(Fundamentalna) Fizika Elementarnih Čestica

Dan 05c: Kalibracioni princip: renormalizacija

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC Department of Mathematics, University of Maryland, College Park, MD Department of Physics, Faculty of Natural Sciences, Novi Sad, Serbia <u>https://tristan.nfshost.com/</u>

Fundamentalna Fizika Elementarnih Čestica Program

Renormalizacija u QCD u poredjenju sa QED Rasprezanje nefizičkih kalibracionih potencijala u QED \bigcirc Gluonske petlje \Leftrightarrow nekomutativnost Ne-rasprezanje u QCD \bigcirc Promenljiva SU(n) jačina interakcije Zaklanjanje naelektrisanja Petak 20. V 2022 posle pauze: Neabelovsko anti-zaklanjanje naboja Neabelovski Gauss-ov zakon Landau pol i dimenziona transmutacija Efektivni QCD potencijal Zoom-foto asimptotska (ultravioletna) sloboda infracrveno zarobljavanje

Sećate se fotonskog (dela) Lagranžijana?

$$\begin{split} F_{\mu\nu}F^{\mu\nu} &= (\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}) \\ &= (\partial_{0}A_{i} - \partial_{i}A_{0})(\partial^{0}A^{i} - \partial^{i}A^{0}) + (\partial_{i}A_{j} - \partial_{j}A_{i})(\partial^{i}A^{j} - \partial^{j}A^{i}) \\ \dots &i 4 \text{-vektorske} \rightarrow (\text{scalar, 3-vektor) notacije?} \\ A_{\mu} &= (\Phi, -c\vec{A}) \quad \text{ali} \quad A^{\mu} &= (\Phi, c\vec{A}) \\ \partial_{\mu} &= (\frac{1}{c}\partial_{t}, \vec{\nabla}) \quad \text{ali} \quad \partial^{\mu} &= (\frac{1}{c}\partial_{t}, -\vec{\nabla}) \\ F_{\mu\nu}F^{\mu\nu} &= \left((\frac{1}{c}\partial_{t})(-c\vec{A}) - (\vec{\nabla})(\Phi) \right) \cdot \left((\frac{1}{c}\partial_{t})(c\vec{A}) - (-\vec{\nabla})(\Phi) \right) \\ &+ \left((\vec{\nabla}) \times (-c\vec{A}) \right) \cdot \left((-\vec{\nabla}) \times (c\vec{A}) \right) \\ &= -\vec{E} \cdot \vec{E} + c^{2}\vec{B} \cdot \vec{B} \end{split}$$

Renormalizacija u QCD u poredjenju sa QED Rasprezanje nefizičkih QED potencijala $A_{\mu} = (\Phi, -c\vec{A})$

Izrazimo QED Lagranžijan eksplicitno:

$$F_{\mu\nu}F^{\mu\nu} = -(\dot{A} + \vec{\nabla}\Phi)^2 + c^2(\vec{\nabla}\times\vec{A})^2$$

= $-(\dot{A}_1 + \Phi_{,1})^2 - (\dot{A}_2 + \Phi_{,2})^2 - (\dot{A}_3 + \Phi_{,3})^2$
+ $c^2[(A_{2,1} - A_{1,2})^2 + (A_{3,2} - A_{2,3})^2 + (A_{1,3} - A_{3,1})^2]$

Setimo se da je $A_{\mu} \simeq A_{\mu} - c(\partial_{\mu}\lambda)...$...i odaberemo $\lambda = \int dt \Phi$, tako da

$$\begin{split} \Phi &\simeq \Phi - c \left(\partial_0 \int dt \ \Phi \right) = \Phi - c \left(\frac{\partial}{\partial(ct)} \int dt \ \Phi \right) = 0 \\ - c A_i &\simeq - c A_i - c \left(\partial_i \int dt \ \Phi \right) \\ \dot{A}_i &\simeq \dot{A}_i + \left(\Phi, \right)_i := \partial_i \Phi) \quad \Rightarrow \quad \dot{A}_i &\simeq (\dot{A}_i + \Phi, \right) \end{split}$$

 Φ i A_3 su nefizički stepeni slobode, pa želimo da ih raspregnemo of fizičkih A_1 i A_2

Sad ovim rezultatom pojednostavimo Lagranžijan

Solution Dakle, QED Lagranžijan je kalibraciono ekvivalentan $F_{\mu\nu}F^{\mu\nu} \simeq -(\dot{A}_{1})^{2} - (\dot{A}_{2})^{2} - (\dot{A}_{3})^{2} + c^{2}[(A_{2,1} - A_{1,2})^{2} + (A_{3,2} - A_{2,3})^{2} + (A_{1,3} - A_{3,1})^{2}]$

♀ …pošto

 $A_{j,i} - A_{i,j} \simeq (A_{j,i} - \int dt \Phi_{j,i}) - (A_{i,j} - \int dt \Phi_{j,i}) = A_{j,i} - A_{i,j}$

Kompletnim razvijanjem dobijamo:

$$F_{\mu\nu}F^{\mu\nu} \simeq -(\dot{A}_{1})^{2} - (\dot{A}_{2})^{2} - (\dot{A}_{3})^{2} + c^{2}[(A_{2,1})^{2} + (A_{1,2})^{2} + (A_{3,2})^{2} + (A_{2,3})^{2} + (A_{1,3})^{2} + (A_{3,1})^{2} - 2A_{2,1}A_{1,2} - 2A_{3,2}A_{2,3} - 2A_{1,3}A_{3,1}]$$

sprega fizičkih i nefizičkih komponenti

Za foton koji se kreće brzinom svetlosti u smeru ose \hat{e}_3 , $\subseteq \ldots A_1$ i A_2 su fizičke (transverzalne) polarizacije, \mathbb{P} ... a A_3 nije. (\approx FitzGerald-Lorentz kontrakcija.) $F_{\mu\nu}F^{\mu\nu} \simeq -(\dot{A}_1)^2 - (\dot{A}_2)^2 - (\dot{A}_3)^2$ $+ c^{2} [(A_{2,1} - A_{1,2})^{2} + (A_{3,2})^{2} + (A_{3,1})^{2} + (A_{2,3})^{2} + (A_{1,3})^{2}]$ $-2A_{3,2}A_{2,3} - 2A_{1,3}A_{3,1}$ \cong Takodje, longitudinalna (u smeru \hat{e}_3) promena A_1 i A_2 iščezava... $\leq \dots$ tako da $A_{1,3}=0=A_{2,3}$. (\approx FitzGerald-Lorentz kontrakcija.) Stoga: $F_{\mu\nu}F^{\mu\nu} \simeq -(\dot{A}_1)^2 - (\dot{A}_2)^2 - (\dot{A}_3)^2$ se raspregnu $+ c^{2} [(A_{2,1} - A_{1,2})^{2} + (A_{3,2})^{2} + (A_{3,1})^{2}]$ fizičke promenljive 📏 nefizičke promenljive

- A zašto klasično rasprezanje ukazuje na rasprezanje i u punoj kvantnoj teoriji?
- Zbog Feynman-Hibbs-ove konstrukcije.

Particioni funkcional $\mathcal{Z}[\vartheta] := \int \mathbf{D}[\phi] e^{i\hbar^{-1}\int d^{4}x \left(\mathscr{L}(\phi) + \vartheta \cdot \phi\right)}$ $\operatorname{Klasični}_{Lagranžijan}$ $\mathcal{Z}[\vartheta] := \int \mathbf{D}[\phi] e^{i\hbar^{-1}\int d^{4}x \left(\mathscr{L}(\phi) + \vartheta \cdot \phi\right)}$ $\operatorname{Tr}[\mathbb{F}_{\mu\nu}\mathbb{F}^{\mu\nu}] + \mathbb{J} \cdot \mathbb{A}$ $\left[\frac{\delta}{\delta\vartheta(\mathbf{x}_{1})} \cdots \frac{\delta}{\delta\vartheta(\mathbf{x}_{n})} \mathcal{Z}[\vartheta]\right]_{\vartheta=0} = \left[\int \mathbf{D}[\phi] \phi(\mathbf{x}_{1}) \cdots \phi(\mathbf{x}_{n}) e^{i\hbar^{-1}\int d^{4}x \left(\mathscr{L}(\phi) + \vartheta \cdot \phi\right)}\right]_{\vartheta=0}$ $= G(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}) \text{ izračunato Feynman-ovim računom}$

Solution control cont

Renormalizacija u QCD u poredjenju sa QED Gluonske petlje i nekomutativnost

Neabelovska (nekomutativna) QCD ima sličan Lagranžijan

$$\operatorname{Tr} \left[\mathbb{F}_{\mu\nu} \mathbb{F}^{\mu\nu} \right] = \operatorname{Tr} \left[\left(\partial_{\mu} \mathbb{A}_{\nu} - \partial_{\nu} \mathbb{A}_{\mu} + \frac{ig_{c}}{\hbar c} [\mathbb{A}_{\mu}, \mathbb{A}_{\nu}] \right) \right] \\ \left(\partial^{\mu} \mathbb{A}^{\nu} - \partial^{\nu} \mathbb{A}^{\mu} + \frac{ig_{c}}{\hbar c} [\mathbb{A}^{\mu}, \mathbb{A}^{\nu}] \right) \right] \\ = \left(\partial_{\mu} \mathbb{A}^{a}_{\nu} - \partial_{\nu} \mathbb{A}^{a}_{\mu} - \frac{g_{c}}{\hbar c} f^{a}_{bc} \mathbb{A}^{b}_{\mu} \mathbb{A}^{c}_{\nu} \right) \\ \left(\partial^{\mu} \mathbb{A}^{\nu}_{a} - \partial^{\nu} \mathbb{A}^{\mu}_{a} - \frac{g_{c}}{\hbar c} f_{a}^{eh} \mathbb{A}^{\mu}_{e} \mathbb{A}^{\nu}_{h} \right) \\ = \left(\partial_{\mu} \mathbb{A}^{a}_{\nu} - \partial_{\nu} \mathbb{A}^{a}_{\mu} \right) \left(\partial^{\mu} \mathbb{A}^{\nu}_{a} - \partial^{\nu} \mathbb{A}^{\mu}_{a} \right) \\ - \frac{2g_{c}}{\hbar c} \left(\partial_{\mu} \mathbb{A}^{a}_{\nu} - \partial_{\nu} \mathbb{A}^{a}_{\mu} \right) \left(f_{a}^{bc} \mathbb{A}^{\mu}_{b} \mathbb{A}^{\nu}_{c} \right) + \frac{g_{c}^{2}}{\hbar^{2} c^{2}} \left(f^{a}_{bc} \mathbb{A}^{b}_{\mu} \mathbb{A}^{c}_{\nu} \right) \left(f_{a}^{eh} \mathbb{A}^{\mu}_{e} \mathbb{A}^{\nu}_{h} \right) \\ \\ \operatorname{neabelovska struktura} \\ \operatorname{grupe} SU(3)_{c} \end{aligned}$$

Renormalizacija u QCD u poredjenju sa QED Gluonske petlje i nekomutativnost

Neabelovska (nekomutativna) QCD im ličan Lagranžijan

 $\operatorname{Tr}\left[\mathbb{F}_{\mu\nu}\mathbb{F}^{\mu\nu}\right] = \operatorname{Tr}\left[\left(\partial_{\mu}\mathbb{A}_{\nu} - \partial_{\nu}\mathbb{A}_{\mu} + \frac{ig_{c}}{\hbar c}[\mathbb{A}_{\mu}, \mathbb{A}_{\nu}]\right)\right]$ $\left(\partial^{\mu}\mathbb{A}^{\nu}-\partial^{\nu}\mathbb{A}^{\mu}+\frac{ig_{c}}{\hbar c}\left[\mathbb{A}^{\mu},\mathbb{A}^{\nu}\right]\right)$ $=\partial_{[\mu}A_{\nu]}\partial^{[\mu}A^{\nu]} + \frac{2ig_c}{\hbar c}\partial_{[\mu}A_{\nu]}[A^{\mu}, A^{\nu}] = 0$ μ, a q_a ν, b a, µ × d,σ ...gde se $SU(3)_c$ trag podrazumeva.

Renormalizacija u QCD u poredjenju sa QED Gluonske petlje i nekomutativnost

Renormalizacija u QCD u poredjenju sa QED Ne-rasprezanje u QCD $A_{\mu}^{a} = (\Phi^{a}, -c\vec{A}^{a})$

Mada je opet moguće iskoristiti kalibracionu transformaciju

 ${}^{\textcircled{a}}A^{a}_{\mu} \simeq A^{a}_{\mu} - c(\partial_{\mu}\lambda^{a}) \text{ sa } \lambda^{a} = \int \mathrm{d}t \ \Phi^{a},$

 \subseteq ...ona ne eliminiše Φ^a :

...niti se A_3^a raspregne od A_1^a i A_2^a .

 \bigcirc Zahvaljujući neabelovskoj prirodi $SU(3)_c$,

- tj. gluon-gluon interakciji i "novim" Feynman-ovim dijagramima
- ... QCD amplitude neizbežno sadrže nefizičke komponente kalibracionog potencijala. **...ali se može "ispraviti"**
- To neumitno naruši unitarnost.

...ali se može "ispraviti" uvodjenjem Fadeev-Popov "sablasti" i BRST simetrije.

Renormalizacija u QCD u poredjenju sa QED Promenljiva SU(n) jačina interakcije

Citirajmo ovde samo dominantni logaritamski rezultat:
 Ovde,

 $\alpha_{s,R}(|\mathbf{q}^{2}|) \approx \frac{\alpha_{s,R}(\mu^{2}c^{2})}{1 + \frac{\alpha_{s,R}(\mu^{2}c^{2})}{3\pi} \frac{11n - 2n_{f}}{4} \ln\left(\frac{|\mathbf{q}^{2}|}{\mu^{2}c^{2}}\right)}$ $p_{s} = \text{broj } n \text{ constraints}$ $|\mathbf{q}^2| \gg \mu^2 c^2$ $n_f = 1$ roj *n*-obojenih fermiona [$n_f = 6$ ukusa 3-bojenih kvarkova za q > 171.3 GeV (masa top kvarka); za manje energije je $n_f < 6$] Ovo se suštinski razlikuje od elektrodinamičkog rezultata: $\alpha_{e,R}(|\mathbf{q}^{2}|) \approx \frac{\alpha_{e,R}(0)}{1 - \frac{\alpha_{e,R}(0)}{3\pi} \ln\left(\frac{|\mathbf{q}^{2}|}{m^{2}c^{2}}\right)},$ $|\mathbf{q}^2| \gg m_e^2 c^2$

Renormalizacija u QCD u poredjenju sa QED Promenljiva SU(n) jačina interakcije

Citirajmo ovde samo dominantni logaritamski rezultat:

$$\alpha_{s,R}(|\mathbf{q}^2|) \approx \frac{\alpha_{s,R}(\mu^2 c^2)}{1 + \frac{\alpha_{s,R}(\mu^2 c^2)}{3\pi} \frac{11n - 2n_f}{4} \ln\left(\frac{|\mathbf{q}^2|}{\mu^2 c^2}\right)}, \qquad |\mathbf{q}^2| \gg \mu^2 c^2$$

Na logaritamskoj skali, $\alpha_{s,R}$ izgleda:

Zaklanjanje naelektrisanja

Fermion-antifermion polarizacija vakuma

- U QED, blizu realnog elektrona,
 - virtuelni elektron-pozitron parovi deluju kao dipoli
 - gde je virtuelan pozitron bliže pravom elektronu

Ovo efektivno poništi jedan deo naelektrisanja realnog elektrona, razpršuje ga i effektivno ga zaklanja.

Zaklanjanje naelektrisanja

Fermion-antifermion polarizacija vakuma

- 💆 Kao u QED, blizu realnog kvarka,
 - virtuelni kvark-antikvark parovi deluju kao "dipoli"
 - gde je virtuelan antikvark bliže realom kvarku

Crvenoanticrveni parovi su polarizovani

Ostali parovi nisu polarizovani

polarizaci

Takum

Ovo efektivno poništi jedan deo (naboja) boje realnog kvarka, razpršujući i zaklanjujći naboj boje.

Neabelovski Gauss-ov zakon

Ali, u QCD gluoni takodje doprinose!
 Setimo se:

$$\left(\mathcal{D}_{\mu}F^{a\,\mu\nu} = \partial_{\mu}F^{a\,\mu\nu} - \frac{g_{c}}{\hbar c}f_{bc}{}^{a}A^{b}_{\mu}F^{c\,\mu\nu}\right) = j^{a\,\nu}_{(q)}$$

gde je $\nu = 0$ komponenta gustina boje kvarkova. Definicijom:

 $\vec{E}^a := \hat{\mathbf{e}}_i F^{a\,i0}, \qquad \rho^a_{(q)} := j^{a\,0}_{(q)}, \qquad \vec{A}^a := -\hat{\mathbf{e}}^i A^a_i$ dobijemo:

$$\vec{\nabla} \cdot \vec{E}^a = \rho^a_{(q)} - \frac{g_c}{\hbar c} f^a{}_{bc} \vec{A}^b \cdot \vec{E}^c$$

gde nelinearna sprega (zbog neabelovske strukture) služi kao dodatan (*gluonski*) izvor za ovo kromo-električno polje.

Negbelovsko anti-zaklanjanje paboja

Ada urajući iz Peskin + Chroeder-ove knjige, posmatrajmo kvark boje 1, i virtuelni gluonski 3-vektor potencijal boje 2:

Kromo-električno polje boje 1 izvire iz kvarka, zajedno sa virtuelnim potencijalom boje 2, i figuriše kao izvor za kromo-električno polje boje 3.

 $= \rho^a$

 $\frac{g_c}{hc} f^a{}_{bc} \vec{A}^b$

 $\vec{\nabla} \cdot \vec{E}^3 = -\frac{g_c}{\hbar c} f^3{}_{21} \vec{A}^2 \cdot \vec{E}^1 = -\frac{g_c}{\hbar c} (-1) |\vec{A}^2| |\vec{E}^1| (\cos \theta_{12} = +\frac{1}{2})$ $= +\frac{g_c}{2\hbar c} |\vec{A}^2| |\vec{E}^1|$

Neabelovski Gauss-ov zakon Neabelovski Gauss-ov zakon $\vec{\nabla} \cdot \vec{E}^{a} = \rho^{a}_{(a)} - \frac{g_{c}}{\hbar c} f^{a}_{bc} \vec{A}^{b} \cdot \vec{E}^{c}$

Adaptirajući iz Peskin+Schroeder-ove knjige, posmatrajmo kvark boje1, i virtuelni gluonski 3-vektor potencijal boje 2:

Sprega kromo-električnog polja boje 3 i kalibracionog potencijala boje 2 deluje kao *dipol* izvora boje 1.

 $\vec{\nabla} \cdot \vec{E}^1 = -\frac{g_c}{\hbar c} f^1_{23} \vec{A}^2 \cdot \vec{E}^3 = -\frac{g_c}{\hbar c} (+1) |\vec{A}^2| |\vec{E}^3| \cos \theta_{32},$

gde je $-\cos(\theta_{23})$ pozitivan "dole-levo" od "izvora" boje 3, a negativan na suprotnoj, "gore-desno" strani.

Neabelovski Gauss-ov zakon Neabelovski Gauss-ov zakon $\vec{\nabla} \cdot \vec{E}^a = \rho^a_{(a)} - \frac{g_c}{\hbar c} f^a{}_{bc} \vec{A}^b \cdot \vec{E}^c$

Adaptirajući iz Peskin+Schroeder-ove knjige, posmatrajmo kvark boje1, i virtuelni gluonski 3-vektor potencijal boje 2:

Da pojednostavimo, samo izvori boje 1:

Virtuelni dipol boje 1 (proizveden nelinearnom spregom sa virtuelnom gluonom boje 2) ne zaklanja boju (color-1) originalnog izvora (kvarka), već *anti–zaklanja* (pojačava) taj naboj boje.

Renormalizacija

Računska digresija...

Sector Posmatrajmo $O(g^4)$ korekcije u $e^-+\mu^-$ -rasejanju:

Renormalizacija Računska digresija...

Sledeći postupak/algoritam/recept:

$$\begin{cases} \frac{d^{4}q}{(2\pi)^{4}} \frac{d^{4}q'}{(2\pi)^{4}} \frac{d^{4}k}{(2\pi)^{4}} \frac{d^{4}k'}{(2\pi)^{4}} \\ \times (2\pi)^{4} \delta^{4}(\mathbf{p}_{1} - \mathbf{p}_{3} - \mathbf{q}) (2\pi)^{4} \delta^{4}(\mathbf{q} - \mathbf{k} + \mathbf{k}') (2\pi)^{4} \delta^{4}(\mathbf{k} - \mathbf{k}' - \mathbf{q}') \\ \times (2\pi)^{4} \delta^{4}(\mathbf{p}_{2} - \mathbf{p}_{4} + \mathbf{q}') [\overline{u}_{3}(ig_{e} \boldsymbol{\gamma}^{\mu})u_{1}] \left(\frac{-i\eta_{\mu\nu}}{\mathbf{q}^{2}}\right) \\ \times (-1) \operatorname{Tr} \left[(ig_{e} \boldsymbol{\gamma}^{\nu}) \frac{i}{\mathbf{k}' - m_{ec}} (ig_{e} \boldsymbol{\gamma}^{\rho}) \frac{i}{\mathbf{k}' - m_{ec}} \right] \left(\frac{-i\eta_{\rho\sigma}}{(\mathbf{q}')^{2}}\right) [\overline{u}_{4}(ig_{e} \boldsymbol{\gamma}^{\sigma})U_{2}], \\ = -i(2\pi)^{4} \delta^{4}(\mathbf{p}_{1} + \mathbf{p}_{2} - \mathbf{p}_{3} - \mathbf{p}_{4}) \\ \times \left[\frac{-ig_{e}^{4}}{\mathbf{q}^{4}} \int \frac{d^{4}\mathbf{k}}{(2\pi)^{4}} [\overline{u}_{3} \boldsymbol{\gamma}^{\mu} u_{1}] [\overline{u}_{4} \boldsymbol{\gamma}^{\rho} U_{2}] \\ \times \left[\frac{-ig_{e}^{4}}{\mathbf{q}^{4}} \int \frac{d^{4}\mathbf{k}}{(2\pi)^{4}} [\overline{u}_{3} \boldsymbol{\gamma}^{\mu} u_{1}] [\overline{u}_{4} \boldsymbol{\gamma}^{\rho} U_{2}] \\ \times \frac{\operatorname{Tr}[\boldsymbol{\gamma}_{\mu}(\mathbf{k}' + m_{e}c)\boldsymbol{\gamma}_{\rho}(\mathbf{k}' - \mathbf{q}' + m_{e}c)]}{(\mathbf{k}^{2} - m_{e}^{2}c^{2}]} \right]_{\mathbf{q} = \mathbf{p}_{1} - \mathbf{p}_{3}} \end{cases}$$

Neabelovsko anti-zaklanjanje naboja

Landau pol i dimenziona transmutacija

Renormalizovani parametar interakcije

$$\alpha_{s,R}(|\mathbf{q}^{2}|) \approx \frac{\alpha_{s,R}(\mu^{2}c^{2})}{1 + \frac{\alpha_{s,R}(\mu^{2}c^{2})}{3\pi} \frac{11n - 2n_{f}}{4} \ln\left(\frac{|\mathbf{q}^{2}|}{\mu^{2}c^{2}}\right)},$$

 $|\mathbf{q}^2| \gg \mu^2 c^2,$

Zavisi od dva parametra:

 \bigcirc od "referentnog" parametra mase/impulsa μ ,

Umesto toga, možemo definisati masu/impuls ΛQCD:

$$\ln(\Lambda_{QCD}^2) := \ln(\mu^2 c^2) - \frac{12\pi}{(11n - 2n_f)\alpha_{s,R}(\mu^2 c^2)}$$

$$\alpha_{s,R}(|\mathbf{q}^2|) \approx \frac{12\pi}{(11n-2n_f)\ln\left(\frac{|\mathbf{q}^2|}{\Lambda_{QCD}^2}\right)} \quad \begin{array}{l} \text{divergira kod } \Lambda_{QCD} \\ \dots \text{gde perturbativni} \\ \text{račun prestaje da važi} \\ \end{array}$$

Efektivni QCD potencijal

Asimptotska (ultravioletna) sloboda

^{\odot} Intenzitet $\alpha_{s,R}(|q^2|)$ opada dok $\sqrt{|q^2|} \gg \mu c$ raste,

tj. dok razdaljina interakcije opada.

- Drugim rečima, intenzitet jake interakcije opada do nule sa razdaljinom izmedju dva interagujuća kvarka.
- Ovaj neobičan rezultat se zove "asimptotska sloboda"
 - (komplementarno je činjenici da su kvarkovi zarobljeni u hadronima)
 - jaka interakcija prestaje da deluje na kvarkove...
 - …onda kada ovi ne pokušavaju da napuste hadron.
 - …kvalitativno sili opruge …rastuće jačine

Efektivni potencial koji opisuje interakcije kvarkova je onda približno ravan (konstanta) na malim razdaljinama.

otud "model vreće"

— glatka varijanta

potencijalne jame

beskonačno duboke

Efektivni QCD potencijal

Infracrveno zarobljavanje

- A kada √|q²| ≫μc, pa √|q²| ∖ Λ_{QCD},
 ...perturbativni račun prestaje da važi.
 U eksperimentu, izdvajanje (anti)kvarka
 na veće i veće razdaljine
 - $^{\ensuremath{ \bigcirc }}$ zahteva veće i veće $\sqrt{|q^2|}$,
 - …koje pre ili kasnije proizvede novi kvark-antikvark par:

Kvalitativno,

potseća na

"vreća"

opruge,

stringovi

razmak

Koog

Keffeel

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC Department of Mathematics, University of Maryland, College Park, MD Department of Physics, Faculty of Natural Sciences, Novi Sad, Serbia <u>https://tristan.nfshost.com/</u>