(Fundamental) Physics of Elementary Particles

Covariant derivative & the Christoffel symbol Spacetime Curvature; Matter-gravity coupling; Special Solutions (Intro)

Tristan Hübsch

Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

Fundamental Physics of Elementary Particles

PROGRAM

- The Christoffel Symbol & the Covariant Derivative
 - Coordinate Bases
 - Covariant Derivative
 - Metricity of the Christoffel Symbol
 - Spacetime Curvature
 - The Curvature Tensor
 - Conditions & Contractions
 - The Einstein-Hilbert Action
 - Matter-Gravity Coupling
 - "Covariantizing" Lagrangians
 - Einstein Equations
 - Two Oblique Parallels
- Special Solutions

COORDINATE BASES

...an echo

Basis vectors:

$$\vec{x}_{\mu} := (\partial_{\mu}\vec{r}) \text{ and } \vec{x}^{\mu} := g^{\mu\nu}(\mathbf{x}) \vec{x}_{\nu},$$

SO

$$A_{\mu} := \vec{x}_{\mu} \cdot \vec{A}, \quad A^{\mu} := \vec{x}^{\mu} \cdot \vec{A}, \quad \text{and} \quad \vec{A} = A_{\mu} \vec{x}^{\mu} = A^{\mu} \vec{x}_{\mu},$$

and

$$\vec{x}_{\mu}\cdot\vec{x}_{\nu}=g_{\mu\nu}(\mathbf{x})$$
 and $\vec{x}^{\mu}\cdot\vec{x}^{\nu}=g^{\mu\nu}(\mathbf{x}).$

Then

 $\Gamma^{\rho}_{\mu\nu}: (\partial_{\nu}\vec{x}_{\mu}) = \Gamma^{\rho}_{\mu\nu}\vec{x}_{\rho}$ b/c basis completeness

Straightforwardly,

Also

$$\begin{aligned} \Gamma^{\rho}_{\mu\nu}\vec{x}_{\rho} &:= (\partial_{\mu}\vec{x}_{\nu}) = (\partial_{\mu}\partial_{\nu}\vec{r}) = (\partial_{\nu}\partial_{\mu}\vec{r}) = (\partial_{\nu}\vec{x}_{\mu}) = \Gamma^{\rho}_{\nu\mu}\vec{x}_{\rho}. \\ (\partial_{\mu}\vec{x}^{\rho}) &= -\Gamma^{\rho}_{\mu\nu}\vec{x}^{\nu} \quad \text{b/c} \ \partial_{\mu}(\vec{x}_{\mu}\cdot\vec{x}^{\nu} = \delta^{\nu}_{\mu}) = 0. \end{aligned}$$

Wednesday, February 29, 12

COVARIANT DERIVATIVE

It then follows:

 $\vec{A} := A^{\rho} \vec{x}_{\rho} \& (\partial_{\mu} \vec{x}_{\nu}) =: \Gamma^{\rho}_{\mu\nu} \vec{x}_{\rho} \Rightarrow (\partial_{\mu} \vec{A}) = [(\partial_{\mu} A^{\rho}) + \Gamma^{\rho}_{\mu\nu} A^{\nu}] \vec{x}_{\rho};$ $\vec{B} := B_{\rho} \vec{x}^{\rho} \& (\partial_{\mu} \vec{x}^{\rho}) =: -\Gamma^{\rho}_{\mu\nu} \vec{x}^{\nu} \Rightarrow (\partial_{\mu} \vec{B}) = [(\partial_{\mu} B_{\nu}) - \Gamma^{\rho}_{\mu\nu} B_{\rho}] \vec{x}^{\nu}.$ Define:

 $D_{\mu}A^{\rho} := (\partial_{\mu}A^{\rho}) + \Gamma^{\rho}_{\mu\nu}A^{\nu} \text{ and } D_{\mu}B_{\nu} := (\partial_{\mu}B_{\nu}) - \Gamma^{\rho}_{\mu\nu}B_{\rho}.$ Owing to Weyl's construction,

$$T(p,q;w) := C^w \otimes \mathcal{YS}[\underbrace{A \otimes \cdots \otimes A} \otimes \underbrace{B \otimes \cdots \otimes B}]$$

q

• it then *follows* (product rule) that:

$$(D_{\mu}\mathbb{T})_{\rho_{1}\cdots\rho_{q}}^{\nu_{1}\cdots\nu_{p}} = (\partial_{\mu}T_{\rho_{1}\cdots\rho_{q}}^{\nu_{1}\cdots\nu_{p}}) + \sum_{i=1}^{p}\Gamma_{\mu\sigma_{i}}^{\nu_{i}}T_{\rho_{1}\cdots\cdots\rho_{q}}^{\nu_{1}\cdots\nu_{p}} - \sum_{i=1}^{q}\Gamma_{\mu\rho_{i}}^{\sigma_{i}}T_{\rho_{1}\cdots\sigma_{i}}^{\nu_{1}\cdots\nu_{p}}.$$

COVARIANT DERIVATIVE

More to the point,

$$X^{\nu_1\cdots\nu_p}_{\rho_1\cdots\rho_q\,;\,\mu} := (D_{\mu}\mathbb{T})^{\nu_1\cdots\nu_p}_{\rho_1\cdots\rho_q}$$

transforms as a type-(p, q+1) tensor density of weight w.
 And, since a partial derivative doesn't (verify), the Γ-symbol cannot either—so as to compensate:

$$\Gamma^{\rho}_{\mu\nu}(\mathbf{x}) = \underbrace{\frac{\partial x^{\rho}}{\partial y^{\sigma}} \frac{\partial y^{\kappa}}{\partial x^{\mu}} \frac{\partial y^{\lambda}}{\partial x^{\nu}}}_{\text{tensorial}} \Gamma^{\sigma}_{\kappa\lambda}(y) + \underbrace{\frac{\partial x^{\rho}}{\partial y^{\sigma}} \frac{\partial^2 y^{\sigma}}{\partial x^{\mu} \partial x^{\nu}}}_{\text{inhomogeneous}},$$

is tensorial if and only if the transformation x → y is linear.
 In which case, no Γ_μ is needed in the first place. □
 True of Cartesian → Cartesian rotations & translations.

COVARIANT DERIVATIVE

• Thus, the Γ_{μ} looks awfully like a gauge potential 4-vector, except for the extra transformation matrix:

$$\mathbf{\Gamma}'_{\mu} = [\mathbf{U}]_{\mu}{}^{\nu} \mathbf{U} \mathbf{\Gamma}_{\nu} \mathbf{U}^{-1} + \mathbf{U} \partial_{\mu} \mathbf{U}^{-1}$$

Oh, and one more thing:

$$[\mathbb{A}_{\mu} \cdot \Psi]^{\alpha} = [\mathbb{A}_{\mu}]^{\alpha} \Psi^{\beta} \qquad \leftrightarrow \qquad [\mathbb{I}_{\mu} \cdot V]^{\rho} = \mathbb{I}_{\mu\nu}^{\rho} V^{\nu}.$$

no relation \longleftarrow symmetric

This is a reflection of the conceptual non-linearity:

- The transformation of phases is spacetime-dependent
- The transformation of spacetime coordinates is spacetime-dependent
- Yang-Mills A_{μ} is a spacetime 4-vector of "color"-space matrices.

• The Γ -symbol is a spacetime 4-vector of spacetime matrices.

METRICITY OF THE CHRISTOFFEL SYMBOL

Given the relations

$$(\partial_{\nu}\vec{x}_{\mu}) = \Gamma^{\rho}_{\mu\nu}\vec{x}_{
ho}$$
 and $\vec{x}_{\mu}\cdot\vec{x}_{\nu} = g_{\mu\nu}(\mathbf{x})$

 ${}^{\bullet}$ a relation between the $\mathbb{F}\mbox{-symbol}$ and the metric must exist. Indeed,

 $(\partial_{\mu}g_{\nu\rho}) = (\partial_{\mu}(\vec{x}_{\nu}\cdot\vec{x}_{\rho})) = \Gamma^{\sigma}_{\mu\nu}\vec{x}_{\sigma}\cdot\vec{x}_{\rho} + \vec{x}_{\nu}\cdot\Gamma^{\sigma}_{\mu\rho}\vec{x}_{\sigma} = g_{\sigma\rho}\Gamma^{\sigma}_{\mu\nu} + g_{\sigma\nu}\Gamma^{\sigma}_{\mu\rho}$ produces

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2}g^{\rho\sigma} \left[(\partial_{\mu}g_{\nu\sigma}) + (\partial_{\nu}g_{\mu\sigma}) - (\partial_{\sigma}g_{\mu\nu}) \right] \tag{\&}$$

which satisfies

$D_{\mu}g_{\nu\rho} = 0 = D_{\mu}g^{\nu\rho}$. covariantly constant

and vice versa: $D_{\mu} g_{\nu\rho} = 0$ with $D_{\mu} = \partial_{\mu} + \Gamma_{\mu}$ implies Eq. (&).

• This (Christoffel) Γ -symbol is thus *metric*. adj. derived from $g_{\mu\nu}$

THE CURVATURE TENSOR

• Just like $\mathbb{F}_{\mu\nu} := \frac{\hbar c}{ig_c} [D_{\mu}, D_{\nu}]$

• we define

 $R_{\mu\nu\rho}{}^{\sigma} := \left[D_{\mu}, D_{\nu} \right]_{\rho}{}^{\sigma} = \left[\left(\delta^{\sigma}_{\lambda} \partial_{\nu} + \Gamma^{\sigma}_{\nu\lambda} \right) \Gamma^{\lambda}_{\mu\rho} \right] - \left[\left(\delta^{\sigma}_{\lambda} \partial_{\mu} + \Gamma^{\sigma}_{\mu\lambda} \right) \Gamma^{\lambda}_{\nu\rho} \right], \\ = \partial_{\nu} \Gamma^{\sigma}_{\mu\rho} - \partial_{\mu} \Gamma^{\sigma}_{\nu\rho} + \Gamma^{\sigma}_{\nu\lambda} \Gamma^{\lambda}_{\mu\rho} - \Gamma^{\sigma}_{\mu\lambda} \Gamma^{\lambda}_{\nu\rho}.$

Geometric interpretation:

CONDITIONS & CONTRACTIONS

(no such thing for $\mathbb{F}_{\mu\nu}$) • Define $R_{\mu\nu\rho\sigma} := R_{\mu\nu\rho}{}^{\Lambda} g_{\lambda\sigma}$ The Riemann tensor satisfies the following identities: (non-abelian) $\operatorname{Tr}[\mathbb{F}_{\mu\nu}] = 0$ $R_{\mu\nu\rho}{}^{\rho}=0,$ $R_{\mu\nu\rho\sigma}=-R_{\nu\mu\rho\sigma},$ $\mathbb{F}_{\mu\nu} = -\mathbb{F}_{\nu\mu}$ $R_{\mu\nu\rho\sigma}=-R_{\mu\nu\sigma\rho},$ $R_{\mu\nu\rho\sigma} = + R_{\rho\sigma\mu\nu},$ $\varepsilon^{\lambda\nu\rho\sigma}R_{\mu\nu\rho\sigma} = 0,$ 1st Bianchi identity $\varepsilon^{\kappa\lambda\mu\nu}D_{\lambda}R_{\mu\nu\rho\sigma} = 0.$ 2nd Bianchi identity $\varepsilon^{\kappa\lambda\mu\nu}D_{\lambda}\mathbb{F}_{\mu\nu} = 0$ The Riemann tensor is part 1st derivative, part quadratic in \mathbb{F}_{μ} Injust as $\mathbb{F}_{\mu\nu}$ is part 1st derivative, part quadratic in \mathbb{A}_{μ} • ...of 2nd order in derivatives of the metric, $g_{\mu\nu}$, & homogeneous! It also involves $g^{\mu\nu}$, which is very non-linear in $g_{\mu\nu}$!

CONDITIONS & CONTRACTIONS

For the Yang-Mills type field strength tensor,

 $g^{\mu\nu}\mathbb{F}_{\mu\nu} \equiv 0, \qquad \begin{cases} \operatorname{Tr}[\mathbb{F}_{\mu\nu}] &= [\mathbb{F}_{\mu\nu}]_{\alpha}^{\alpha} = 0, & \text{for semisimple Lie groups,} \\ \operatorname{Tr}[F_{\mu\nu}] &= F_{\mu\nu}, & \text{for } U(1) \text{ factors,} \end{cases}$ Since all four indices in $R_{\mu\nu\rho}^{\sigma}$ are of the same type, we *can* define: Ricci tensor: $R_{\mu\rho} := R_{\mu\nu\rho}^{\nu}$,invariantscalar curvature: $R := g^{\mu\rho} R_{\mu\rho} = g^{\mu\rho} R_{\mu\nu\rho}^{\nu}$. It is then possible to define: • $S_{\mu\nu\rho\sigma}$, the "pure trace" part, = $\frac{1}{12} R(g_{\mu\rho}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\rho})$. • $E_{\mu\nu\rho\sigma}$, the "semi-traceless" part, = $(g_{\mu}[\rho S_{\nu}]\sigma - g_{\nu}[\rho S_{\sigma}]\mu)$; $S_{\mu\nu}$:= $R_{\mu\nu} - \frac{1}{4}g_{\mu\nu}R$. • $C_{\mu\nu\rho\sigma}$, the fully traceless part, Weyl (conformal curvature) tensor. Also:invariant $||R_{\mu\nu}||^2 := R_{\mu\nu} g^{\mu\rho} g^{\nu\sigma} R_{\rho\sigma}$ $||R_{\mu\nu\rho}{}^{\sigma}||^2 := R_{\mu\nu\rho}{}^{\sigma} g^{\mu\alpha} g^{\nu\beta} g^{\rho\gamma} g_{\sigma\delta} R_{\alpha\beta\gamma}{}^{\delta}$ Also:

THE EINSTEIN-HILBERT ACTION

- For the Yang-Mills case, the only way to construct a Lagrangian density quadratic in $\mathbb{F}_{\mu\nu}$ is $\propto \operatorname{Tr}[\mathbb{F}_{\mu\nu}\mathbb{F}^{\mu\nu}]$.
- By the same token, consider:

$$\int \sqrt{-g} d^4 x R_{\mu\nu\rho}^{\sigma} g^{\mu\kappa} g^{\nu\lambda} R_{\kappa\lambda\sigma}^{\rho}.$$

- Varying w.r.t. components of \mathbb{F}_{μ} produces a 2nd order PDE for \mathbb{F}_{μ}
- Varying w.r.t. components of $g_{\mu\nu}$ produces a 4th order PDE for $g_{\mu\nu}$
- Unlike with Yang-Mills $\mathbb{F}_{\mu\nu}$, we now do have *R*, so:

$$\frac{c^3}{16\pi G_N} \int \sqrt{-g} \, \mathrm{d}^4 x \, R,$$

linear in *R*

- is the Einstein-Hilbert action.
 - So that the units are ML²/T, where $[d^4x] = 4$ and $[g_{\mu\nu}] = 0$
 - Varying w.r.t. components of $g_{\mu\nu}$ produces a 2nd order PDE for $g_{\mu\nu}$.

"COVARIANTIZING" LAGRANGIANS

Varying the Einstein-Hilbert action produces

$$G_{\mu\nu} := R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 0.$$

This is the 2nd order PDE of motion for g_{µν}. Empty spacetime!
 R_{µνρ}^σ and R_{µν} and R are all (very) nonlinear in g_{µν}, this is a highly non-trivial, nonlinear PDE system.

Coupling everything else to this gauge-GCT theory:

$$S[\phi_i(\mathbf{x})] = \int d^4x \, \mathscr{L}(\phi_i, (\partial_\mu \phi_i), \cdots; \mathbf{x}; C_a)$$

$$\rightarrow \int \sqrt{|g|} d^4x \left[\frac{c^3}{16\pi G_N} R - \mathscr{L}(\phi_i, (D_\mu \phi_i), \cdots; \mathbf{x}; C_a) \right]$$

any and all non-metric/Christoffel fields

Wednesday, February 29, 12

EINSTEIN EQUATIONS

• Varying the GCT-covariantized action w.r.t. $g_{\mu\nu}$ produces

Einstein equations:
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G_N}{c^4}T_{\mu\nu}$$
,

where

Energy-momentum:
$$T_{\mu\nu} := -\frac{2c}{\sqrt{-g}} \frac{\delta(\sqrt{-g} \mathscr{L}_M)}{\delta g^{\mu\nu}}$$

So, the presence of matter curves spacetime.

- *T*₀₀: energy density
- $T_{0i} = T_{i0}$: linear momentum density
- $T_{ik} = T_{ki} (i \neq k)$: shear stresses
- *T_{ii}* (no sum): normal stresses, called "pressure" if all are equal

TWO OBLIQUE PARALLELS

By construction,

 $\begin{bmatrix} \mathbb{A}_{\mu} \end{bmatrix}_{\alpha}^{\beta} \longleftrightarrow \Gamma^{\rho}_{\mu\nu}, \quad \text{not very useful} \\ \begin{bmatrix} \mathbb{F}_{\mu\nu} \end{bmatrix}_{\alpha}^{\beta} \longleftrightarrow R_{\mu\nu\rho}^{\sigma} & \text{because} \\ \bigcup & \bigcup & \text{all indices mix!} \\ \vec{\mathbb{E}} = (\mathbb{F}_{0i}), \ \vec{\mathbb{B}} = (\mathbb{F}_{ij}) \quad C_{\mu\nu\rho}^{\sigma}, E_{\mu\nu\rho}^{\sigma}, S_{\mu\nu\rho}^{\sigma}$

While (\mathbb{F}_{0i}) and (\mathbb{F}_{ij}) indeed are irreducible representations of $SO(0,3) \times G_{YM}$ (*i.e.*, rotations × gauge group),

(\mathbb{R}_{0i}) and (\mathbb{R}_{ij}) are irreducible representations of neither SO(0,3) (rotations) nor SO(1,3) (full Lorentz group).

Although ($\mathbb{A}_{\mu} \leftrightarrow \mathbb{F}_{\mu}$) and ($\mathbb{F}_{\mu\nu} \leftrightarrow \mathbb{R}_{\mu\nu}$) are conceptually analogous, this analogy has technical limitations.

TWO OBLIQUE PARALLELS

- On the other hand...
- The Einstein equations

 $\left\{R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R=\frac{1}{2}g^{\rho\sigma}(\partial_{\mu}\partial_{\rho}g_{\nu\sigma}+\partial_{\nu}\partial_{\rho}g_{\mu\sigma})+\dots\right\}=\frac{8\pi\,G_{N}}{c^{4}}T_{\mu\nu}$

remind awfully much of Gauss-Ampère equations

 $\left\{ (\Box A^{\mu}) - \eta^{\mu\nu} (\partial_{\nu}\partial_{\rho}A^{\rho}) \right\} = \frac{1}{4\pi\epsilon_0} \frac{4\pi}{c} j_e^{\nu}.$

 $j_e^{\mu} \leftrightarrow T_{\mu\nu},$ both are Noether currents

 $A_{\mu} \longleftrightarrow g_{\mu\nu},$ both are "most basic" fields

• Just as every 4-current produces an EM field

& every EM field specifies the 4-current it needs to support it,

so are the energy-momentum tensor and spacetime curvature linked and shalt not be rendered asunder.

16

So

TWO OBLIQUE PARALLELS

• To summarize:

17

Wednesday, February 29, 12

Wednesday, February 29, 12

QUICK TRICK...

Consider the Einstein equations:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi\,G_N}{c^4}T_{\mu\nu},$$

...the trace of which equates

$$R - \frac{1}{2}4R = \frac{8\pi G_N}{c^4} g^{\mu\nu} T_{\mu\nu}, \quad i.e., \quad R = -\frac{8\pi G_N}{c^4} g^{\mu\nu} T_{\mu\nu}$$

whereby the Einstein equations are equivalent to

$$R_{\mu\nu} = \frac{8\pi G_N}{c^4} \left[T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} \left(g^{\rho\sigma} T_{\rho\sigma} \right) \right]^{\text{Inis is not the energy-momentum tensor!}} \\ \left(R_{\mu\nu} = 0 \right) \iff \left(T_{\mu\nu} = 0 \right) \quad \text{Ricci-flatness}$$

Ricci-flat spacetimes require/imply no material supportAbsence of matter implies/requires Ricci-flat spacetimes

QUICK TRICK...

- Why is "Ricci-flatness" so important?
- Well, construct $\mathbf{R} := dx^{\mu}dx^{\nu}R_{\mu\nu}$. This is a 2-form.
- Taken modulo total derivatives, this defines the 1st Chern class.
- Integrals over 2-dimensional submanifolds X are invariants of continuous deformations of X, within the spacetime
- More importantly, $\mathbf{R} \wedge \mathbf{R} = d^4 x \ \varepsilon^{\mu\nu\rho\sigma} R_{\mu\nu} R_{\rho\sigma}$ is a 4-form
 - ...and may be integrated over the whole spacetime manifold
 - ...and is a topological invariant (1st Chern number, C_1) of the whole spacetime manifold.

Ricci-flatness implies that C_1 (spacetime) = 0.

I'LL BE BACK.

IMMATERIAL (RICCI-FLAT) SOLUTIONS

- Consider empty space.
- That is, space with no matter. (immaterial)
- In 1915, Karl Schwatzschild, while at the Russian front as a German soldier, found the first and best-known Ricci-flat solution to Einstein's equations. He died within a year.

$$[g_{\mu\nu}] = \operatorname{diag}(-f_{S}(r), \frac{1}{f_{S}(r)}, r^{2}, r^{2} \sin^{2}(\theta)),$$

$$ds^{2} = -f_{S}(r)c^{2}dt^{2} + \frac{1}{f_{S}(r)}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}(\theta) d\varphi^{2}),$$

$$(q_{S}) = 2G_{N}M$$

$$f_S(r) := \left(1 - \frac{r_S}{r}\right), \qquad r_S = \frac{-c_N r_s}{c^2}.$$

But, if there was no matter to begin with, whose mass is M?
 It is the mass of the singularity—a "defect" in spacetime—at the origin.
 Empty spacetime can have mass, even classically!

IMMATERIAL (RICCI-FLAT) SOLUTIONS

Singularity??

 $[g_{\mu\nu}] = \operatorname{diag}\left(-f_{S}(r), \frac{1}{f_{S}(r)}, r^{2}, r^{2} \sin^{2}(\theta)\right) \quad f_{S}(r) := \left(1 - \frac{r_{S}}{r}\right)$

• At both $r = r_s$ and r = 0, a metric component blows up.

- At $r = r_S$, $f_S(r) = 0$, the dt^2 -term vanishes & the dr^2 -terms blows up.
- At r = 0, $f_S(r) = \infty$, the d r^2 -term vanishes & the d t^2 -terms blows up.
- But, that may well be an artifact of "bad" coordinates! Metric components are not invariants; they form a type-(0,2) tensor!
- Indeed, in 1933, Georges Lemaître realized that a coordinate system introduced by Arthur Eddington in 1924 proves that the $r = r_S$ location is perfectly uneventful.

In turn, the Kretschmann curvature invariant is

$$R_{\mu\nu\rho}{}^{\sigma}\|^2 = \frac{48G_N{}^2 M^2}{c^4 r^6}$$

IMMATERIAL (RICCI-FLAT) SOLUTIONS

- Unh... "the r = r_S location is perfectly uneventful" is a bit of an understatement.
- Actually, something does happen there:

$$v_1 = \sqrt{\frac{2G_N M}{r}}.$$

is the "escape speed" from a gravitational source of mass M.

$$r_{S} = \frac{2G_{N}M}{c^{2}} \quad \Rightarrow \quad M = \frac{c^{2}r_{S}}{2G_{N}} \quad \Rightarrow \quad v_{1} = \sqrt{\frac{2G_{N}\frac{c^{2}r_{S}}{2G_{N}}}{r}} = c\sqrt{\frac{r_{S}}{r}}$$

...so the "escape speed" becomes unattainable. Event horizon. *Location of no-return.* Oh, and one more thing! Within the event horizon,

$$ds^{2} = \bigoplus |f_{s}(r)| c^{2} dt^{2} \bigoplus \frac{1}{|f_{s}(r)|} dr^{2} + r^{2} (d\theta^{2} + \sin^{2}(\theta) d\varphi^{2})$$

$$= \bigoplus f_{s}(r) |c^{2} dt^{2} \bigoplus \frac{1}{|f_{s}(r)|} dr^{2} + r^{2} (d\theta^{2} + \sin^{2}(\theta) d\varphi^{2})$$

$$= \bigoplus f_{s}(r) |c^{2} dt^{2} \bigoplus \frac{1}{|f_{s}(r)|} dr^{2} + r^{2} (d\theta^{2} + \sin^{2}(\theta) d\varphi^{2})$$

$$= \bigoplus f_{s}(r) |c^{2} dt^{2} \bigoplus \frac{1}{|f_{s}(r)|} dr^{2} + r^{2} (d\theta^{2} + \sin^{2}(\theta) d\varphi^{2})$$

$$= \bigoplus f_{s}(r) |c^{2} dt^{2} \bigoplus \frac{1}{|f_{s}(r)|} dr^{2} + r^{2} (d\theta^{2} + \sin^{2}(\theta) d\varphi^{2})$$

$$= \bigoplus f_{s}(r) |c^{2} dt^{2} \bigoplus \frac{1}{|f_{s}(r)|} dr^{2} + r^{2} (d\theta^{2} + \sin^{2}(\theta) d\varphi^{2})$$

$$= \bigoplus f_{s}(r) |c^{2} dt^{2} \bigoplus \frac{1}{|f_{s}(r)|} dr^{2} + r^{2} (d\theta^{2} + \sin^{2}(\theta) d\varphi^{2})$$

IMMATERIAL (RICCI-FLAT) SOLUTIONS

- When discussing Yang-Mills (EM, Strong, Weak) interactions, we assumed a flat, R^{1,3}-like spacetime. Even the "topologically non-trivial" solutions do not change the spacetime. It's an *arena*.
 In general relativity, non-trivial spacetimes are not R^{1,3}-like.
 In so-modeling gravity, we *can* excise portions of spacetime
 ...though that may render the spacetime somehow *incomplete*.
 Spacetime (non-)singularity may well thus be a subtle issue.
 - Geodesically complete; refine: time-like, null, space-like.
 - Metrically complete: convergence of all Cauchy sequences.
 - **B-complete**: if every *C*¹-curve of finite length is contained.
 - **Curvature invariants**: $R_{\mu\nu\rho}^{\sigma}$ has 20 independent DoF's; no known list.
- B-completeness implies geodesic completeness, and coincides with metric completeness—only for $g_{\mu\nu} \ge 0$, not for spacetime.

Thanks!

Tristan Hubsch

Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

http://homepage.mac.com/thubsch/