\varrho) (\partial_{\nu}\varrho) - \left(\frac{mc}{\hbar}\right)^2 \varrho^2 - \frac{mc\sqrt{\lambda}}{\hbar} \varrho^3 - \frac{1}{4}\lambda \varrho^4 + \frac{m^4 c^4}{4\lambda \hbar^4}$ $+ \frac{1}{2} \left(\varrho + \frac{mc}{\hbar\sqrt{\lambda}} \right)^2 \eta^{\mu\nu} (\partial_{\mu}\theta) (\partial_{\nu}\theta).$ suvišna energija nelinearna sprega

Kontinualna kalibraciona simetrija

Definicijom φ := φ₁ + iφ₂imamo kompleksno polje, pa onda i fazu i kalibracionu simetriju = lokalnu translaciju faze.
 Lagranžijanska gustina:

$$\mathscr{L}_{CW} = \frac{1}{2} \eta^{\mu\nu} (D_{\mu} \boldsymbol{\phi})^{*} (D_{\nu} \boldsymbol{\phi}) - \frac{1}{2} \left(\frac{mc}{\hbar}\right)^{2} |\boldsymbol{\phi}|^{2} - \frac{1}{4} \lambda \left(|\boldsymbol{\phi}|^{2}\right)^{2} - \frac{4\pi\epsilon_{0}}{4} F_{\mu\nu} F^{\mu\nu},$$

gde je $D_{\mu} \boldsymbol{\phi} = \partial_{\mu} \boldsymbol{\phi} + \frac{iq_{\phi}}{\hbar c} A_{\mu} \boldsymbol{\phi}$ kalibraciono-kovarijantni izvod

Model ima faznu/kalibracionu U(1) simetriju:

 $\boldsymbol{\phi}(\mathbf{x}) \to \exp\{i\boldsymbol{q}_{\boldsymbol{\phi}}\,\chi(\mathbf{x})\}\,\boldsymbol{\phi}(\mathbf{x}), \qquad A_{\mu}(\mathbf{x}) \to A_{\mu}(\mathbf{x}) - \partial_{\mu}\,\chi(\mathbf{x})$

Kontinualna kalibraciona simetrija

Sa promenjenim predznakom kvadratnog člana,

$$\widetilde{\mathscr{L}}_{CW} = \frac{1}{2} \eta^{\mu\nu} (D_{\mu} \boldsymbol{\phi})^* (D_{\nu} \boldsymbol{\phi}) + \frac{1}{2} \left(\frac{mc}{\hbar}\right)^2 |\boldsymbol{\phi}|^2 - \frac{1}{4} \lambda \left(|\boldsymbol{\phi}|^2\right)^2 - \frac{4\pi\epsilon_0}{4} F_{\mu\nu} F^{\mu\nu}.$$

 \bigcirc min. je kružnica $|\phi| = \frac{mc}{\hbar\sqrt{\lambda}}$: degeneracija osnovnog stanja

Postoji, dakle, kontinuum mogućih "vakuma"
 Sistem mora da "izabere" neki konkretan "vakum",

a taj izbor:

nije opisan lagranžijanskom gustinom/jednačinama kretanja
 mora da bude posledica "početnog/graničnog uslova"

ili (sličajne, proizvoljne ali konkretne) kvantne fluktuacije

Kontinualna kalibraciona simetrija

Г

Raspisano:

$$\varphi_2$$
 je bez mase

$$\begin{aligned} \mathscr{L}_{CW} &= \left[\frac{1}{2} (\partial_{\mu} \varphi_{1}) (\partial^{\mu} \varphi_{1}) - \frac{m^{2} c^{2}}{\hbar^{2}} \varphi_{1}^{2} \right] + \left[\frac{1}{2} (\partial_{\mu} \varphi_{2}) (\partial^{\mu} \varphi_{2}) \right] \\ &- \left[\frac{4\pi \epsilon_{0}}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \frac{q_{\varphi}^{2} m^{2}}{\hbar^{4} \lambda} A_{\mu} A^{\mu} \right] \qquad \text{kao ugaoni} \\ \text{mešanje!} &+ \frac{q_{\varphi} m}{\hbar^{2} \sqrt{\lambda}} A_{\mu} (\partial^{\mu} \varphi_{2}) + \frac{q_{\varphi}}{c \hbar} A_{\mu} [\varphi_{1} (\partial^{\mu} \varphi_{2}) - (\partial^{\mu} \varphi_{1}) \varphi_{2}] \right] \\ &+ \frac{q_{\varphi}^{2} m}{c \hbar^{3} \sqrt{\lambda}} \varphi_{1} A_{\mu} A^{\mu} - \frac{m c \sqrt{\lambda}}{\hbar} \varphi_{1} (\varphi_{1}^{2} + \varphi_{2}^{2}) \quad \text{kao } B \cdot L \\ &+ \frac{1}{2} \frac{q_{\varphi}^{2}}{c^{2} \hbar^{2}} A_{\mu} A^{\mu} (\varphi_{1}^{2} + \varphi_{2}^{2}) - \frac{1}{4} \lambda (\varphi_{1}^{2} + \varphi_{2}^{2})^{2} + \frac{m^{4} c^{4}}{4 \lambda \hbar^{4}}. \end{aligned}$$
moramo
dijagonalizovati

Kontinualna kalibraciona simetrija

Pošto je lagranžijanska gustina po konstrukciji fazno/ kalibraciono invarijantna, uvedemo kalibracionu smenu

$$\begin{split} \boldsymbol{\phi} \to e^{i\vartheta} \boldsymbol{\phi} &= (\cos\vartheta + i\sin\vartheta)(\phi_1 + i\phi_2), \\ &= (\phi_1 \cos\vartheta - \phi_2 \sin\vartheta) + i(\phi_1 \sin\vartheta + \phi_2 \cos\vartheta) \\ \vartheta &= -\arctan\left(\frac{\phi_2}{\phi_1}\right) = -\arctan\left(\frac{\varphi_2}{\phi_1 + \frac{mc}{\hbar\sqrt{\lambda}}}\right) \\ A'_{\mu} &:= A_{\mu} + (\partial_{\mu}\vartheta) \end{split}$$

što menja samo parametrizaciju sistema.
 Isto bi se dobilo i dijagonalizacijom modova.

Kontinualna kalibraciona simetrija

Konačni oblik lagranžijanske gustine

$$\widetilde{\mathscr{L}}_{CW} = \begin{bmatrix} \frac{1}{2} (\partial_{\mu} \varphi_{1}') (\partial^{\mu} \varphi_{1}') - \frac{m^{2}c^{2}}{\hbar^{2}} \varphi_{1}'^{2} \end{bmatrix}$$

$$- \begin{bmatrix} \frac{4\pi\epsilon_{0}}{4} F_{\mu\nu}' F'^{\mu\nu} - \frac{1}{2} \frac{q_{\varphi}^{2}m^{2}}{\hbar^{4}\lambda} A_{\mu}' A'^{\mu} \end{bmatrix}$$

$$+ \frac{q_{\varphi}^{2}m}{c\hbar^{3}\sqrt{\lambda}} \varphi_{1}' A_{\mu}' A'^{\mu} - \frac{mc\sqrt{\lambda}}{\hbar} \varphi_{1}'^{3} \qquad \text{Suvišna energija}$$

$$+ \frac{1}{2} \frac{q_{\varphi}^{2}}{c^{2}\hbar^{2}} A_{\mu}' A'^{\mu} \varphi_{1}'^{2} - \frac{1}{4}\lambda \varphi_{1}'^{4} + \frac{m^{4}c^{4}}{4\lambda\hbar^{4}},$$
gde se φ_{2} uopšte ne pojavljuje, a A_{μ} ima masu $\neq 0$.

Glashow-Weinberg-Salam

Leva hiralnost (≈helicitet)			Desna hiralnost (≈helicitet)		
Ve	Vμ	ντ	Ve	Vμ	ν_{τ}
< 2 eV	< 0.19 MeV	< 18.2 MeV	< 2 eV	< 0.19 MeV	< 18.2 MeV
е	μ	τ	е	μ	τ
.511 MeV	106 MeV	1.78 GeV	.511 MeV	106 MeV	1.78 GeV
u,u,u	<i>C,C,C</i>	t,t,t	u,u,u	<i>C,C,C</i>	<i>t,t,t</i>
1.8–3.0 MeV	1.25–1.3 GeV	173–174 GeV	1.8–3.0 MeV	1.25–1.3 GeV	173–174 GeV
d, d, d	S , S , S	b , b , b	d, d, d	S , S , S	b , b , b
4.5–5.3 IVIEV	90–100 IVIEV	4.15–4.69 Gev	4.5–5.3 IVIEV	90–100 Mev	4.15–4.69 Gev
Interakcija sa W±, Z ⁰			Ne interaguju sa W±, Z ⁰		

Hvele ne peznil

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC Department of Mathematics, University of Maryland, College Park, MD Department of Physics, Faculty of Natural Sciences, Novi Sad, Serbia <u>https://tristan.nfshost.com/</u>