(Fundamental) Physics of Elementary Particles

Covariant derivative \& the Christoffel symbol Spacetime Curvature; Matter-gravity coupling; Special Solutions (Intro)

Tristan Hübsch
Department of Physics and Astronomy
Howard University, Washington DC.
Prirodno-Matematički Fakultet Univerzitet uNovom Sadu

Fundamental Physics of Elementary Particles

PROGRAM

- The Christoffel Symbol \& the Covariant Derivative
- Coordinate Bases
- Covariant Derivative
- Metricity of the Christoffel Symbol
- Spacetime Curvature
- The Curvature Tensor
- Conditions \& Contractions
- The Einstein-Hilbert Action

Matter-Gravity Coupling

- "Covariantizing" Lagrangians
- Einstein Equations
- Two Oblique Parallels
- Special Solutions

Christoffel Symbol \& Covariant Derivative

CロロRDINATE BASES

- Basis vectors:

$$
\vec{x}_{\mu}:=\left(\partial_{\mu} \vec{r}\right) \quad \text { and } \quad \vec{x}^{\mu}:=g^{\mu v}(\mathbf{x}) \vec{x}_{v},
$$

so

$$
A_{\mu}:=\vec{x}_{\mu} \cdot \vec{A}, \quad A^{\mu}:=\vec{x}^{\mu} \cdot \vec{A}, \quad \text { and } \quad \vec{A}=A_{\mu} \vec{x}^{\mu}=A^{\mu} \vec{x}_{\mu}
$$

and

$$
\vec{x}_{\mu} \cdot \vec{x}_{v}=g_{\mu v}(\mathrm{x}) \quad \text { and } \quad \vec{x}^{\mu} \cdot \vec{x}^{v}=g^{\mu v}(\mathrm{x}) .
$$

Then

$$
\Gamma_{\mu \nu}^{\rho}:\left(\partial_{\nu} \vec{x}_{\mu}\right)=\Gamma_{\mu \nu}^{\rho} \vec{x}_{\rho} \quad \mathrm{b} / \mathrm{c} \text { basis completeness }
$$

Straightforwardly,

Also

$$
\Gamma_{\mu \nu}^{\rho} \vec{x}_{\rho}:=\left(\partial_{\mu} \vec{x}_{\nu}\right)=\left(\partial_{\mu} \partial_{\nu} \vec{r}\right)=\left(\partial_{v} \partial_{\mu} \vec{r}\right)=\left(\partial_{\nu} \vec{x}_{\mu}\right)=\Gamma_{\nu \mu}^{\rho} \vec{x}_{\rho}
$$

$$
\left(\partial_{\mu} \vec{x}^{\rho}\right)=-\Gamma_{\mu \nu}^{\rho} \vec{x}^{v} \quad \mathrm{~b} / \mathrm{c} \quad \partial_{\mu}\left(\vec{x}_{\mu} \cdot \vec{x}^{v}=\delta_{\mu}^{v}\right)=0
$$

Christoffel Symbol \& Covariant Derivative

CロVARIANT DERIVATIVE

- It then follows:

$$
\begin{aligned}
& \vec{A}:=A^{\rho} \vec{x}_{\rho} \&\left(\partial_{\mu} \vec{x}_{v}\right)=: \Gamma_{\mu v}^{\rho} \vec{x}_{\rho} \Rightarrow\left(\partial_{\mu} \vec{A}\right)=\left[\left(\partial_{\mu} A^{\rho}\right)+\Gamma_{\mu v}^{\rho} A^{\nu}\right] \vec{x}_{\rho} ; \\
& \vec{B}:=B_{\rho} \vec{x}^{\rho} \&\left(\partial_{\mu} \vec{x}^{\rho}\right)=:-\Gamma_{\mu v}^{\rho} \vec{x}^{v} \Rightarrow\left(\partial_{\mu} \vec{B}\right)=\left[\left(\partial_{\mu} B_{v}\right)-\Gamma_{\mu v}^{\rho} B_{\rho}\right] \vec{x}^{v} .
\end{aligned}
$$

Define:

$$
D_{\mu} A^{\rho}:=\left(\partial_{\mu} A^{\rho}\right)+\Gamma_{\mu v}^{\rho} A^{v} \quad \text { and } \quad D_{\mu} B_{v}:=\left(\partial_{\mu} B_{v}\right)-\Gamma_{\mu v}^{\rho} B_{\rho} .
$$

Owing to Weyl's construction,

$$
T(p, q ; w):=C^{w} \otimes \mathcal{Y} \mathcal{S}[\underbrace{A \otimes \cdots \otimes A}_{p} \otimes \underbrace{B \otimes \cdots \otimes B}_{q}]
$$

it then follows (product rule) that:

$$
\left(D_{\mu} \mathbb{T}\right)_{\rho_{1} \cdots \rho_{q}}^{v_{1} \cdots v_{p}}=\left(\partial_{\mu} T_{\rho_{1} \cdots \rho_{q}}^{v_{1} \cdots v_{p}}\right)+\sum_{i=1}^{p} \Gamma_{\mu \sigma_{i}}^{v_{i}} T_{\rho_{1} \cdots \cdots \rho_{q}}^{v_{1} \cdots \sigma_{i} \cdots v_{p}}-\sum_{i=1}^{q} \Gamma_{\mu \rho_{i}}^{\sigma_{i}} T_{\rho_{1} \cdots \sigma_{i} \cdots \rho_{q}}^{v_{1} \cdots \cdots \cdots v_{p}} .
$$

Christoffel Symbol \& Covariant Derivative

CロVARIANT DERIVATIVE

- More to the point,

$$
X_{\rho_{1} \cdots \rho_{q} ; \mu}^{v_{1} \cdots v_{p}}:=\left(D_{\mu} \mathbb{T}\right)_{\rho_{1} \cdots \rho_{q}}^{v_{1} \cdots v_{p}}
$$

- transforms as a type- $(p, q+1)$ tensor density of weight w.
- And, since a partial derivative doesn't (verify), the Γ-symbol cannot either-so as to compensate:

$$
\Gamma_{\mu \nu}^{\rho}(\mathrm{x})=\underbrace{\frac{\partial x^{\rho}}{\partial y^{\sigma}} \frac{\partial y^{k}}{\partial x^{\mu}} \frac{\partial y^{\lambda}}{\partial x^{\nu}} \Gamma_{\kappa \lambda}^{\sigma}(y)}_{\text {tensorial }}+\underbrace{\frac{\partial x^{\rho}}{\partial y^{\sigma}} \frac{\partial^{2} y^{\sigma}}{\partial x^{\mu} \partial x^{v}}}_{\text {inhomogeneous }}
$$

is tensorial if and only if the transformation $x \rightarrow y$ is linear.

- In which case, no \mathbb{T}_{μ} is needed in the first place. ©
- True of Cartesian \rightarrow Cartesian rotations \& translations.

Christoffel Symbol \& Covariant Derivative

CロVARIANT DERIVATIVE

- Thus, the \mathbb{T}_{μ} looks awfully like a gauge potential 4-vector, except for the extra transformation matrix:

$$
\mathbb{\Pi}_{\mu}^{\prime}=[\mathbb{U}]_{\mu}{ }^{v} \mathbb{U} \mathbb{\Gamma}_{\nu} \mathbb{U}^{-1}+\mathbb{U} \partial_{\mu} \mathbb{U}^{-1}
$$

- Oh, and one more thing:

$$
\begin{aligned}
{\left[\mathbb{A}_{\mu}, \Psi\right]^{\alpha}=\left[\mathbb{A}_{\mu+\beta}{ }^{\alpha} \Psi^{\beta}\right.} & \leftrightarrow \quad\left[\mathbb{I}_{\mu} \cdot V\right]^{\rho}=\Gamma_{(\mu v)}^{\rho} V^{v}, \\
\text { no relation } &
\end{aligned}
$$

This is a reflection of the conceptual non-linearity:

- The transformation of phases is spacetime-dependent
- The transformation of spacetime coordinates is spacetime-dependent
- Yang-Mills \mathbb{A}_{μ} is a spacetime 4-vector of "color"-space matrices.
- The $\mathbb{\Gamma}$-symbol is a spacetime 4-vector of spacetimematrices.

Christoffel Symbol \＆Covariant Derivative

 METRICITY ロF THE CHRISTロFFEL SYMBロL－Given the relations

$$
\left(\partial_{v} \vec{x}_{\mu}\right)=\Gamma_{\mu \nu}^{\rho} \vec{x}_{\rho} \quad \text { and } \quad \vec{x}_{\mu} \cdot \vec{x}_{v}=g_{\mu v}(\mathrm{x})
$$

a relation between the \llbracket－symbol and the metric must exist． Indeed，

$$
\left(\partial_{\mu} g_{v \rho}\right)=\left(\partial_{\mu}\left(\vec{x}_{v} \cdot \vec{x}_{\rho}\right)\right)=\Gamma_{\mu v}^{\sigma} \vec{x}_{\sigma} \cdot \vec{x}_{\rho}+\vec{x}_{\nu} \cdot \Gamma_{\mu \rho}^{\sigma} \vec{x}_{\sigma}=g_{\sigma \rho} \Gamma_{\mu \nu}^{\sigma}+g_{\sigma \nu} \Gamma_{\mu \rho}^{\sigma}
$$

produces

$$
\Gamma_{\mu v}^{\rho}=\frac{1}{2} g^{\rho \sigma}\left[\left(\partial_{\mu} g_{v \sigma}\right)+\left(\partial_{v} g_{\mu \sigma}\right)-\left(\partial_{\sigma} g_{\mu v}\right)\right]
$$

which satisfies

$$
D_{\mu} g_{\nu \rho}=0=D_{\mu} g^{v \rho}, \quad \text { covariantly constant }
$$

and vice versa：$D_{\mu} g_{v \rho}=0$ with $D_{\mu}=\partial_{\mu}+\mathbb{\Gamma}_{\mu}$ implies Eq．（ () ）．
－This（Christoffel） $\mathbb{\Gamma}$－symbol is thus metric．adj．derived from $g_{\mu \nu}$

Spacetime Curvature

THE CURVATURE TENSロR

- Just like $\mathbb{F}_{\mu v}:=\frac{\hbar c}{i g_{c}}\left[D_{\mu}, D_{v}\right]$
- we define

$$
\begin{aligned}
R_{\mu v \rho}{ }^{\sigma} & :=\left[D_{\mu}, D_{v}\right] \rho^{\sigma}=\left[\left(\delta_{\lambda}^{\sigma} \partial_{v}+\Gamma_{v \lambda}^{\sigma}\right) \Gamma_{\mu \rho}^{\lambda}\right]-\left[\left(\delta_{\lambda}^{\sigma} \partial_{\mu}+\Gamma_{\mu \lambda}^{\sigma}\right) \Gamma_{v \rho}^{\lambda}\right], \\
& =\partial_{v} \Gamma_{\mu \rho}^{\sigma}-\partial_{\mu} \Gamma_{v \rho}^{\sigma}+\Gamma_{\nu \lambda}^{\sigma} \Gamma_{\mu \rho}^{\lambda}-\Gamma_{\mu \lambda}^{\sigma} \Gamma_{v \rho}^{\lambda} .
\end{aligned}
$$

Geometric interpretation:

Spacetime Curvature

CINDITIロNS \& CINTRACTIロNS

- Define $R_{\mu \nu \rho \sigma}:=R_{\mu v \rho}{ }^{\lambda} g_{\lambda \sigma} \quad$ (no such thing for $\mathbb{F}_{\mu \nu}$)
- The Riemann tensor satisfies the following identities:

$$
\begin{aligned}
& R_{\mu v \rho}^{\rho}=0, \\
& R_{\mu v \rho \sigma}=-R_{v \mu \rho \sigma}, \\
& R_{\mu v \rho \sigma}=-R_{\mu v \sigma \rho,} \\
& R_{\mu v \rho \sigma}=+R_{\rho \sigma} \mu v, \\
& \varepsilon^{\lambda v \rho \sigma} R_{\mu v \rho \sigma}=0, \quad \text { (non-ab } \\
& \text { 1st Bianchi identity }
\end{aligned}
$$

$$
\varepsilon^{\kappa \lambda \mu v} D_{\lambda} R_{\mu v \rho \sigma}=0, \quad \text { 2nd Bianchi identity } \quad \varepsilon^{k \lambda \mu v} D_{\lambda} \mathbb{F}_{\mu v}=0
$$

The Riemann tensor is part 1st derivative, part quadratic in \mathbb{T}_{μ}
...just as $\mathbb{F}_{\mu \nu}$ is part 1st derivative, part quadratic in \mathbb{A}_{μ}
...of 2 nd order in derivatives of the metric, $g_{\mu v}, \&$ homogeneous! It also involves $g^{\mu \nu}$, which is very non-linear in $g_{\mu v}$!

Spacetime Curvature

CINDITIUNS \& CINTRACTIロNS

- For the Yang-Mills type field strength tensor,

$$
g^{\mu v} \mathbb{F}_{\mu \nu} \equiv 0, \quad \begin{cases}\operatorname{Tr}\left[\mathbb{F}_{\mu \nu}\right]=\left[\mathbb{F}_{\mu \nu}\right]_{\alpha}{ }^{\alpha}=0, & \\ \text { for semisimple Lie groups, } \\ \operatorname{Tr}\left[F_{\mu \nu}\right]=F_{\mu v}, & \\ \text { for } U(1) \text { factors },\end{cases}
$$

- Since all four indices in $R_{\mu \nu \rho}{ }^{\sigma}$ are of the same type, we can define:

Ricci tensor: $\quad R_{\mu \rho}:=R_{\mu \nu \rho}{ }^{\nu}, \quad$ invariant scalar curvature:

$$
R:=g^{\mu \rho} R_{\mu \rho}=g^{\mu \rho} R_{\mu \nu \rho}{ }^{v} .
$$

It is then possible to define:

- $S_{\mu \nu \rho \sigma}$, the "pure trace" part, $=1 / 12 R\left(g_{\mu \rho} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \rho}\right)$.
- $E_{\mu \nu \rho \sigma}$, the "semi-traceless" part, $=\left(g_{\mu[\rho} S_{v] \sigma}-g_{\nu[\rho} S_{\sigma] \mu}\right) ; S_{\mu v}:=R_{\mu v}-1 / 4 g_{\mu \nu} R$.
- $C_{\mu v \rho \sigma}$, the fully traceless part, Weyl (conformal curvature) tensor.
- Also:
invariant
$\left\|R_{\mu \nu}\right\|^{2}:=R_{\mu \nu} g^{\mu \rho} g^{\nu \sigma} R_{\rho \sigma}$

Spacetime Curvature

The Einstein-Hilbert Action

- For the Yang-Mills case, the only way to construct a Lagrangian density quadratic in $\mathbb{F}_{\mu \nu}$ is $\propto \operatorname{Tr}\left[\mathbb{F}_{\mu \nu} \mathbb{F}^{\mu \nu}\right]$.
- By the same token, consider:

$$
\int \sqrt{-g} \mathrm{~d}^{4} x R_{\mu v \rho}{ }^{\sigma} g^{\mu \kappa} g^{v \lambda}{\stackrel{\text { quadratic in }}{R_{\kappa \lambda / \sigma}}{ }^{\rho} .}^{\text {. }}
$$

- Varying w.r.t. components of \mathbb{T}_{μ} produces a 2 nd order PDE for \mathbb{T}_{μ}
- Varying w.r.t. components of $g_{\mu \nu}$ produces a 4th order PDE for $g_{\mu \nu}$ O
- Unlike with Yang-Mills $\mathbb{F}_{\mu v}$, we now do have R, so:

$$
\frac{c^{3}}{16 \pi G_{N}} \int \sqrt{-g} \mathrm{~d}^{4} x \underset{\text { linear in } R}{R}
$$

- is the Einstein-Hilbert action.
- So that the units are $\mathrm{ML}^{2} / \mathrm{T}$, where $\left[\mathrm{d}^{4} x\right]=4$ and $\left[g_{\mu \nu}\right]=0$
- Varying w.r.t. components of $g_{\mu \nu}$ produces a 2 nd order PDE for $g_{\mu \nu}$.

Matter-Gravity Coupling

"CロVARIANTIZING" LAGRANGIANS

- Varying the Einstein-Hilbert action produces

$$
\mathrm{G}_{\mu \nu}:=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=0 .
$$

- This is the 2nd order PDE of motion for $g_{\mu v}$. Empty spacetime!
- $R_{\mu \nu \rho}{ }^{\sigma}$ and $R_{\mu \nu}$ and R are all (very) nonlinear in $g_{\mu v}$, this is a highly non-trivial, nonlinear PDE system.
Coupling everything else to this gauge-GCT theory:

$$
\begin{aligned}
S\left[\phi_{i}(\mathrm{x})\right] & =\int \mathrm{d}^{4} x \underbrace{\mathscr{L}\left(\phi_{i},\left(\partial_{\mu} \phi_{i}\right), \cdots ; \mathrm{x} ; \mathrm{C}_{a}\right)} \\
& \rightarrow \int \sqrt{|g|} \mathrm{d}^{4} x\left[\frac{c^{3}}{16 \pi \mathrm{G}_{N}} R-\mathscr{L}\left(\phi_{i},\left(D_{\mu} \phi_{i}\right), \ldots ; \mathrm{x} ; \mathrm{C}_{a}\right)\right]
\end{aligned}
$$

any and all non-metric/Christoffel fields

Matter-Gravity Coupling

EINSTEIN EQUATIUNS

- Varying the GCT-covariantized action w.r.t. $g_{\mu \nu}$ produces

$$
\text { Einstein equations: } R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{8 \pi G_{N}}{c^{4}} T_{\mu v} \text {, }
$$

where

$$
\text { Energy-momentum: } T_{\mu \nu}:=-\frac{2 c}{\sqrt{-g}} \frac{\delta\left(\sqrt{-g} \mathscr{L}_{M}\right)}{\delta g^{\mu \nu}}
$$

So, the presence of matter curves spacetime.

- T_{00} : energy density
- $T_{0 i}=T_{i 0}$: linear momentum density
- $T_{i k}=T_{k i}(i \neq k)$: shear stresses
- $T_{i i}$ (no sum): normal stresses, called "pressure" if all are equal

$$
T^{\mu \nu}:=g^{\mu \rho} T_{\rho \sigma} g^{v \sigma}
$$

$D_{\mu} T^{\mu \nu}=0$ continuity equation
Noether Thm.

Matter-Gravity Coupling

TWロ ロbLIque PARALLELS

- By construction,

$\left[\mathbb{A}_{\mu}\right]_{\alpha}{ }^{\beta}$	\longleftrightarrow	$\Gamma_{\mu v,}^{\rho}$	not very useful
$\left[\mathbb{F}_{\mu v}\right]_{\alpha}{ }^{\beta}$	\longleftrightarrow	$R_{\mu v \rho^{\sigma}}$	because
\cup		\cup	all indices mix!
$\overrightarrow{\mathbb{E}}=\left(\mathbb{F}_{0 i}\right), \overrightarrow{\mathbb{B}}=\left(\mathbb{F}_{i j}\right)$	$C_{\mu v \rho^{\sigma}}, E_{\mu v \rho^{\sigma}}, S_{\mu v \rho^{\sigma}}$		

While $\left(\mathbb{F}_{0 i}\right)$ and $\left(\mathbb{F}_{i j}\right)$ indeed are irreducible representations of $S O(0,3) \times G_{Y M}($ i.e., rotations \times gauge group),
$\left(\mathbb{R}_{0 i}\right)$ and $\left(\mathbb{R}_{i j}\right)$ are irreducible representations of neither $S O(0,3)$ (rotations) nor $S O(1,3)$ (full Lorentz group).
\bullet Although $\left(\mathbb{A}_{\mu} \leftrightarrow \mathbb{T}_{\mu}\right)$ and $\left(\mathbb{F}_{\mu \nu} \leftrightarrow \mathbb{R}_{\mu v}\right)$ are conceptually analogous, this analogy has technical limitations.

Matter-Gravity Coupling

TWロ ロblique Parallels

- On the other hand...
- The Einstein equations

$$
\begin{aligned}
& \qquad\left\{R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{1}{2} g^{\rho \sigma}\left(\partial_{\mu} \partial_{\rho} g_{\nu \sigma}+\partial_{\nu} \partial_{\rho} g_{\mu \sigma}\right)+\ldots\right\}=\frac{8 \pi G_{N}}{c^{4}} T_{\mu \nu} \\
& \text { remind awfully much oflauss-Ampère equations } \\
& \left\{\left(\square A^{\mu}\right)-\eta^{\mu \nu}\left(\partial_{\nu} \partial_{\rho} A^{\rho}\right)\right\}=\frac{1}{4 \pi \epsilon_{0}} \frac{4 \pi}{c} j_{e}^{\nu}
\end{aligned}
$$

So

$$
j_{e}^{\mu} \longleftrightarrow T_{\mu v}
$$

both are Noether currents

$$
\begin{aligned}
& A_{\mu} \longleftrightarrow g_{\mu \nu} \\
& \text { both are "most basic" fields }
\end{aligned}
$$

Just as every 4-current produces an EM field

- \& every EM field specifies the 4-current it needs to support it,
- so are the energy-momentum tensor and spacetime curvature linked and shalt not be rendered asunder.

Matter-Gravity Coupling

 TWロ ロblique Parallels- To summarize:

Special Solutions (Intro)

Special Solutions: Intro

A QuIck TRICK...
Consider the Einstein equations:

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{8 \pi G_{N}}{c^{4}} T_{\mu \nu}
$$

...the trace of which equates

$$
R-\frac{1}{2} 4 R=\frac{8 \pi G_{N}}{c^{4}} g^{\mu v} T_{\mu v}, \quad \text { i.e., } \quad R=-\frac{8 \pi G_{N}}{c^{4}} g^{\mu v} T_{\mu v}
$$

whereby the Einstein equations are equivalent to

So,

$$
\begin{aligned}
& \qquad R_{\mu \nu}=\frac{8 \pi G_{N}}{c^{4}}\left[T_{\mu \nu}-\frac{1}{2} g_{\mu \nu}\left(g^{\rho \sigma} T_{\rho \sigma}\right)\right] \begin{array}{c}
\text { This is not the } \\
\text { energy-eless patr of the }
\end{array} \\
& \text { So, } \quad\left(R_{\mu \nu}=0\right) \Longleftrightarrow\left(T_{\mu \nu}=0\right) \text { Ricci-flatiness } \\
& \text { R Ricci-flat spacetimes require/imply no material support } \\
& \text { Absence of matter implies/requires Ricci-flat spacetimes }
\end{aligned}
$$

Special Solutions: Intro

A QuIck TRICK...

- Why is "Ricci-flatness" so important?
- Well, construct $\boldsymbol{R}:=\mathrm{d} x^{\mu} \mathrm{d} x^{\nu} R_{\mu v}$. This is a 2-form.
- Taken modulo total derivatives, this defines the 1st Chern class.
- Integrals over 2-dimensional submanifolds X are invariants of continuous deformations of X, within the spacetime
More importantly, $\boldsymbol{R} \wedge \boldsymbol{R}=\mathrm{d}^{4} x \varepsilon^{\mu \nu \rho \sigma} R_{\mu \nu} R_{\rho \sigma}$ is a 4 -form
...and may be integrated over the whole spacetime manifold
...and is a topological invariant (1st Chern number, C_{1}) of the whole spacetime manifold.
Ricci-flatness implies that C_{1} (spacetime) $=0$.
I'LI EE EACK.

Special Solutions: Intro

IMMATERIAL (RICCI-FLAT) SロLUTIロNS

- Consider empty space.
- That is, space with no matter. (immaterial)
- In 1915, Karl Schwatzschild, while at the Russian front as a German soldier, found the first and best-known Ricci-flat solution to Einstein's equations. He died within a year.

$$
\begin{aligned}
{\left[g_{\mu v}\right]=} & \operatorname{diag}\left(-f_{S}(r), \frac{1}{f_{S}(r)}, r^{2}, r^{2} \sin ^{2}(\theta)\right) \\
\mathrm{d} s^{2}= & -f_{S}(r) c^{2} \mathrm{~d} t^{2}+\frac{1}{f_{S}(r)} \mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2}(\theta) \mathrm{d} \varphi^{2}\right), \\
& f_{S}(r):=\left(1-\frac{r_{S}}{r}\right), \quad r_{S}=\frac{2 G_{N} M}{c^{2}} .
\end{aligned}
$$

- But, if there was no matter to begin with, whose mass is M ?
- It is the mass of the singularity-a "defect" in spacetime-at the origin.

Empty spacetime can have mass, even classically!

Special Solutions: Intro

IMMATERIAL (RICCI-FLAT) SロLUTIロNS

- Singularity??

$$
\left[g_{\mu v}\right]=\operatorname{diag}\left(-f_{S}(r), \frac{1}{f_{S}(r)}, r^{2}, r^{2} \sin ^{2}(\theta)\right) \quad f_{S}(r):=\left(1-\frac{r_{S}}{r}\right)
$$

- At both $r=r_{S}$ and $r=0$, a metric component blows up.
- At $r=r_{\mathrm{S}}, f_{\mathrm{S}}(r)=0$, the $\mathrm{d} t^{2}$-term vanishes \& the $\mathrm{d} r^{2}$-terms blows up.
- At $r=0, f_{S}(r)=\infty$, the $\mathrm{d} r^{2}$-term vanishes \& the $\mathrm{d} t^{2}$-terms blows up.

But, that may well be an artifact of "bad" coordinates! Metric components are not invariants; they form a type-(0,2) tensor!
Indeed, in 1933, Georges Lemaître realized that a coordinate system introduced by Arthur Eddington in 1924 proves that the $r=r_{S}$ location is perfectly uneventful.

- In turn, the Kretschmann curvature invariant is

$$
\left\|R_{\mu v \rho}{ }^{\sigma}\right\|^{2}=\frac{48 G_{N}^{2} M^{2}}{c^{4} r^{6}}
$$

Special Solutions: Intro

IMMATERIAL (RICCI-FLAT) SロLUTIロNS

- Unh... "the $r=r_{S}$ location is perfectly uneventful" is a bit of an understatement.
- Actually, something does happen there:

$$
v_{1}=\sqrt{\frac{2 G_{N} M}{r}}
$$

is the "escape speed" from a gravitational source of mass M.

$$
r_{S}=\frac{2 G_{N} M}{c^{2}} \Rightarrow M=\frac{c^{2} r_{S}}{2 G_{N}} \Rightarrow v_{1}=\sqrt{\frac{2 G_{N} \frac{c^{2} r_{S}}{2 G_{N}}}{r}}=c \sqrt{\frac{r_{S}}{r}}
$$

...so the "escape speed" becomes unattainable. Event horizon.
Oh, and one more thing! Within the event horizon,

$$
\mathrm{d} s^{2}=\oplus\left|f_{s}(r)\right| c^{2} \mathrm{~d} t^{2} \Theta \frac{1}{\left|f_{S}(r)\right|} \mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2}(\theta) \mathrm{d} \varphi^{2}\right)
$$

Special Solutions: Intro

IMMATERIAL (RICCI-FLAT) SロLபTIロNS

- When discussing Yang-Mills (EM, Strong, Weak) interactions, we assumed a flat, $\mathbb{R}^{1,3}$-like spacetime. Even the "topologically nontrivial" solutions do not change the spacetime. It's an arena.
- In general relativity, non-trivial spacetimes are not $\mathbb{R}^{1,3}$-like.
- In so-modeling gravity, we can excise portions of spacetime ...though that may render the spacetime somehow incomplete. Spacetime (non-)singularity may well thus be a subtle issue.
- Geodesically complete; refine: time-like, null, space-like.
- Metrically complete: convergence of all Cauchy sequences.
- B-complete: if every C^{1}-curve of finite length is contained.
- Curvature invariants: $R_{\mu v \rho}{ }^{\sigma}$ has 20 independent DoF's; no known list.
- B-completeness implies geodesic completeness, and coincides with metric completeness-only for $g_{\mu v} \geq 0$, not for spacetime.

Thanks!

Tristan Hubsch

Department of Physics and Astronomy
Howard University, Washington DC
Prirodno-Matematički Fakultet Univerzitet u Novom Sadu
http://homepage.mac.com/thubsch/

