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; pecial Solutions and Singularities

ASSIVE BLACK HOLES

‘.-. 1915, Scwarzschild solution... a reminder
Sw| = diag(—fs(r), fsl(r),rz, r2 sin2(9)),

ds? = —fs(r)c?dt? fsl(r) dr? + r2(d6? + sin®(0) d¢?),
o3 fg(r) .= (1 . ), ¢ = CZ ’
® Note that
1 9? 1 92

fs(r) = ;ﬁ”fS(T) = ;ﬁ(f —15) =0
hatis, fs(r) is a harmonic function.

his metric satisfies the Einstein equation w/o matter.

he mass M characterizes the spacetime itself

® ..in that a Gaussian sphere can be “shrunk down” to it.
3

b
T - . . . u u . .
E:’- ...and is localized at the origin, at the singularity,

—
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Special Solutions and Singularities

T1ASSIVE BLACK HOLES

® Schwarzschild solution... a few more things (for now):

® It makes sense to put Gaussian encircling spheres only down to
- 15, the event horizon: you cannot extract info from within.

...and, within rs, a Gaussian sphere would have t for the radius.

only down to rs; the 1n51de is inaccessible to external observers.

/8 ® The solution is asymptotically flat
/ V& and spherically symmetric

_f\al uf
..at r > rs, approximately flat. e A

i_‘“ The_re_ can easily be many black holes,
sufficiently far away from each other
no two to affect each other.

E‘ . Visit, e.g., http://pisces. as. utexas. edu/ GenRel /
"l.
N, T 4

—
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< pecial Solutions and Singularities

EMIASSIVE BLACK HOLES

- 1 ® Schwarzschild solution... a few more things (for now):

'® Any gravitational field bends geodesics—and so also light beams

a black hole have their light
emitted to one and the other
side bent around...
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; pecial Solutions and Singularities

ASSIVE AND CHARGED BLACK HOLES

‘.-. 1916-1918, Hans Reissner and Gunnar Nordstrgm:
[gyv] = dlag( fRN( ) ( ) 1’2 1’2 Slnz(Q)),

fRN
' dsz - _fRN(r)CZdtz | fRZ\ll(r) drz +r (d92 -+ Sln2(9) d(Pz),
¥ 2
r«-: - . . Fs | ré] . qz GN
B harmonic fun(r) = (1-=+3), 1= \/47T€0C4,

® The characteristic function frn(r) vanishes at:

¥4 = %(1’5 - - \/73—41’%).

There are two very different cases:

e

w © When 2r; < rs: concentric horizons
® When 2r, > 1, Le, \/46]763 > 44/Gy M, the black hole is overcharged,
there are no horizons, the singularity is accessible to all observers.

The singularity is “naked.”
6

l\
55
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Special Solutions and Singularities

TASSIVE AND CHARGED BLACK HOLES

® And, there is the marginal case “in-between”:

® When 2r, = rs: the horizons coincide the extremal R-N solution

...which is a balancing act between the gravitational and the

® An overcharged Reissner-Nordstrgm black hole would thus
+ violate Penrose’s cosmic censorship hypothesis

...which is why it is believed that it is not possible to construct

""'Qi: an overcharged black hole (a naked singularity) from scratch
SN | . o .
% ® _..nonetheless, its mere existence is instructive

b-:* ® A physically very nontrivial g, satisfies the Einstein equations,
- without any matter added to support it.

:* : ."_,__,
N i
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Special Solutions and Singularities

TASSIVE AND ROTATING BLACK HOLES

® 1963, Roy Kerr (1967, Robert H. Boyer & Richard H. Lindquist):

b as? = —(1- =5 ) + 2 (1dr2+d92)

02
(2 2rs 1 £ sin® (6
+ (r2 + % 4 Tsé’z sin2(9)) sin’(0) d? rs 7 € sin’( )cdt do,
(= L, 0 1= /12 + (% cos?(6), A 1= r? + 2,
Mc
A = 0: e¥ent horizon

auchy horizon

#ZE° The (ct, 1, 6, ¢) coordinates are[not orthogonal. & a ring-like
Pz singularity

...g'*-'\"" There are two pairs of “horizons”: within

. Py = % (rs + \/rs - 462) Vit = % {rs + \/rg —202[1 + cos(@)]]
=

> % 2y — 00 event horizon g1t — 0 ellipsoid “ergosphere”
3 I 8
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‘ ¥/ where L is the angular momentum.
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ISpecial Solutions and Singularities

i MASSIVE AND ROTATING BLACK HOLES

The region between the inner spherical event horizon and the
outer ellipsoid is called the “ergosphere.”

® Within the ergosphere, spacetime itself rotates with respect to
& the external observer, at the angular speed

O_ _Ste _ rsrlc

o A

F

—

{
5_ Spp  P2(r2 4 £2) + rsr €2 sin%(H)
f; 2 Objects that “dip” through the ergosphere must co-rotate

f
/ o
® ...even if this is faster than c, ﬁ—’
© as seen from outside.

Event horizon

Dipping into the ergosphere lets
passing “parallel” outside objects

B
@
r
=1
L
o
S
Ll

w, L
$ ® ...extracts energy: Penrose’s process.

:*""gﬁ' Possible to travel, through the ergosphere, back in time.
N :
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pecial Solutions and Singularities

T1ASSIVE, CHARGED AND ROTATING BLACK HOLES

1965, Ezra Newman modified Kerr’s solution:

JAY , 2 1
ds® = 2 (c dt — ¢sin*(6) d(p) + p? (Kdrz + d92)
| Sln2(9) 2 0 2
- ((r + /¢ )djo — cht) |

L C]z GN

4', ) — & _ ) ) ) _ 2 g 0 -

| i 14 i \/r +(2cos*(0), A:mri—rsr+l+7r;, g \/47I€0C4
/,5,',‘ The (ct, r, 0, ¢) coordinates are not orthogonal.

® The “horizon geometry” is considerably more complicated.

® Balancing acts between mass, angular momentum, and charge.

AN e [, 4(€%+r?), event horizon & ergosphere

o ® If rs?2 < 4(£2+r,2), no event horizon, no ergosphere

Ej‘* ® Over-charging/spinning = no event horizon, naked singularity

5

—
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Special Solutions and Singularities

ASSIVE, CHARGED AND ROTATING BLACK HOLES

® 1972-1973, Akira Tomimatsu & Humitaka Sato:
ds* = —F[cdt—Gdg)] oy o E (dp® +dz?) + p*de?],

® in standard polar coordinates. The functions E, F, G are however
| 4 specified easiest using “prolate spheroidal” coordinates

X = .00\/(62—1)(1—172) cos @, Y= pO\/(éz—l)(l—ﬂz) sin ¢,
z = polH, o = poy/(§>=1)(1-»?)

. A(g, 1) () . Gyp
" p20 (F2—y2)9*’ F(¢,n) = B(& 1) Po = —5 M
2L 2 2
) = A(gq;c) (1=7*)C(&, 1), = \/1 GCNz ,514

R
' % ® where A(&,n), B(E,n), C(&,n) are polynomials

P of degree 262,262 and (262— 1), respectively.
) Fa o |
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Special Solutions and Singularities

ASSIVE, CHARGED AND ROTATING BLACK HOLES

® For 6 =1, the Tomimatsu-Sato solution is equivalent to Kerr’s
® For 6 = 1, the Tomimatsu-Sato solutions have naked singularities

8® These solutions are but a select few of a large class of known,
.. exact solutions to the Einstein equations

+.3 5‘4‘ ...many of which with various spacetime singularities

- ...and mass, charge and angular momentum values.

® So, could the electron be (modeled as) a charged black hole?

® With standard g. = 1.602176x10-1° C & m. = 9.109 382x10-31 kg,
ro(e”) =9.152x 107 m < 4,

rs(e”) =1.353 x 107" m < (»
- ® This model is not wrong, but quite pointless: there would exist

no directly observable consequence. There are indirect problems...
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Cosmological Solutions and Time-Travel

TANDARD GEOMETRIES IN COSMOLAOGY

® Alexander Friedman, Georges H.]J.E. Lemaitre, Howard P.
- Robertson and Arthur G. Walker (FLRW):

dr?
2 ._ L 23002
" o {1—1(1’2 el ]
dO? := d6? + sin?(0)de?

_ ..a(t) is the scale function, K the Gauss curvature at a(f) = 1.

ds? = —c?dt* + a?(t)dX?, {

q/A ; These (¢, , 0, ¢) coordinates cover only half the spacetime

/22® Or use “hyper-spherical coordinates”:

ﬁ sin(rv/K) K >0,
d¥? = dr* + S2(r)dQ?, Si(r):={ 7 K =0,
ﬁ sinh(r\/|K|]) K <O0.

|3



Cosmological Solutions and Time-Travel

E COSMOLOGICAL CONSTANT & DARK STUFF

® The “standard form” of Einstein’s equations

87t G
1 L N
Ruv = 38w R = —— Ty,
® is not what he originally published. Instead,
8 87'( GN

.- ...where A is the cosmologlcal constant.
i j, ® Motivated by:

' @ the possibility of adding to the Einstein-Hilbert action / \/—7gd4 x A
~ @ the fact that A permits a stationary flat geometry

(E’)Z I Kc? A;/_ 8tGy /yzl

a a2 /3 3 ¢ ¢ e BGy

i (a2 Ke? _ 8nGy A
204 (B) Ko B e 22

|4
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osmological Solutions and Time-Travel

E COSMOLOGICAL CONSTANT & DARK STUFF

® Thus, any (matter distribution with p = —pc?) = A.

® In general (for isotropic & homogeneous matter)

1. ® Dark energy: anything that has p / p <0.

| ' ® Quintessence: anything thathasp/p < — ¢?/3.
BRS"  ® Cosmological constant: anything thathasp/p = — ¢

® Phantom energy: anything thathasp/p < — 2
+ a2 et VA3t 472 de Sitter,

ds? = { —c2d#? + d7?, Minkowski,
—c?dt? + aoz e~ 2cVA/3t d72, anti de Sitter,
ds? = —c*(1F $Ap%)dT* + (1 F 1Ap?) “dp? + p? (d6? + sin?(6)d¢?)
H := 2+/A/3 > 0 is the Hubble constant.

|5

® Of particular interest:
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Cosmological Solutions and Time-Travel

IDNSTANDARD GEOMETRIES IN COSMOLOGY

® 1921, Edward Kasner (w/o matter support)
ds® = —c?d#* + Z 2;91 (dx’ )
® where

; i:1 pi =1 = i:1(Pi) -

4® If any two of p; are set to vanish, the whole Riemann tensor
vanlshes — yet, the spacetime is neither flat nor isotropic.

Py = 2(1—191:\/1+2P1—3P1),

h p?jf :1—;?1—%(1—}91::\/1+2P1—3P12)/
~ ®50-15<p;<1: permutations of (0,0,1) ... (¥5,%5,%5).

® Spacetime volume expands - P11 P2 D3
linearly in coordinate time: V=8 = ct/(T) T,"T;")

|6
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osmological Solutions and Time-Travel

{ONSTANDARD GEOMETRIES IN COSMOLOGY

1949, Kurt Godel:
. 2
4t =~ + S 7 1= () |d0? + dz 22 dt d¢
1+ (é) T e
?‘ ® The cylindrical coordinates (¢, 7, ¢, z) co-rotate. Qg := rZC

." ’ Light follov;s elliptical paths, out to 7, then turning back.
| A

Optical horizon for B
SN M Optical horizon for C

m—— ——
= - = —_— —
@ — — — — — — — _—

Optical el  __and™®
horizon for A

® Massive particles at rest continue moving only in time.

-5 .
H{"
5
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Cosmological Solutions and Time-Travel

IDNSTANDARD GEOMETRIES IN COSMOLOGY

® [sometries of Godel’s metric:

1
X() = —at, X3 = az, and Xy 1= 8¢

Qg
Far less obviously

1 n

X14 1= 2{\/%C Cosqbat:%g[l_l_(r ) }{cszos?)}a
I
\/1+(rg) . 2 cong s
+ 25 [1+2(5) [{ sing } z}

and

L1 =Xy, Ly = Xy, { [L]/ ij = Z.‘cljkgl-f/
. Ly := —i(Xo+X3), Li, Xo| =0=[Lj, X3],
® generates the 50(3) @ fr(R11!) algebra.

® Acts “transitively”: find paths that include the origin

® ..then transform that point to any other.
18
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osmological Solutions and Time-Travel

ONSTANDARD GEOMETRIES IN COSMOLAGY

® Godel’s universe is geodesically complete, yet has no singularity

* ...and has an unusually high degree of isometry: $0(3) @ fr(R%1).

® Traveling in time: “Look, ma: no singularity!”
e Ay ATobserver

® but, you must start: —
: ...or any other initial data

obtained from this, using the
50(3) ® tr(R11!) isometry.

S5 @ fromrini < 1.7 1
® and with v;,,; > 0.98¢

19
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osmological Solutions and Time-Travel

ONSTANDARD GEOMETRIES IN COSMOLAGY

® Einstein tensor:

[Ryv — 38w R] = Ty
= ) diag(—1,1,1,1) + 20); diag(1,0,0,0)

r; ® The 1st part: “lambda vacuum” = sol’'n w/A.

| -" -q; - ® The 2nd part: co-rotating perfect fluid /dust.

4¥'S'® Notice: energy momentum tensors are additive
# 'J)If
¢S ...provided the matter distributions can co-exist

Einstein tensors and energy-momentum density
tensors of matter/energy distributions are additive;
the corresponding metrics are not.

20
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* In short: time travel is perfectly possible in general relativity.
® Closed time-like curves (CTC)

- ® In Godel’s universe, the high degree of symmetry makes it possible to
prove that there can be no causality violation.

%‘{f ® Traveling through the ergosphere of the Kerr geometry, or its ring-
‘ like singularity, or many other constructions...

.semi-classical arguments: causality violation is probably precluded.

b ?/’? 1992, Stephen Hawking: “general chronology protection
/4 pr1nc1ple (hypothesis)

_ 1975 [gor Novikov: only self-consistent CTC’s are possible.
\"?" Chronology violating set (CVS?) = points traversed by CTCs

- ® The boundary of CVS is the Cauchy horizon,
!-_ generated by closed null geodesics.

55 2

Tuesday March 6, 12




pacetime Engineering and Wormholes

NERGY CONDITIONS

® Use Einstein equations as you would the Gauss-Ampére ones:

® Specify a desired geometry, i.e., { (t, &, 1, C), Quv }
® Compute the Einstein tensor Gy = Ryv — % guv R
4 g [dentify the energy-momentum density tensor
4% @ as a sum of matter/energy components.

,’

- i“) ® Physical characteristics of

yg matter/energy distributions?
' ® Can such matter/energy be

¢ assembled from known types/

4= forms of matter/energy

@SN e ordoesit require exotic

v, matter/energy?

I-"'l|_ e TN

B °® Make it so!

SN
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S ENERGY CONDITIONS

To aid in this characterization, define:

Spacetime Engineering and Wormbholes

1. a time-like 4-vector field with components ¢*(x),

e, guGhdy <0, Vx;

2. alight-like, i.e., null-vector field w/components k* (x),

e, guwktkV =0, vx;

3. a causal 4-vector field with components (¥ (x),

e, guCh(" <0, Vx.

Tuesday, March 6, 12

Condition for all
Dominant ¢"'T,,T,,C°(" <0 and gOVTWCV <0 gwl'l" <0, (2% > 0)
Weak T,¢HE" <0 guGHe" <0
Null* T,wkM'k" <0 guvktk" =0
Strong [Ty — 38 T]EHEY <0 gulhE <0

* The “Null” condition is also often referred to as “light-like.”

4
- -
- "
- .
= i k
= "
L L .
W ! —

Dominant = weak = Null <= Strong

23




' Spacetime Engineering and Wormholes

INSTEIN-ROSEN BRIDGE

‘.-. Recall Scwarzschild’s solution:
ds? = —fs(r)c?dt* A G )drz + r2(d6? + sin®(0) d¢?),

| . 2Gy M
_:"" fs(?") .= ( = rTS), r¢ = (1:\5 '
d @r_rS)

£ ;. s\ 2 ’
. ‘-':;' 1. the time CompOnent g()o — gtt — (1 - )C VaHISheS,

2. the radial component, g,y = — ( —rTS)_l diverges.

For r<Ts,

///é ) <0 so gy =—fs(r) >0 and g, = (fs(r))_1 < 0.

As seen by an outside observer,
Q

j'%-

Tuesday, March 6, 12

® all speeds come to a screeching halt near the event horizon

® in-falling objects take forever to reach the event horizon

® out-coming light becomes red-shifted to A — oo.
24




@Spacetime Engineering and Wormholes

INSTEIN-ROSEN BRIDGE

Some picturesque info on Scwarzschild’s solution:

Photosphere Event horizon

*Escapﬁs
Captured # . Captured

{by

Event honzon - el

25 http://cosnol ogy. cont Bl ackHol es. ht i
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Spacetime Engineering and Wormholes

[ INSTEIN-ROSEN BRIDGE

Scwarzschild’s solution, in Kruskal-Szekeres coordinates:

K-Sz Schwarzschild 1950: ].L. Synge discovered
incompleteness & a system

Uy, — Uy = /7’5 —1e"7s cosh (zc_) of complete coordinates.
1959: C. Fronsdal re-disco-
o, =0 = /-—1 e’’"s sinh (ZC_) vered incompleteness & a
s constrained description.

K-Sz Schwarzschild

_ ct
ug, —upy = Jl-5-e e’/’s sinh (25)

I- ! o1, —O0v = \/q e'/’s cosh (Z—t)

2% arth (
2
=S arth (

) in regions I and III;

)

fie B¢

in regions II and 1V;

26
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pacetime Engineering and Wormholes

INSTEIN-ROSEN BRIDGE

Recall Schwarzschild’s solution:

SN EE s ssamsssshEmEEEEEEEE .

ity

las

singu

Schwarzschild Kruskal-Szekeres

coordinates coordinates
27
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' Spacetime Engineering and Wormholes

INSTEIN-ROSEN BRIDGE

® Although static, Scwarzschild’s solution has a dynamical “story”:

> Two separates “sides” of a black hole, one side
seen from region I, the other from region III

H The Einstein-Rosen bridge closes.
observer

,@_\F The Einstein-Rosen bridge begins to close;
r regions I and III are still spatially connected.

@ The Einstein-Rosen bridge is maximally open.

The Einstein-Rosen bridge partially open;
region I and III are spatially connected.

The Einstein-Rosen bridge is about to open.

Two separate “sides” of a black hole, one side
seen from region I, the other from region III

- The Einstein-Rosen bridge is closed for massive and even massless real particles.

But not for virtual particles.
29
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4. t

Spacetime Engineering and Wormholes

[ INSTEIN-ROSEN BRIDGE

® The dynamical story of the Scwarzschild’s solution, i.e., the
Einstein-Rosen bridge connecting two regions of spacetime that:

1. have a black hole each;
2. t
3. t

(14

hese two black holes connect in a moment;

ne connection of these black holes opens into a space-like
bridge” (wormhole) of the S? x R! topology;

his “bridge” closes before even light could pass through it;

5. t

nere remain two separated regions, with a black hole each.

» Natural question: are there traversable “bridges”?
~ ® Called “Lorentzian wormholes”
® Typically need matter for support.

® Typically need exotic matter.

30



pacetime Engineering and Wormholes

® Multiple connectedness:

The loops A and B cannot be shrunk continuously to a point.
Neither of them is the boundary of a region of space(time).
The loop C can be shrunk continuously to a point.

The loop Cis a boundary of a region of space(time).

31
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Spacetime Engineering and Wormholes

RAVERSABLE WORMHOLES

® A simple example:
ds® = —c*dt? + df* + (k*+-47) (d6” + sin*(0)dg?),
o r=4vVk2+£2 k> 0is a constant.
i ; rf.\‘ This produces the Einstein tensor
2
k= + £2)

7 %42 and so specified the energy-

7 momentum density tensor.

» The fact that T\, < 0 indicates

Gy = Ry — 30 R] = : ~diag[—c?, —1, (k*+£7), (k*+£%) sin*(6)]

. ¢ distribution must be exotic.
h_:} ® Keeps the throat open.

-
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* Notice that the metric was specified in terms of the square of the
- radial coordinate, thus making two “branches/sheets” possible.

This can also be achieved by making the metric depend on other

here will exist two “branches/sheets”
hey meet at x = xg
he Christoffel symbol will depend on the step-function 8(x—xo)

he Riemann tensor will depend on the Dirac delta-function 6(x—xo)

® _..as will the Ricci tensor, the scalar curvature, the Einstein tensor
~ ® __.and so also the energy-momentum density tensor!

® Then, the smooth part represents “bulk” matter/energy

® the §-function part represents matter/energy localized at x = xo.

33
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