(Fundamental) Physics of Elementary Particles

Partial compactification; Mirror symmetry Warped cosmology; Brane-Worlds and localization of matter and interactions

Tristan Hübsch

Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

Fundamental Physics of Elementary Particles

PROGRAM

• Anomalies and the critical dimension

- Worldsheet fields
- Worldsheet reparametrizations
- Geometric quantization & loop space
- Partial spacetime compactification
 - Tori & left-right asymmetry
 - Calabi-Yau manifolds & bundles
- Mirror symmetry
- Warped cosmology
- Brane-Worlds
 - The Randall-Sundrum mechanism
 - Exospaces
- Localization of matter and interactions

WORLDSHEET FIELDS

Recall Polyakov's action for the string propagation

$$S[\mathscr{X};\eta_{\mu\nu}] = \frac{1}{4\pi\alpha'\hbar c^2} \int_{\Sigma} \mathrm{d}^2\xi \, g^{\alpha\beta}(\xi) \, \eta_{\mu\nu} \, (\partial_{\alpha} X^{\mu}) (\partial_{\beta} X^{\nu}),$$

• Here,

- the (ξ^0, ξ^1) are local coordinates on the worldsheet
- the $(X^0, X^1, \dots, X^{D-1})$ are local coordinates on the target spacetime
- the $g_{\alpha\beta}(\xi)$ is the metric tensor on the worldsheet
- the $\eta_{\mu\nu}(X)$ is the metric tensor on the target spacetime

$$G_{\alpha\beta}(X) := \eta_{\mu\nu}(\partial_{\alpha}X^{\mu})(\partial_{\beta}X^{\nu})$$

• is the pull-back of the spacetime metric to the worldsheet

- Polyakov's action thus measures the "distance function" of the spacetime in terms of the "distance function" on the worldsheet.
- 1976: L. Brink, P. di Vecchia & P. Howe and S. Deser & B. Zumino; 1981: A. Polyakov, path-integral quantization of (super)strings

WORLDSHEET REPARAMETRIZATIONS

The (Brink-di Vechia-Howe-Deser-Zumino-)Polyakov action

$$S[\mathscr{X};\eta_{\mu\nu}] = \frac{1}{4\pi\alpha'\hbar c^2} \int_{\Sigma} \mathrm{d}^2\xi \, g^{\alpha\beta}(\xi) \, \eta_{\mu\nu} \, (\partial_{\alpha} X^{\mu}) (\partial_{\beta} X^{\nu}),$$

• is invariant with respect to $g_{\alpha\beta} \rightarrow e^{i\phi} g_{\alpha\beta}$:

- det $[g_{\alpha\beta}] \rightarrow e^{2i\phi} \det[g_{\alpha\beta}]$, so $d^2\xi = (\det[g_{\alpha\beta}])^{\frac{1}{2}} d\xi^0 d\xi^1 \rightarrow e^{i\phi} d^2\xi$,
- but $g^{\alpha\beta} \rightarrow e^{-i\phi} g^{\alpha\beta}$ then cancels this.
- This is unique to 2-dimensional actions of either signature.

1981, Polyakov: conformal invariance is anomalous

- $Z[Y;\eta] \rightarrow Z[Y;\eta] \cdot \exp\{-(D/96\pi)\int d^2\xi \ [\partial_\alpha \phi(\xi)]^2\} \cdot (reparametrization)$
- which cancels when D = 26.

• Soon: free fermions (instead of X^{μ}) contribute $\frac{1}{2}$ each.

- That's $26_B = 10_B + 16_B \simeq 10_B + 32_F = 10_B + 16_F + \overline{16}_F$
- 26D bosonic string or 10D N = 2 superstring (Type IIA or IIB) *The full computation is more... ...detailed!*

GEOMETRIC QUANTIZATION AND LOOP SPACE

- A rigorous, constructive procedure: Classical \rightarrow Quantum model
- Start with the classical model,
 - The phase space Φ
 - ...w/unique symplectic structure ω
 - in coordinates: $\omega = dp_{\alpha} \wedge dq^{\alpha}$.
 - Also $\omega^{-1} = \frac{\partial}{\partial p_{\alpha}} \wedge \frac{\partial}{\partial q^{\alpha}}$
 - Canonical inner products:

$$\mathrm{d}q^{\alpha} \cdot \frac{\partial}{\partial q^{\beta}} = \delta^{\alpha}_{\beta} \quad \mathrm{d}p_{\alpha} \cdot \frac{\partial}{\partial p_{\beta}} = \delta^{\beta}_{\alpha}$$

Observables are functions over Φ

Require that $(2) O_{\mathrm{f},\mathrm{g}} = -\mathrm{i}\hbar \left[O_{\mathrm{f}},O_{\mathrm{g}}\right]$

• and that
$$③ O_1 = 1$$
.

• The requirements (1)-(3)imply the need for a "polarization":

$$\Psi$$
, • ...so \mathcal{H} is "holomorphic."

• Replace $\Phi \to \mathcal{H}$

 $f = f(p_{\alpha}, q^{\alpha}).$

$$:=i\hbar\left(\frac{\partial f}{\partial p_{\alpha}}\frac{\partial}{\partial q^{\alpha}}-\frac{\partial f}{\partial q^{\alpha}}\frac{\partial}{\partial p_{\alpha}}\right)+f-p_{\alpha}\frac{\partial f}{\partial p^{\alpha}}$$

• (1) To each observable f on Φ , assign a Hermitian operator O_f on \mathcal{H} .

GEOMETRIC QUANTIZATION AND LOOP SPACE

- 1987, M. Bowick & S. Rajeev, and J. Mickelsson: Geometric Quantization to string theories
- Soon (1987): K. Pilch & N. Warner and D. Harari, D. Hong, P. Ramond & V. Rodgers: generalization to superstrings
 The main result:

The Loop space of spacetime must be Ricci-flat.

Loop(X) = space of all immersions of S¹ in X.
This implies that spacetime itself must be Ricci-flat.
The result was argued to be non-perturbative & exact.
It does not include *p*-branes for *p* ≠ 1.
No luck in extending it to *p*-branes with *p* > 1.

TORI & LEFT-RIGHT ASYMMETRY

• From the worldsheet perspective, there's no harm in requiring $V^{i}(\tilde{z}) \sim V^{i}(\tilde{z}) + 2\pi R$

 $X^i(\xi) \simeq X^i(\xi) + 2\pi R_i, \quad i = 4, \dots, 25, \quad \forall \xi \in \Sigma.$

• This periodicity however implies a *global geometry* change:

$$\mathscr{X} = \mathbb{R}^{1,25} \longrightarrow \mathscr{X}' = \mathbb{R}^{1,3} \times T^{22}, \quad T^{22} := S^1_{(R_4)} \times \cdots \times S^1_{(R_{25})}$$

where the subscripts denote the circumference radii.

- The number of periodic coordinates determines the topology, $T^{22} = \mathbb{R}^{22} / \Lambda$, where Λ is a (simple, cubic) lattice.
- The radii determine (some of) the "shape" of the torus.
- We could switch to an oblique rectilinear coordinate system...
 - ...or more generally, pick a different lattice.
 - The space of lattice choices defines a coarse choice of different tori
 - ...the lattice-spacings complement these choices
 - ...the choice of "constants" (such as $\eta_{\mu\nu}$) over this lattice = more choices.

TORI & LEFT-RIGHT ASYMMETRY

- So, this string model defines a non-compact R^{1,3} spacetime
 - with an additional T^{22} at every point of $\mathbb{R}^{1,3}$.
 - Now construct the string modes on such a space, use the expansion

$$X^{\mu}(\tau,\sigma) = x^{\mu} + \frac{p_{\mu}}{p_{-}}c\tau + i\sqrt{\frac{\alpha'}{2}} \sum_{\substack{n=-\infty\\n\neq 0}}^{+\infty} \left[\frac{a_{n,R}^{\mu}}{n}e^{-2\pi i n \zeta^{+}} + \frac{a_{n,L}^{\mu}}{n}e^{2\pi i n \zeta^{-}}\right]$$

here for $\mu = 4$ 25:

where, for $\mu = 4, ..., 25$:

- x^{μ} is the "center of mass" coordinate, moving on a radius- R_{μ} circle
- p_{μ} is the "center of mass" momentum, quantized in units \hbar/R_{μ}
- the a^{μ} are the various creation (n < 0) and annihilation (n > 0) operators for the LHO-like oscillators (Fourier modes)
- ...which act upon a vacuum $|0_L; 0_R\rangle$ to create various (physical) states
- From the Lagrangian, compute the conjugate 26-momentum
 - the square of which gives the mass² formula.

TORI & LEFT-RIGHT ASYMMETRY

• When computing the mass²,

- Each periodic coordinate contributes $(n_{\mu}\hbar/R_{\mu})^2$ from p_{μ} ,
- periodicity $X^{\mu} \simeq X^{\mu} + w^{\mu} \cdot 2\pi R_{\mu}$ contributes $[w^{\mu}R_{\mu}/(\alpha'\hbar c^2)]^2$,
- the oscillators contribute $[2(N_L + N_R 2)/(\alpha' \hbar c^2)]^2$.

$$H_{L} \propto \frac{1}{2} \sum_{n=-\infty}^{\infty} \eta_{\mu\nu} a_{-n}^{\mu} a_{n}^{\nu} = \frac{1}{2} \eta_{\mu\nu} a_{0}^{\mu} a_{0}^{\nu} + \sum_{n=1}^{\infty} \eta_{\mu\nu} a_{n}^{+\mu} a_{n}^{\nu} + N_{0L}$$

- ...where the indefinite sums of zero-level energy contributions from both left- and right-movers contribute $N_{0L} + N_{0R} \rightarrow -2$.
- This is independently verified from a ζ -function regularization, from algebraic consistency of Diff(S^1)—the Virasoro algebra, ...
- Additionally, the "level-matching condition" requires that left-movers and right-movers contribute equally to the energy.
 - In effect the left- and right-mover "Fermi levels" must match.
 - BTW: algebraic consistency also requires D = 26, related to $N_{0L} + N_{0R}$.

TORI & LEFT-RIGHT ASYMMETRY

- The lowest-lying state in the bosonic string model
 - ullet propagating in flat $\mathbb{R}^{1,25}$ -like spacetime
 - or in any toroidal ($\mathbb{R}^{1,25-d} \times T^d$) compactification
- ... is a tachyon: $m^2c^2 = -4/\alpha'c^2$.
 - From what we learned w/Higgs field: unstable vacuum.
- Next are massless states (24² = 576 physical polarizations)
 In R^{1,25} spacetime:

H

- rank-2 symmetric tensor (spin-2) particle the Pomeron
- rank-2 antisymmetric tensor particle
- rank-0 (spin-0) particle
 In R^{1,25-d}×T^d spacetime:
 - rank-2: $G_{\mu\nu}$
 - rank-1: *G*µn
 - rank-0: Gmn

Nordstrøm-Kałuża-Klein

• rank-2: $B_{\mu\nu}$ • rank-1: $B_{\mu n}$ • rank-0: B_{mn}

Monday, April 16, 12

A NORDSTRØM-KAŁUŻA-KLEIN DIGRESSION

- 1914: Gunnar Nordstrøm, (early competitor of Einstein's)
- 1919: Theodor F.E. Kałuża
- 1926: Oscar Klein
- Our spacetime is a sub-spacetime of a bigger (5-dimensional!) one:
- The metric tensor $ds^2 = g_{ij} dx^i dx^j$, where *i*, *j* = 0,—,4
 - decomposes: (*g*_{µν}, *g*_{µ4}, *g*₄₄)
 - g_{04} plays the role of Φ ,
 - g_{i4} play the role of A_i ,
 - ...of electromagnetism!
- Einstein's eq's beget Maxwell's

• ...provided x⁴ curls up in a circle:

TORI & LEFT-RIGHT ASYMMETRY

- Unlike in any other theory, left- and right-movers can be compactified differently!
- 1984, D. Gross, J. Harvey, E. Martinec & R. Rohm:
 - X_L^{μ} , for $\mu = 0, ..., 9$ leave "flat & indefinite"
 - X_L^{μ} , for $\mu = 10, ..., 25$ torus with an SO(32) or $E_8 \times E_8$ root lattice
 - X_R^{μ} , for $\mu = 0, ..., 9$ leave "flat & indefinite"
 - X_R^{μ} , for $\mu = 10, ..., 25$ replace with 32 fermions

No tachyon: eliminated by target spacetime supersymmetry. Massless states:

- { $G_{\mu\nu}, B_{\mu\nu}, \Phi \mid \Psi_{\mu}^{\alpha}, \chi^{\alpha}$ } & { $A_{\mu}^{a} \mid \lambda^{a}$ }
- D. Friedan's quantum stability insures that these fields generate
 - N = 1 super*gravity* in 10-dimensional spacetime
 - Supersymmetric SO(32) or $E_8 \times E_8$ gauge symmetry

CALABI-YAU MANIFOLDS & BUNDLES

• 1984, P. Candelas

- w/D. Reine in 11-dimensional supergravity
- w/G. Horowitz, A. Strominger & E. Witten in 10-d superstrings
- Know that $\delta_{SS} \{ G_{\mu\nu}, B_{\mu\nu}, \phi, A_{\mu}^{a} \} = f(G_{\mu\nu}, B_{\mu\nu}, \phi, A_{\mu}^{a} | \Psi_{\mu}^{\alpha}, \chi^{\alpha}, \lambda^{a})$
- Since $\langle 0 |$ fermionic field $| 0 \rangle$ = 0,
- ...set $\langle 0 | f(G_{\mu\nu}, B_{\mu\nu}, \phi, A_{\mu}^{a} | \Psi_{\mu}^{\alpha}, \chi^{\alpha}, \lambda^{a}) | 0 \rangle = 0$
- ...which constrains the coefficients in $\delta_{ss} \{G_{\mu\nu}, B_{\mu\nu}, \Phi, A_{\mu}^{a}\}$ = $f^{\mu}{}_{\alpha}(G_{\mu\nu}, B_{\mu\nu}, \phi, A_{\mu}^{a})\Psi^{\alpha}_{\mu} + f_{\alpha}(G_{\mu\nu}, B_{\mu\nu}, \phi, A_{\mu}^{a})\chi^{\alpha}_{\mu} + f_{\alpha}(G_{\mu\nu}, B_{\mu\nu}, \phi, A_{\mu}^{a})\chi^{a}_{\mu}$:

• Minkowski $\mathbb{R}^{1,3}$ spacetime w/N=1 supersymmetry

- $SO(26) \times U(1)$ or $E_6 \times E_8$ gauge symmetry \Rightarrow chiral fermions!
- ... if $\mathbb{R}^{1,9}$ from the heterotic string is replaced by $\mathbb{R}^{1,3} \times \mathcal{Y}$ (27, 27*)

• ...where \mathcal{Y} is a Calabi-Yau (Ricci-flat) manifold.

• Worldsheet: Ricci-flatness of \mathcal{Y} = trace anomaly cancellation

= Weyl (conformal) symmetry

 $(h^{2,1}, h^{1,1})$

CALABI-YAU MANIFOLDS & BUNDLES

- When compactifying the $E_8 \times E_8$ heterotic superstring on a compact Calabi-Yau manifold ("3-fold") \mathcal{Y} , of ~10⁻³³ m
 - all massive modes have $n \cdot (\sim 10^{17} \text{ GeV}/c^2)$ masses, n=1,2,3,...
 - the effective target space is the Minkowski $\mathbb{R}^{1,3}$ with N=1 SuSy
 - the gauge group is broken to $E_6 \times E_8$; the 2nd factor a "shadow"
 - there are $h^{2,1}$ Standard Model fundamental fermion (s)families

 $h^{2,1} := \dim H^1(\mathscr{Y}, \mathscr{T}_{\mathscr{Y}}), \quad e := e_{\bar{\mu}}{}^{\nu} d\bar{z}^{\bar{\mu}} \partial_{\nu} \quad \bar{\partial}_{[\bar{\rho}} e_{\bar{\mu}]}{}^{\nu} = 0 \quad \delta e_{\bar{\rho}}{}^{\nu} = \bar{\partial}_{\bar{\rho}} \lambda^{\nu}$

• there are $h^{1,1}$ Standard Model fundamental mirror (s)families

 $h^{1,1} := \dim H^1(\mathscr{Y}, \mathscr{T}_{\mathscr{Y}}^*), \quad \omega := \omega_{\bar{\mu}\nu} \mathrm{d}\bar{z}^{\bar{\mu}} \mathrm{d}z^{\nu} \quad \bar{\partial}_{[\bar{\rho}|} \, \omega_{\bar{\mu}]\nu} = 0 \quad \delta \omega_{\bar{\mu}\nu} = \bar{\partial}_{\bar{\mu}} \lambda_{\nu}$

and

15

$$\int_{\mathcal{Y}} d^3z d^3\overline{z} \, \varepsilon^{\overline{\mu}\overline{\nu}\overline{\rho}} \varepsilon^{\mu\nu\rho} \, \omega_{\overline{\mu}\mu} \, \omega_{\overline{\nu}\nu} \, \omega_{\overline{\rho}\rho}$$
Classic result; "corrected"

eet instantons

$$\int_{\mathscr{Y}} d^3z d^3\overline{z} \, \varepsilon^{\overline{\mu}\overline{\nu}\overline{\rho}} \varepsilon_{\mu\nu\rho} \, e_{\overline{\mu}}{}^{\mu} \, e_{\overline{\nu}}{}^{\nu} \, e_{\overline{\rho}}{}^{\rho}$$
New result;
exact, no q. corrections

CALABI-YAU MANIFOLDS & BUNDLES

- String instantons?
- Vacuum bubbles = virtual strings
 - pop out of the vacuum,
 - propagate,
 - vanish into the vacuum.
 - Must be bosons!
 - Bose-Einstein distribution!
- May well be non-contractible

CALABI-YAU MANIFOLDS & BUNDLES

- In fact, left- and right-movers may be compactified differently.
- In many cases, this corresponds to replacing
 - $(\mathcal{Y}, \mathcal{T}_{\mathcal{Y}})$ Calabi-Yau manifold & its holomorphic tangent bundle
 - while bosons provide coordinates for a manifold
 - fermions (supersymmetry variations of the bosons) are tangential
 - in a general Lagrangian,
 - fermion kinetic terms have derivatives gauge-covariant w/Christoffel symbols
 - 4-fermion term has the coefficient = the Riemann tensor
 - with ($\mathcal{Y}, \mathcal{F}_{\mathcal{Y}}$), a stable holomorphic bundle over \mathcal{Y}
 - fibers are holomorphic "functions" over *Y*,
 - the structure group is SU(n), with $n \ge 3$.
 - ($\mathcal{T}_{\mathcal{Y}}$ has the structure group SU(3) = the holonomy of \mathcal{Y} .)

• Since $E_6 \times E_8$ is the centralizer of $SU(3) \subset E_8 \times E_8$,

• $C[SU(4) \subset E_8 \times E_8] = \frac{SO(10) \times E_8}{\text{Precisely the GUT gauge groups}} = \frac{SU(5)}{\text{SU}(5)} \times E_8!!!$

THROUGH THE LOOKING GLASS

- And then, something really, Really, REALLY funny turned up...
- Not "funny ha-ha," but "funny Weird."
- Compactified on a CY 3-fold \mathcal{Y} , the superstring model has
 - *h*^{2,1} Standard Model families
 - *h*^{1,1} Standard Model mirrors
 - plus dim $H^1(\mathcal{Y}, \operatorname{End} \mathcal{T}_{\mathcal{Y}})$ "junk"

Recall

$$(mc^2)^2 = \frac{n^2\hbar^2c^2}{R^2} + \frac{w^2R^2}{{\alpha'}^2\hbar^2c^2} + \frac{2}{{\alpha'}}(N_L + N_R - 2)$$

• $(n, w; R) \leftrightarrow (w, n; \alpha' \hbar^2 c^2 / R)$ duality

• With six real compact dimensions, there's many more ways to dualize.

= 0, w = 1)

3.w = 0

THROUGH THE LOOKING GLASS

- And then, something really, Really, REALLY funny turned up...
- Not "funny ha-ha," but "funny Weird."
- Compactified on a CY 3-fold *Y*, the superstring model has
 - h^{2,1} Standard Model families
 - h^{1,1} Standard Model mirrors
- \bullet Compactified on a CY 3-fold \mathcal{Z} , the superstring model has
 - $h^{2,1}$ Standard Model families
 - $h^{1,1}$ Standard Model mirrors

• plus dim $H^1(\mathcal{Y}, \operatorname{End} \mathcal{T}_{\mathcal{Y}})$ "junk" \longleftarrow plus dim $H^1(\mathcal{Z}, \operatorname{End} \mathcal{T}_{\mathcal{Z}})$ "junk" Recall

$$(mc^2)^2 = \frac{n^2\hbar^2c^2}{R^2} + \frac{w^2R^2}{\alpha'^2\hbar^2c^2} + \frac{2}{\alpha'}(N_L + N_R - 2)$$

• $(n, w; R) \leftrightarrow (w, n; \alpha' \hbar^2 c^2 / R)$ duality

• With six real compact dimensions, there's many more ways to dualize.

THROUGH THE LOOKING GLASS

Long story short, physicist compute.

5 +

• P. Candelas, X. de la Ossa, P. Green & L. Parkes have found that the "hard" Yukawa coupling on a 1-parameter (t-)family of CY 3folds \mathcal{Y} may be expressed as a power series $\frac{n_k k^3 e^{2\pi i k t}}{1 - e^{2\pi i k t}} = 5 + 2875 e^{2\pi i t} + \dots$

$$5 + \sum_{k=1}^{\infty} \frac{n_k k^3 e^{2\pi i k t}}{1 - e^{2\pi i k t}} = 5 + 2875 e^{2\pi i t} + \dots$$

$$t := -\frac{5}{2\pi i} \left\{ \log(5\psi) - \frac{1}{\omega_0(\psi)} \sum_{m=1}^{\infty} \frac{(5m)!}{(m!)^5 (5\psi)^{5m}} (\psi^{(0)}(1+5m) - \psi^{(0)}(1+m)) \right\}$$

• This tells the interaction strength for *every* model in this 1parameter family.

• The n_k give the number of degree-k embeddings of $\mathbb{C}P^{1}$'s (S^{2} 's – string instantons) in \mathcal{Y} .

• The k=2 result of known "classic enumer. algebraic geometry"

THROUGH THE LOOKING GLASS ... A MOTIVATIONAL MAP

*H*¹(*Y*, *T_Y*) with a "matrix" product generates a ring *H*¹(*Y*, *T_Y*) needs a quantum product for the mirror ring

Kind of, like an integral transform.

Warped Cosmology

WARPING INTERNAL SPACE THROUGH SPACETIME WEFT

- In all Nordstrøm-Kałuża-Klein compactifications, the global geometry of the spacetime is $\mathbb{R}^{1,3} \times \mathcal{Y}$.
- That is the copy of \mathcal{Y} over every point in $\mathbb{R}^{1,3}$ is identical.
- There's no reason for this: *Y* is not directly observable, so it may well vary over (along) R^{1,3}.
 - Fibrations

(a)

Warped Cosmology

WARPING INTERNAL SPACE THROUGH SPACETIME WEFT

• If one assumes that \mathscr{Y} varies complex-analytically over $\mathbb{R}^{1,3}$,

- \mathcal{Y} must become singular at certain locations in $\mathbb{R}^{1,3}$
- These locations span (cosmic) filamentary structures
- The spacetime metric near these cosmic strings acquires the contribution $\delta g_{\mu\nu} = (\partial_{\mu}\phi^a)R_{ab}(\phi)(\partial_{\nu}\phi^b)$, the pull-back of the Ricci tensor of the moduli (parameter) space of \mathscr{Y}
- ...*i.e.*, a mass determined by the geometry of the space of shapes of *Y i.e.*, the "moduli space of *Y*."
- The total number of such stringy cosmic strings is a topological characteristic of the moduli space of \mathcal{Y} .
- These cosmic strings attract "regular" matter w/a gravitational force that is ~1/r, stronger than point-attraction
- ...so affects early galaxy formation
- Relaxing complex analyticity perturbatively \Rightarrow dynamics

SUB-SPACETIMES

- And then, there's yet more...
- Theorem: CY 3-folds have isolated S²'s
 - Isolated = no local deformations
 - ...*i.e.*, all vibrations are localized within this S^2 .
 - Then CY 5-folds have isolated 4-dimensional subspaces
 - ...with all its vibrations localized within the 4-dimensional subspace.
 - General worldsheet anomaly cancellation implies Ricci-flatness of the *total* spacetime (*incl.* gauge, flat & compactified directions)
- The $t \rightarrow it$ analytic continuation of spacetime must be Ricci-flat *i.e.*, a non-compact Calabi-Yau 5-fold

LOCALIZATION OF GRAVITY

1999, Lisa Randall & Raman Sundrum

Monday, April 16, 12

LOCALIZATION OF GRAVITY

- RS-1: exponential hierarchy
 - $M_P \sim 10^{19}$ GeV (gravity becomes confiningly strong)
 - $M_W \sim 10^2 \text{ GeV} \text{ (masses of W}^{\pm}, \text{Z}^0 \text{)}$
 - ...but, we'd like 'em both, but, we'd like 'em both, the same World! (Ours!) …exponentially related through x⁴ curvature
- RS-2: localized gravity
 - bulk gravity ~ $1/r^3$ force
 - "boundary" gravity ~ $1/r^2$ force (\bigcirc)
 - But, not in one and the same end-of-the-world World!
- Gravity localization

$$ds^{2} = -e^{-2k|y|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^{2}, \quad i.e., \quad [\mathbf{g}(\mathbf{x},y)] = \begin{bmatrix} -e^{-2k|y|} & 0 & 0 & 0 & 0 \\ 0 & e^{-2k|y|} & 0 & 0 & 0 \\ 0 & 0 & e^{-2k|y|} & 0 & 0 \\ 0 & 0 & 0 & e^{-2k|y|} & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$[\mathbf{R}] = \begin{bmatrix} -\eta_{\mu\nu} e^{-2k|y|} f(y) & 0\\ \hline 0 & g(y) \end{bmatrix}, \quad \begin{cases} f(y) &= 2k \left[\delta(y) - 2k \operatorname{sig}^2(y)\right],\\ g(y) &= 4k \left[2\delta(y) - k \operatorname{sig}^2(y)\right], \end{cases}$$

LOCALIZATION OF GRAVITY

• The appearance of $f(y) = 2k[\delta(y) - 2k \operatorname{sig}^2(y)]$

• ...induces a "Schrödinger-like" equation for transversal modes:

$$-\frac{1}{2}\frac{\mathrm{d}^2}{\mathrm{d}z^2} + \widetilde{V}_{\pm}(z)\Big]\hat{\psi}(z) = 0, \quad \widetilde{V}_{\pm}(z) = \frac{15\,k^2}{8(k\,|z|+1)^2} \pm \frac{3}{2}\,k\,\delta(z) - \frac{m^2c^2}{\hbar^2}$$

- The δ -function (w/– sign) guarantees one localized mode of $g_{\mu\nu}$
- well isolated from the continuum bulk by the "barrier" term
- The mechanism hinges on the non-analytic dependence of the global geometry on a "transversal" coordinate
 - and in particular, $g_{\mu\nu}$ must depend on |z|.

• Back to the "(\mathcal{Z} – \mathcal{Y}) is Ricci-flat & non-compact" generic case

- if the metric on \mathcal{Z} depends on $|z-z_0|$, where z_0 locates $\mathcal{X} \subset (\mathcal{Z} \mathcal{Y})$,
- gravity can be localized to \mathscr{X} , which already has localized matter and Yang-Mills gauge interactions

Localization of Matter and Interactions

ALL TOGETHER, NOW

• The continuum of "bulk" modes: $V(r) = G_N \frac{M_1 M_2}{r} \left(1 + \frac{1}{(kr)^2}\right)$

Extrinsic curvature of $\mathscr{X} \subset (\mathbb{Z} - \mathscr{Y})$

- It is possible to find:
 - a codimension-2 brane-World with
 - de Sitter geometry & Λ (cosmological constant)
 - gravity localized to the brane-World
 - exponential *M_P*:*M_W* ratio
 - the brane-geometry is induced by a modulus
 - ...and $SL(2,\mathbb{Z})$ symmetry
 - Λ is related to supersymmetry breaking
 - ...in a phenomenologically acceptable way.

Localization of Matter and Interactions

- There are even stranger stringy cosmologies...
- (Super)strings have a minimal length $\sim 10^{-35}$ m
- ...whence singular points are not really singular

• ...so superstrings consistently thread *stratified pseudomanifolds:*

Thanks!

Tristan Hubsch

Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

http://homepage.mac.com/thubsch/