(Fundamentalna) Fizika Elementarnih Čestica

Dan 05b: Kalibracioni princip: konkretni računi

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC Department of Mathematics, University of Maryland, College Park, MD Department of Physics, Faculty of Natural Sciences, Novi Sad, Serbia <u>https://tristan.nfshost.com/</u>

Fundamentalna Fizika Elementarnih Čestica

Program za danas (od pauze)

Konkretni QCD računi

- Feynman-ova pravila
- Gluonske petlje i interakcije
 - Inelinearnost
 - kalibracioni uslovi
- Kvark-kvark interakcija
- Računanje faktora boje
- [qq]₃ i [qq]₆
- $\ \ \, \cong f_c(\mathbf{\bar{3}} \,|\, \mathbf{\bar{3}}), \, f_c(\mathbf{\bar{3}} \,|\, \mathbf{\bar{3}}'), \, f_c(\mathbf{6} \,|\, \mathbf{\bar{3}}), \, f_c(\mathbf{\bar{3}} \,|\, \mathbf{6}), \, f_c(\mathbf{6} \,|\, \mathbf{6}), \, f_c(\mathbf{6} \,|\, \mathbf{6}')$
- Wark-antikvark interakcija
- Računanje faktora boje
- [qq̄]₁ i [qq̄]₈
- $f_c(1 | 1), f_c(1 | 8), f_c(8 | 8), f_c(8 | 8), f_c(8 | 8')$
- Zaključak: SU(3)_c formalizam

Feynman-ova pravila

- 1. Notacija:
 - 4-momenti: eksterni = p_1, p_2, \dots , interni = q_1, q_2, \dots
 - Orijentacija:

 - Sa spin-1/2 antičesticu, nasuprot 4-momenta
 - Gluonske linije: realne uz vreme, interne (virtuelne) = proizvoljne
 - Polarizacije:

Spin- ¹ / ₂ kvark	ulazni izlazni		$u_f^s \chi^\alpha \\ \overline{u}_{f,s} \chi^\dagger_\alpha$	$s = projekcija spina = \uparrow, \downarrow$ $\alpha = boja kvarka = c, \check{z}, p$ f = vrsta kvarka: u, d, s,
Spin- ¹ / ₂ antikvark	ulazni izlazni		$\overline{v}_{f,s} \chi^{\dagger}_{\alpha} \ v^s_f \chi^{lpha}$	(≅ spin-¼ kvark, putuje unazad u vremenu)
Gluon	ulazni izlazni	-00000	$\epsilon^{\mu}\chi^{a}$ $\epsilon^{\mu*}\chi^{a*}$	$\epsilon^{\mu}p_{\mu} = 0$ <i>i</i> $\epsilon^{0} = 0$

Korretni QCD računi Feynman-ova pravila

- 3. Propagatori = interne linije
 - € Weight Stress Str

- Interne linije predstavljaju virtuelne čestice (van masene ljuske).
 Očuvanje 4-momenta
- Svakom verteksu pripisati $(2\pi)^4 \delta^{(4)}(\sum k), k = p_i, q_j$
- 5. Integral po svakom internom 4-momentu: $\frac{1}{(2\pi)^4}\int d^4q_j$
- $^{\odot}$ 6. Očitati: $-i\mathcal{M}(2\pi)^4 \delta^{(4)}(\sum_i p_i)$

Konkretni QCD računi Feynman-ova pravila

- 8. Amplitude za parcijalne procese koji su povezani razmenom neparnog para fermiona imaju relativni "—" predznak.
- Organizujemo Feynman-ove dijagrame:
 - \bigcirc po stepenu jačine interakcije, g_c , kao i po broju petlji.
- Ove amplitude se ne mogu koristiti kao u elektromagnetizmu,
 - ... jer kvarkove ne možemo izdvojiti kao slobodne čestice.
 - Ipak, one mogu ukazati na relativne verovatnoće,
 - ...pomalo nalik na primenu Wigner-Eckardt-ove teoreme:

 $\frac{\sigma_{\text{proces 1}}}{\sigma_{\text{proces 2}}} = \frac{|\mathcal{M}_1|^2}{|\mathcal{M}_2|^2} = \frac{|(\text{spin})_1 \cdot (\text{izospin})_1 \cdot (\text{boja})_1 \cdot (\text{ostalo})_1|^2}{|(\text{spin})_2 \cdot (\text{izospin})_2 \cdot (\text{boja})_2 \cdot (\text{ostalo})_2|^2}$

Kvark-kvark interakcija

Posmatrajmo konkretan proces, kao što je $p^+ + n^0 \rightarrow p^+ + n^0$.

- Analiziramo kao $[duu]+[ddu] \rightarrow [duu]+[ddu],$
- ^Q gde je jaka interakcija dominantna
 ^Q pa posmatramo kvark-kvark interakciju
 ^Q (d+d → d+d) ≈ (d+u → d+u) ≈ (u+u → u+u)
 ^Q (u+u → u+u+u)
 ^Q (u+u → u+u → u+u)
 ^Q (u+u → u+u+u)
- Pa onda i: $(p^+ + p^+ → p^+ + p^+) \approx (p^+ + n^0 → p^+ + n^0) \approx (n^0 + n^0 → n^0 + n^0)$
- …po Heisenberg-ovom izvornom uvodjenju izospina.

Npr.

Kvark-kvark interakcija

Računanje amplitude se razlikuje od elektrodinamike samo u faktoru boje:

$$\mathcal{M}_{d+u\to d+u} = \frac{g_s^2}{2} \frac{1}{q^2} \left[\overline{u}_3 \boldsymbol{\gamma}^{\mu} u_1 \right] \left[\overline{u}_4 \boldsymbol{\gamma}_{\mu} u_2 \right] \left(\chi_3^{\dagger} \boldsymbol{\lambda}^a \chi_1 \right) \left(\chi_4^{\dagger} \boldsymbol{\lambda}_a \chi_2 \right)$$

elektrodinamika novo

Koristeći se elektrodinamičkim računom, uz zamenu $g_e \rightarrow g_c$, Izračunamo faktor boje, $f_c(3,4|1,2) = \frac{1}{4}(\chi_3^{\dagger}\lambda^a\chi_1)(\chi_4^{\dagger}\lambda_a\chi_2)$...za sve moguće slučajeve. Pošto bi elektrodinamička amplituda dala $\frac{1}{4\pi\epsilon_0}\frac{e^2}{r} = \frac{\alpha_e\hbar c}{r}$...QCD amplituda će dati $V_{qq}(r) = f_c \frac{\chi_s\hbar c}{r}$

ostaje da se odredi

Kvark-kvark interakcija

Stoga, računamo

 $f_{c}(3,4|1,2) = \frac{1}{4}(\chi_{3}^{\dagger}\lambda^{a}\chi_{1})(\chi_{4}^{\dagger}\lambda_{a}\chi_{2}) = \frac{1}{4}\chi_{3\gamma}^{\dagger}\chi_{4\delta}^{\dagger}(\lambda^{a})_{\alpha}^{\gamma}(\lambda_{a})_{\beta}^{\delta}\chi_{1}^{\alpha}\chi_{2}^{\beta}$ izlazulaz

…za sva moguća dvo-kvarkovska ulazna i izlazna stanja.
 Koristimo tenzorsko—matrični prevod notacije za boju:

 $\chi^{r} \leftrightarrow \delta_{1}^{\alpha} \leftrightarrow \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad \chi^{y} \leftrightarrow \delta_{2}^{\alpha} \leftrightarrow \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad \chi^{b} \leftrightarrow \delta_{3}^{\alpha} \leftrightarrow \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$ kao i da je $(\mathbf{3} \otimes \mathbf{3})_{A} = \mathbf{3}^{*} \quad \chi_{1}^{[\alpha} \chi_{2}^{\beta]} \coloneqq \frac{1}{\sqrt{2}} (\delta_{\gamma}^{\alpha} \delta_{\delta}^{\beta} - \delta_{\gamma}^{\beta} \delta_{\delta}^{\alpha}) \chi_{1}^{\gamma} \chi_{2}^{\delta} \qquad \alpha \neq \beta, \ \alpha, \beta = 1, 2, 3$ $(\mathbf{3} \otimes \mathbf{3})_{S} = \mathbf{6} \quad \chi_{1}^{(\alpha} \chi_{2}^{\beta)} \coloneqq \left\{ \frac{1}{\sqrt{2}} (\delta_{\gamma}^{\alpha} \delta_{\delta}^{\beta} + \delta_{\gamma}^{\beta} \delta_{\delta}^{\alpha}) \right\} \chi_{1}^{\gamma} \chi_{2}^{\delta} \quad \left\{ \begin{array}{c} \alpha \neq \beta, \\ \alpha = \beta, \end{array}, \alpha, \beta = 1, 2, 3 \end{array} \right\}$

Neke SU(3)_c reprezentacije

- Fundamentalna reprezentacija
 - u oznaci "**3**", za kompleksni 3-dimenzioni vektorski prostor,
 - $^{\bigcirc}$...razapeta (*t*¹, *t*², *t*³): *c*₁*t*¹+ *c*₂*t*²+ *c*₃*t*³, tj. ℂ³={*c*₁, *c*₂, *c*₃}
 - Section Se
- Antisimetrični proizvod = antisimetrični tenzor ranga 2
 - Se identifikuje sa **3***: $t_{\alpha} = \varepsilon_{\alpha\beta\gamma} t^{[\beta\gamma]}$
- \bigcirc predstavljen linearnom kombinacijom $t^{[12]}$, $t^{[13]}$ i $t^{[23]}$,
- ...koje SU(3)_c transformiše jedan u drugi.
- Simetrični proizvod = simetrični tenzor ranga 2
- se identifikuje sa 6:
- predstavljen linearnom kombinacijom
- $t^{(11)}, t^{(22)}, t^{(33)}, t^{(12)}, t^{(13)} i t^{(23)},$
- \mathbb{S} ... koje *SU*(3)_c transformiše jedan u drugi.

Kvark-kvark interakcija

- Slučajevi $f_c(3,4|1,2)$ koje nam je ispitati
- gde (1,2) i (3,4) predstavljaju slučajeve:
 - $^{\bigcirc}$ dve kopije istog elementa iz $\mathbf{\overline{3}}$: $f_c(\mathbf{\overline{3}}|\mathbf{\overline{3}})$, npr. [13][13];
 - ^{\bigcirc} dva različita elementa iz $\mathbf{\overline{3}}$: $f_c(\mathbf{\overline{3}}|\mathbf{\overline{3}'})$, npr. [12] [13];
 - Jedan element iz v i jedan iz 6: $f_c(\mathbf{6}|\mathbf{\bar{3}})$, npr.
 (11) [12], (33) [12], (13) [13] i (12) [13];
 - ^{\bigcirc} dve kopije istog elementa iz **6**: $f_c(\mathbf{6} | \mathbf{6})$, npr. (11)|(11);
 - $Giged dva različita elementa iz 6: <math>f_c(6|6')$, npr. (11)|(33).
 - Ima još ostalih izbora, ali delovanje $SU(3)_c$ -transformacije ih sve prevode u jedan od ovih <u>osam</u> slučajeva.
- Stoga je dovoljno proveriti ovih osam primera.

Kvark-kvark interakcija

Razmotrimo jedan primer za $f_c(\bar{\mathbf{3}} | \bar{\mathbf{3}})$: $\left\{\frac{1}{4}\left(\chi_{3\gamma}^{\dagger}\chi_{4\delta}^{\dagger}\right)_{\mathbf{3}}\left(\lambda^{a}\right)_{\alpha}{}^{\gamma}\left(\lambda_{a}\right)_{\beta}{}^{\delta}\left(\chi_{1}^{\alpha}\chi_{2}^{\beta}\right)_{\mathbf{3}^{*}}\right\}$ $\supset \frac{1}{4} \frac{1}{\sqrt{2}} \left(\delta_{\gamma}^{1} \delta_{\delta}^{3} - \delta_{\delta}^{1} \delta_{\gamma}^{3} \right) (\lambda^{a})_{\alpha}{}^{\gamma} (\lambda_{a})_{\beta}{}^{\delta} \frac{1}{\sqrt{2}} \left(\delta_{1}^{\alpha} \delta_{3}^{\beta} - \delta_{1}^{\beta} \delta_{3}^{\alpha} \right),$ $= \frac{1}{8} \left[\lambda^{a}{}_{1}{}^{1} \lambda_{a3}{}^{3} - \lambda^{a}{}_{3}{}^{1} \lambda_{a1}{}^{3} - \lambda^{a}{}_{1}{}^{3} \lambda_{a3}{}^{1} + \lambda^{a}{}_{3}{}^{3} \lambda_{a1}{}^{1} \right]$ $= \frac{1}{4} \left[\lambda^{a}{}_{1}{}^{1} \lambda_{a3}{}^{3} - \lambda^{a}{}_{3}{}^{1} \lambda_{a1}{}^{3} \right].$ $\boldsymbol{\lambda}_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \boldsymbol{\lambda}_2 = \begin{bmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \boldsymbol{\lambda}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \boldsymbol{\lambda}_4 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix},$ $\boldsymbol{\lambda}_5 = \begin{bmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{bmatrix}, \quad \boldsymbol{\lambda}_6 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad \boldsymbol{\lambda}_7 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{bmatrix}, \quad \boldsymbol{\lambda}_8 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ $= \frac{1}{4} \left[\lambda_{81}^{8} \lambda_{83}^{3} - \lambda_{31}^{4} \lambda_{41}^{3} - \lambda_{51}^{5} \lambda_{51}^{3} \right]$ $= \frac{1}{4} \left[\frac{1}{\sqrt{3}} \cdot \frac{-2}{\sqrt{3}} - 1 \cdot 1 - i \cdot (-i) \right] = \left(-\frac{2}{3} \right).$

Kvark-kvark interakcija

Stoga: $f_c(\bar{\mathbf{3}}|\bar{\mathbf{3}})$, predstavljen $f_c([13]|[13])$, = -²/₃ (privlačan!) Slično, $f_c(\bar{\mathbf{3}}|\bar{\mathbf{3}}')$ predstavljen $f_c([12]|[13])$, $\frac{1}{4} \frac{1}{\sqrt{2}} \left(\delta_{\gamma}^{1} \delta_{\delta}^{2} - \delta_{\delta}^{1} \delta_{\gamma}^{2} \right) \left(\lambda^{a} \right)_{\alpha}{}^{\gamma} \left(\lambda_{a} \right)_{\beta}{}^{\delta} \frac{1}{\sqrt{2}} \left(\delta_{1}^{\alpha} \delta_{3}^{\beta} - \delta_{1}^{\beta} \delta_{3}^{\alpha} \right)$ $= \frac{1}{8} \left[\lambda^{a_{1}}{}^{1} \lambda_{a_{3}}{}^{2} - \lambda^{a_{3}}{}^{1} \lambda_{a_{1}}{}^{2} - \lambda^{a_{1}}{}^{2} \lambda_{a_{3}}{}^{1} + \lambda^{a_{3}}{}^{2} \lambda_{a_{1}}{}^{1} \right]$ $=\frac{1}{4}[\lambda_{a_1}^{a_1}\lambda_{a_3}^{2} - \lambda_{a_3}^{a_1}\lambda_{a_1}^{2}] = 0$ — ne može! $f_c(\mathbf{6}|\mathbf{3}^*),$ predstavljen $f_c((\mathbf{11})|[\mathbf{12}]), = 0$ $f_c(\mathbf{6}|\mathbf{3}^*), \text{ predstavljen } f_c((\mathbf{33})|[12]), = 0$ ne može! $f_c(\mathbf{6}|\mathbf{3}^*), \text{ predstavljen } f_c((\mathbf{13})|[\mathbf{13}]), = 0$ $\Im f_c(\mathbf{6}|\mathbf{3}^*)$, predstavljen $f_c((\mathbf{12})|[\mathbf{13}])$, = 0 $f_c(6|6), \text{ predstavljen } f_c((11)|(11)), = +\frac{1}{3} \text{ (odbojan!)}$ $\int f_c(\mathbf{6}' | \mathbf{6})$, predstavljen $f_c((11) | (33))$, = 0 — ne može!

Kvark-kvark interakcija

Rezimirano:

Barioni moraju da budu $SU(3)_c$ -invariante.

- Kvark-kvark interakcija 1-gluonskom razmenom je
 - *privlačna* ako su boje kvarkova antisimetrizovane U elektrodinamici se istoimena naelektrisanja uvek odbijaju!
 - 🦳 i ostaju u istom konkretnom stanju,
 - odbojne ako su boje kvarkova simetrizovane
 - i ostaju u istom konkretnom stanju,
 - zabranjene u svim ostalim slučajevima.

Interakcija više-gluonskom razmenom prati ovaj format.

- Barione čine tri kvarka.
- Da bi boje svakog para bile antisimetrizovane,
- Se ...boje sva tri kvarka moraju da se antisimetrizuju.
- $(\mathbf{3}\otimes\mathbf{3}\otimes\mathbf{3})_A = \mathbf{1}$, t.j. $(t^a t^\beta t^\gamma)_A \propto \varepsilon^{a\beta\gamma}$, što je SU(3)-invarijanta.
- $\Psi_{\text{barion}} = [\Psi(\text{prostor-vreme}) \cdot \chi(\text{spin}) \cdot \chi(\text{ukus})]_S \cdot \chi_A(\text{boja})$

Kvark-antikvark interakcija

Ulazni i izlazni (anti-)kvarkovi sada mogu da imaju boje u $\mathcal{O}(SU(3)_c\text{-invariantnom})$ stanju singleta boje $(\chi_1\chi_2^\dagger)^{\alpha}{}_{\beta} = \delta^{\alpha}_{\beta} \mathring{\chi}$ ili u stanju (ermitske matrice bez traga) za oktet boje:

$$\begin{split} & \left\{ \chi_{12}{}^{\alpha}{}_{\beta} = \sqrt{1 + \frac{1}{2}} \delta^{\alpha}_{\beta} (\chi_{1}^{\alpha} \chi_{2\beta}^{\dagger} - \frac{1}{\sqrt{3}} \delta^{\alpha}_{\beta} \mathring{\boldsymbol{\chi}}), \ \alpha, \beta = c, \check{\boldsymbol{z}}, p = 1, 2, 3 \right\}, \\ & = \left\{ \sqrt{\frac{3}{2}} (\delta^{\alpha}_{1} \delta^{1}_{\beta} - \mathring{\boldsymbol{\chi}}), \ \sqrt{\frac{3}{2}} (\delta^{\alpha}_{2} \delta^{2}_{\beta} - \mathring{\boldsymbol{\chi}}), \ \sqrt{\frac{3}{2}} (\delta^{\alpha}_{3} \delta^{3}_{\beta} - \mathring{\boldsymbol{\chi}}), \\ & \left(\delta^{\alpha}_{1} \delta^{2}_{\beta} \right), \ \left(\delta^{\alpha}_{1} \delta^{3}_{\beta} \right), \ \left(\delta^{\alpha}_{2} \delta^{1}_{\beta} \right), \ \left(\delta^{\alpha}_{2} \delta^{3}_{\beta} \right), \ \left(\delta^{\alpha}_{3} \delta^{1}_{\beta} \right), \ \left(\delta^{\alpha}_{3} \delta^{2}_{\beta} \right) \right\}, \end{split}$$

Simbolično:

 $\begin{array}{l} \Im \otimes \mathbf{3} \otimes \mathbf{3}^{*} = \mathbf{1} \oplus \mathbf{8} \\ & \mathbf{1}^{\alpha} \otimes \bar{s}_{\beta} = [\underbrace{\frac{1}{3}}{\delta^{a}}_{\beta}(t^{\gamma} \bar{s}_{\gamma})] + [t^{\alpha} \bar{s}_{\beta} - \frac{1}{3} \delta^{a}{}_{\beta}(t^{\gamma} \bar{s}_{\gamma})] \\ & \underbrace{\mathsf{trag}} & \underbrace{\mathsf{traga}} & \mathsf{kao} \, \mathsf{kvadrupolni} \, \mathsf{moment} \\ & \mathsf{u} \, \mathsf{elektrodinamici} \end{array}$

Kvark-antikvark interakcija

Pošto je naboj boje antikvarka suprotan od naboja boje odgovarajućeg kvarka,

…1-gluonska razmena proizvodi potencijal

 $V_{q\overline{q}}(r) = \bigcap_{r} f_c \frac{\alpha_c \hbar c}{r},$

Treba izračunati $f_c(3,\overline{4} | 1,\overline{2})$ za: $f_c(8|8)$, predstavljen $f_c(1_3|1_3)$, $f_c(8'|8)$, predstavljen $f_c(3_1|1_3)$, $f_c(8|1)$, predstavljen $f_c(1_3|1)$, $f_c(1|1)$, predstavljen $f_c(1|1)$. Računamo opet: $\frac{1}{4} (\delta_{\gamma}^1 \delta_{3}^\delta) (\lambda^a)_{\alpha}^{\gamma}$

$$\frac{1}{4} \left(\delta_{\gamma}^{1} \delta_{3}^{\delta} \right) \left(\lambda^{a} \right)_{\alpha}{}^{\gamma} \left(\lambda_{a} \right)_{\delta}{}^{\beta} \left(\delta_{1}^{\alpha} \delta_{\beta}^{3} \right),$$

$$= \frac{1}{4} \lambda^{a}{}_{1}{}^{1} \lambda_{a3}{}^{3} = \frac{1}{4} \lambda^{8}{}_{1}{}^{1} \lambda_{83}{}^{3} = \frac{1}{4} \frac{1}{\sqrt{3}} \frac{-2}{\sqrt{3}} = -\frac{1}{6},$$

Kvark-antikvark interakcija

- Dobijemo:
 - $Gige f_c(\mathbf{8}|\mathbf{8})$, predstavljen $f_c(\mathbf{1}_3|\mathbf{1}_3)$, = $-\frac{1}{6}$ odbojan!
 - $f_c(\mathbf{8}' | \mathbf{8}),$ predstavljen $f_c(\mathbf{3}_1 | \mathbf{1}_3), = 0$
 - $\widehat{f_c(\mathbf{8}|\mathbf{1})}, \text{ predstavljen } f_c(\mathbf{1}_3|\mathbf{1}), = 0$
 - $\int f_c(\mathbf{1} | \mathbf{1}), \text{ predstavljen } f_c(\mathbf{1} | \mathbf{1}): \\ \frac{1}{4} (\chi_{3\gamma}^{\dagger} \chi_4^{\delta})_{\mathbf{1}} (\lambda^a)_{\alpha}{}^{\gamma} (\lambda_a)_{\delta}{}^{\beta} (\chi_1^{\alpha} \chi_{2\beta}^{\dagger})_{\mathbf{1}}$

$$V_{q\bar{q}}(r)=-f_c\frac{\alpha_c\hbar c}{r},$$

 $= \frac{1}{4} \frac{1}{\sqrt{3}} \left(\delta_{\gamma}^{1} \delta_{1}^{\delta} + \delta_{\gamma}^{2} \delta_{2}^{\delta} + \delta_{\gamma}^{3} \delta_{3}^{\delta} \right) \left(\lambda^{a} \right)_{\alpha} \gamma \left(\lambda_{a} \right)_{\delta} \beta \frac{1}{\sqrt{3}} \left(\delta_{1}^{\alpha} \delta_{\beta}^{1} + \delta_{2}^{\alpha} \delta_{\beta}^{2} + \delta_{3}^{\alpha} \delta_{\beta}^{3} \right),$ $= \frac{1}{12} \lambda^{a}{}_{\alpha} \gamma \lambda_{a} \gamma^{\alpha} = \frac{1}{12} \delta_{ab} \operatorname{Tr}(\boldsymbol{\lambda}^{a} \boldsymbol{\lambda}^{b}) = \frac{1}{12} \delta_{ab} 2\delta^{ab} = \frac{1}{6} 8 = \frac{4}{3}$

Kvark-antikvark potencijal od 1-gluonske razmene je:

- *privlačan* za ulazna i izlazna stanja singleta boje,
- odbojan za ulazna i izlazna stanja (istih!) okteta boje,
- **zabranjen** inače.

Mezoni moraju da budu $SU(3)_c$ -invariante.

privlačan!

Kvark-antikvark interakcija

Da li (virtuelna) anihilacija + re-kreacija doprinosi?

$$\mathcal{M}_{u+\bar{u}\to u+\bar{u}} = -\frac{g_c^2}{4(\mathbf{p}_1 - \mathbf{p}_3)^2} [\overline{u}_3 \boldsymbol{\gamma}^{\mu} u_1] [\overline{v}_2 \boldsymbol{\gamma}_{\mu} v_4] (\chi_3^{\dagger} \boldsymbol{\lambda}^a \chi_1) (\chi_2^{\dagger} \boldsymbol{\lambda}_a \chi_4) + \frac{g_c^2}{4(\mathbf{p}_1 + \mathbf{p}_2)^2} [\overline{v}_2 \boldsymbol{\gamma}^{\mu} u_1] [\overline{u}_3 \boldsymbol{\gamma}_{\mu} v_4] (\chi_2^{\dagger} \boldsymbol{\lambda}^a \chi_1) (\chi_3^{\dagger} \boldsymbol{\lambda}_a \chi_4),$$

Konkretni QCD računi Kvark-antikvark interakcija

- У Da li (virtuelna) anihilacija + re-kreacija doprinosi?
- Faktori boje su sada:
 - $f_c(8|8)$:

 $\left\{\frac{1}{4}\left(\chi_{3\gamma}^{\dagger}\chi_{4}^{\delta}\right)_{\mathbf{8}}\left(\lambda^{a}\right)_{\alpha}{}^{\beta}\left(\lambda_{a}\right)_{\delta}{}^{\gamma}\left(\chi_{1}^{\alpha}\chi_{2\beta}^{\dagger}\right)_{\mathbf{8}}\right\}\supset\frac{1}{4}\left(\delta_{\gamma}^{\mathbf{1}}\delta_{3}^{\delta}\right)\left(\lambda^{a}\right)_{\alpha}{}^{\beta}\left(\lambda_{a}\right)_{\delta}{}^{\gamma}\left(\delta_{1}^{\alpha}\delta_{\beta}^{3}\right),$ $= \frac{1}{4} \lambda^{a}{}_{1}{}^{3} \lambda_{a3}{}^{1} = \frac{1}{4} \left(\lambda^{4}{}_{1}{}^{3} \lambda_{43}{}^{1} + \lambda^{5}{}_{1}{}^{3} \lambda_{53}{}^{1} \right) = \frac{1}{4} \left(1 \cdot 1 + (-i) \cdot (i) \right) = \frac{1}{2},$

- $f_c(8' | 8):$ $\left\{\frac{1}{4}\left(\chi_{3\gamma}^{\dagger}\chi_{4}^{\delta}\right)_{\mathbf{8}'}\left(\lambda^{a}\right)_{\alpha}{}^{\beta}\left(\lambda_{a}\right)_{\delta}{}^{\gamma}\left(\chi_{1}^{\alpha}\chi_{2\beta}^{\dagger}\right)_{\mathbf{8}}\right\}\supset\frac{1}{4}\left(\delta_{\gamma}^{3}\delta_{1}^{\delta}\right)\left(\lambda^{a}\right)_{\alpha}{}^{\beta}\left(\lambda_{a}\right)_{\delta}{}^{\gamma}\left(\delta_{1}^{\alpha}\delta_{\beta}^{3}\right),$ $= \frac{1}{4} \lambda^{a}{}_{1}{}^{3} \lambda_{a1}{}^{3} = \frac{1}{4} (\lambda^{4}{}_{1}{}^{3} \lambda_{41}{}^{3} + \lambda^{5}{}_{1}{}^{3} \lambda_{51}{}^{3}) = \frac{1}{4} (1 \cdot 1 + (-i) \cdot (-i)) = 0,$
- $f_c(1|1):$

$$\frac{1}{4} \left(\chi_{3\gamma}^{\dagger} \chi_{4}^{\delta} \right)_{\mathbf{1}} \left(\lambda^{a} \right)_{\alpha}{}^{\beta} \left(\lambda_{a} \right)_{\delta}{}^{\gamma} \left(\chi_{1}^{\alpha} \chi_{2\beta}^{\dagger} \right)_{\mathbf{1}}$$

 $= \frac{1}{4} \frac{1}{\sqrt{3}} \left(\delta_{\gamma}^{1} \delta_{1}^{\delta} + \delta_{\gamma}^{2} \delta_{2}^{\delta} + \delta_{\gamma}^{3} \delta_{3}^{\delta} \right) \left(\lambda^{a} \right)_{\alpha}{}^{\beta} \left(\lambda_{a} \right)_{\delta}{}^{\gamma} \frac{1}{\sqrt{3}} \left(\delta_{1}^{\alpha} \delta_{\beta}^{1} + \delta_{2}^{\alpha} \delta_{\beta}^{2} + \delta_{3}^{\alpha} \delta_{\beta}^{3} \right),$ $= \frac{1}{12} \lambda^a{}_{\alpha}{}^{\alpha} \lambda_a{}_{\gamma}{}^{\gamma} = \frac{1}{12} \operatorname{Tr}(\boldsymbol{\lambda}^a) \operatorname{Tr}(\boldsymbol{\lambda}_a) = 0,$

Kvark-antikvark interakcija

[©] Da li (virtuelna) anihilacija + re-kreacija doprinosi?

Algebarska suma (u stvari razlika) ove dve amplitude je

$$\mathcal{M}_{u+\bar{u}\to u+\bar{u}} = -\frac{g_c^2}{(\mathbf{p}_1 - \mathbf{p}_3)^2} \begin{cases} -\frac{1}{6} \\ +\frac{4}{3} \end{cases} [\overline{u}_3 \boldsymbol{\gamma}^{\mu} u_1] [\overline{v}_2 \boldsymbol{\gamma}_{\mu} v_4] + \frac{g_c^2}{(\mathbf{p}_1 + \mathbf{p}_2)^2} \begin{cases} \frac{1}{2} \\ 0 \end{cases} [\overline{v}_2 \boldsymbol{\gamma}^{\mu} u_1] [\overline{u}_3 \boldsymbol{\gamma}_{\mu} v_4], \text{ ako } \begin{cases} \boldsymbol{\chi}_{12} \subset \boldsymbol{8}, \\ \boldsymbol{\chi}_{12} = \boldsymbol{1}. \end{cases}$$

 $SU(3)_c$ -invariantan kvark-antikvark par ne može da se pretvori u jedan gluon —ni virtuelno— nema $SU(3)_c$ -invariantnih gluona. Slično, ($SU(3)_c$ -invariantni) hadroni niti emituju niti apsorbuju jedan gluon—zbog očuvanja boje.

Svim hadron-hadronskim interakcijama posreduju $SU(3)_c$ invariantni objekti: ($n \ge 2$)-gluona i/ili kvark-antikvark parovi.

Kvark-antikvark interakcija

Stoga, u $n^0 + \pi^- \rightarrow n^0 + \pi^-$ rasejanju, 1-gluonska razmena bi mogla da se dogodi:

...osim što dva *SU*(3)_c-invariantna hadrona ne mogu da razmene *SU*(3)_c-varijantni gluon a ostanu *SU*(3)_c-invariantni. Stoga, procesi ilustrovani u (a) moraju dodatno da uključe i razmenu makar još jednog gluona, ili *d*-kvarka...

Kvark-antikvark interakcija

Stoga, u $n^0 + \pi^- \rightarrow n^0 + \pi^-$ rasejanju, 1-gluonska razmena mora da ima

...koji je još uvek $O(g_c^2)$, ali je bitno zakomplikovan razmenom *d*-kvarka. Posredna čestica efektivno postane hadron (π^0 , ili neka njegova orbitalna ekscitacija, kao ρ^0 ili...).

SU(3)c formalizam Zaključci

Uopšte uzev,

QCD

QCD interakcije moraju da teku tako da
 ...ne menjaju hromo-invarijantnost hadrona učesnika
 ni bilo kojog drugog (roglegg) norrodnog storio

"hadronizacija"

QCD

SU(3)c formalizam Zaključci

- QCD interakcije favorizuju antisimetrizaciju boje:
- U barionima, tri kvarka se privlače QCD silom tačno onda kada čine SU(3)_c-invarijantno stanje.
 - Tj. faktor boje mora da bude totalno antisimetričan.
- U mezonima, kvark-antikvark par se privlači QCD silom tačno onda kada čine *SU*(3)_c-invariantno stanje.
 - Dva $SU(3)_c$ -invariantna hadrona ne mogu da razmene $SU(3)_c$ varijantan gluon a ostanu $SU(3)_c$ -invariantni.
 - Stoga dva hadrona mogu da interaguju samo razmenom
 - \Im SU(3)_c-invariantnih objekata, sazdanih od 2 ili više
 - 🥯 ...gluona i/ili kvark-antikvark para.
 - Hadron-hadronska sila je stoga (van der Waals-ovski) "ostatak".

SU(3)c formalizam Zaključci

- Indikativna jeste, ali nije dovoljna kao dokaz:
 - ni za *zarobljavanje* (kvarkovi se ne razdvajaju ≥10^{–15}m)
 - ni za (≪ 10^{−15}m) *asimptotsku slobodu*
 - Zarobljavanje je odlika za velike ($\geq 10^{-15}$ m) razdaljine \bigcirc tipa Coulomb-ovog (statičnog) polja u elektromagnetizmu \bigcirc ...formiranog kao kondenzata *beskonačno mnogo kvanta*
 - …što je suštinski neperturbativan fenomen
 - Asimptotska sloboda je perturbativan rezultat
 - 9 1973, David Gross i Frank Wilczek, i nezavisno David Politzer
 - ...godinu dana pre "novembarske (1974) revolucije."

Hvele ne perint

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC Department of Mathematics, University of Maryland, College Park, MD Department of Physics, Faculty of Natural Sciences, Novi Sad, Serbia <u>https://tristan.nfshost.com/</u>