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ristoffel Symbol & Covariant Derivative

ODORDINATE BASES ...an echo

PRI~ Stralghtforwardly,

.._d

o " 7

-- LT = @5) = 0N7) = 07) = (0uT) = Ty
‘ ® Also
E.&

(0,%°) = —T%, %" b/ 9,(%, 7" =4") =0.
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IChristoffel Symbel & Covariant Derivative

DVARIANT DERIVATIVE

® [t then follows:

> meg to Weyl’s construction,
T(p,gw) =C*’@YS[A® - - ARB®---®B]
S csnmnn? | G c—

: it then follows (product rule) that:

Vi Up . 1/1 VP Vl...o'l...vp ......... VP
(D],{ T) pq + Eryo'z ......... Zrypl pl...o'l...pq
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IChristoffel Symbol & Covariant Derivative

DVARIANT DERIVATIVE

® More to the point,

1/1...1/’j

X P1° Qg

P01 Pq 7 = (DVT)

® transforms as a type-(p, g+1) tensor density of weight w.

| “® And, since a partial derivative doesn’t (verify), the I'-symbol
& cannot either—so as to compensate:

dx” dy* oy’ ~ 0xF 9%y’

e (1) - ,
dyY dxH dxV dyY dxHoxV
e e —

tensorial inhomogeneous

I’ﬁv (x) =

== is tensorial if and only if the transformation x — y is linear.

" In which case, no I'; is needed in the first place. €

h:-. ® True of Cartesian — Cartesian rotations & translations.

S
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IChristoffel Symbol & Covariant Derivative

DVARIANT DERIVATIVE

® Thus, the ', looks awfully like a gauge potential 4-vector,
except for the extra transformation matrix:

r,=[U,'Ur,U'+U),U""

® Oh, and one more thing:

“= (Al ¥P & [T,V =RnpV

no relation «——— = symmetric

® The transformation of phases is spacetime-dependent

® The transformation of spacetime coordinates is spacetlme dependent
—

%
Yang Mills A, is a spacﬁe 4-vector of “color’- e matrices.
® The T- -symbol is a spac e 4-vector of spacetiﬁatrices.
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IChristoffel Symbel & Covariant Derivative

IETRICITY OF THE CHRISTOFFEL SYMBOL

® Given the relations

(9y%y) =T0, % and X,.%, = g, (x)

'® arelation between the I'-symbol and the metric must exist.
ﬁ Indeed,
Al

5 (0ug) = (0u(ReTp)) =T9 %0 Fy + B T% %o = g0pT% + guTY,

" ig produces
,' M = 387 [(Ougue) + (dvgue) — (doguv)] (¥)
p4#® which satisfies
‘..._“ Dy, g =0=D,g"". covariantly constant
«." . ® and vice versa: D, gvp = 0 with D, = 9, + I, implies Eq. (&).
E:—.‘*‘: ® This (Christoffel) I'-symbol is thus metric. adj. derived from g,

S
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Spacetime Curvature

E CURVATURE TENSOR

o Just like ]F;n/ = Ae [D;u y Dv]

1Qc
8 ® we define
 Ruyp” 1= [Du, Dy ] = [(6%8, + T9)) Ty — [(6%9, +FZA)r3p}f
.-- = 9,1, —9,I%, +T7,I', — T, Ty,

o
RP‘VP
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Spacetime Curvature

ONDITIONS & CONTRACTIONS

® Define R],wpa ‘= RVVPA Lo (no such thing for [Fyv)

® The Riemann tensor satisfies the following identities:

Ruwof =0, (non-abelian) Tr|[Fy,| =0
R],n/pa = _Rvypa/ ]Fyv = _]Fvy
Ryvpa = —Ryvap/ —

Ryvoe = +Ro uv,
gMpo Ryvpe =0, 1st Bianchi identity —
€MDy Ryypo = 0. 2nd Bianchi identity "D, F,, = 0

The Riemann tensor is part 1st derivative, part quadratic in I,

® .justas[F, is part 1st derivative, part quadratic in A,

‘f ® ...of 2nd order in derivatives of the metric, ¢, & homogeneous!

It also involves ¢+, which is very non-linear in g,,!
9
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Spacetime Curvature

ONDITIONS & CONTRACTIONS

® For the Yang-Mills type field strength tensor,

( Tr|Fy] = [Fu]s® =0, for semisimple Lie groups,
. Tr|Fw] = Fu, for U(1) factors,

' ri ® Since all four indices in R;,,” are of the same type, we can define:

._‘ g‘uVE‘uV — O, 4

4 Ricci tensor: Ruo = Ry, Sussanfians
£ i /i scalar curvature: R:=g" Ryp = g" Ryyp".
’ﬁ/@ It is then possible to define:
[ he “pure trace” part, = Y12 R(gup Svo— Luo Svp).

he “semi-traceless” part, = (Qup Svio — Qvlp Solu); Swi=Ruw-Ya guR.

he fully traceless part, Weyl (conformal curvature) tensor.

invariant invariant
HRWHZ =R, 8787 Roo ||Rw/p0”2 ‘= Ruvpagwgvﬁgmgad Roc,[%’y(s

10
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spacetime Curvature

iE EINSTEIN-HILBERT ACTION

® For the Yang-Mills case, the only way to construct a Lagrangian
- density quadratic in Fyy is o Tr[F . F*].

By the same token, consider: o
quadratic in R

/ | g d4 x R‘uvpa gpm gw\ RK/\O'p'

. ® Varying w.r.t. components of [, produces a 2nd order PDE for I, 5/

" © ® Varying w.r.t. components of ¢, produces a 4th order PDE for g..

s

~ @ Unlike with Yang-Mills [F;,,, we now do have R, so:

C3 4
167TGN/ V—8d'x R,

linearin R

. ® s the Einstein-Hilbert action.
® So that the units are ML?/T, where [d*x] =4 and [g.v] =0

® Varying w.r.t. components of g, produces a 2nd order PDE for g,..
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N atter-Gravity Coupling

COVARIANTIZING” LAGRANGIANS

® Varying the Einstein-Hilbert action produces
G"I/ﬂ/ + 1B R"I/ll/ -— %g‘uVR — 0.
® This is the 2nd order PDE of motion for ¢.,. Empty spacetime!

Slpico] = [ d*x 2 (9 Qui) -+ i%:Ca)

—>/\/\g7d4x [1603 R — (@i, Dugi), - - i%:Ca)|

N/

any and all non-metric/Christoffel fields

12
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Aatter—Gravity Coupling

INSTEIN EQUATIONS

® Varying the GCT-covariantized action w.r.t. g, produces

Yy
W& *® where

g

.-‘ : - @ . = A 11 I
D Toi= Tio: linear momentum density D, TH =0

® Tik= Tk (1 = k): shear stresses continuity

® Tii (no sum): normal stresses, equation
called “pressure” if all are equal Noether Thm.

|3
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atter-Gravity Coupling

® By construction,

[Ay]a'g — rfw, not very useful
Fulf = Ry’ -becj‘ause |
; U U all indices mix!
. . q ,
""{ E = (]FOi)/ B = (]sz) C;ul/paz E],tl/paf Syvpa

1. i‘ While ([Fo;) and ([Fj) indeed are irreducible representations of
’;y' SO(0,3)xGywm (i.e., rotations x gauge group),

® (Ro;) and (Rj) are irreducible representatlons of neither SO(0,3)

4“"“\'810 Although (A, < T'y) and (Fup < Ryy) are conceptually analogous,
this analogy has technical limitations.

!_: ® Unh.. ¥R {?T45et

|5
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atter-Gravity Coupling

vDO OBLIQUE PARALLELS

® On the other hand...

® The Einstein equations

8t G
4 {Rw_%gﬂv R = %3'00(8;18 o + 0v0p8ur) + - .. } — T 4 NTyv
r ;f&’ remind awfully much auss-Ampere equation/
= 1 4m .,

fo (ovTraan}- Lt

it Ty, Ay < S,
both are Noether currents both are “most basic” fields

:”"i":""‘"!t; Just as every 4-current produces an EM field

"x ‘. | ® & every EM field specifies the 4-current it needs to support it,

-
S
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® so are the energy-momentum tensor and spacetime curvature

linked and shalt not be rendered asunder.
|6



latter-Gravity Coupling

O OBLIQUE PARALLELS

----------------------------------------------------------------------------------------------------------------------------------------------------

GCT
EM/YM b e
conceptually : engineeringly
— Suv —
Au Ly S
Ju ? Ty
|7
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Special Solutions
(Intro)
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Special Solutions: Intro

QuUICK TRICK...

® Consider the Einstein equations:

87t G
Ruy — 38uR = o =T,
 ...the trace of which equates
87TGN . 87TGN
R — J4R = C4 ¢"T,y, ie, R= C4 el

R o 87TGN T 1 po’T en d IeSS
e 28 (87 Too) rgy-mom

_ Ri C'('i_f'

. . . . ln
Ricci-flat spacetimes require/imply no material support

Absence of matter implies/requires Ricci-flat spacetimes

19
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Special Solutions: Intro

QuUICK TRICK...

® Why is “Ricci-flatness” so important?
® Well, construct R := dx*dx"Ry,. This is a 2-form.
® Taken modulo total derivatives, this defines the 1st Chern class.

Integrals over 2-dimensional submanifolds X are invariants of
xd continuous deformations of X, within the spacetime

By ® More importantly, RAR = d*x e#"P7R;,R s is a 4-form

D /é .and may be integrated over the whole spacetime manifold
V7,
/ //lﬁ ...and is a topological invariant (1st Chern number, (1)

. of the whole spacetime manifold.

}“\'-5 Ricci-flatness implies that Ci(spacetime) = 0.

A I'LL BE BACK.
5 2
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Special Solutions: Intro

MATERIAL (RICCI-FLAT) SOLUTIONS

-1; German soldier, found the first and best-known Ricci-flat
RS f}‘:’_ solution to Einstein’s equations. He died within a year.

guw| = diag(—fs(r), fsl(r),rz, r? sin?(6)),

ds? = —fs(r)c?dt? - fsl(r) dr? + 12 (d6? + sin?(9) d¢?),
' . Vs ZGNM
<7 fs(?’) = (1 — 7), V¢ = C2

o
@@ But, if there was no matter to begin with, whose mass is M?

;} "/ ® [t is the mass of the singularity—a “defect” in spacetime—at the
~ NESUNUEE £ty spacetime can have mass, even classically!
T
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‘ pecial Solutions: Intro

MMATERIAL (RICCI-FLAT) SOLUTIONS

* Singularity??

] = diag(~fs(r), 1.2 P sin?(®)  fo(r) i= (1-7%)

r

® At both r = rs and r = 0, a metric component blows up.
P ,f; ® Atr=rs, fs(r) =0, the df>-term vanishes & the dr?-terms blows up.
b ® Atr =0, fs(r) = o, the dr2-term vanishes & the d#2-terms blows up.

® But, that may well be an artifact of “bad” coordinates! Metric
‘ jf*' components are not invariants; they form a type-(0,2) tensor!

® Indeed, in 1933, Georges Lemaitre realized that a coordinate
~ 5% system introduced by Arthur Eddington in 1924 proves that the
i-..,“ r = rs location is perfectly uneventful.

~ ' In turn, the Kretschmann curvature invariant is K @ ; _ 0-

- a2 48GN Mz ‘b-.PIOOEyI
!-_ | Ruve? || =
% Hvpo C4 7"6 (a teChHICa] tern) J

22
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Special Solutions: Intro

IMATERIAL (RICCI-FLAT) SOLUTIONS

® Unh... “the r = rslocation is perfectly uneventful” is a bit of an
understatement.

Actually, something does happen there:

¥ \/ZGNM
< = ro

9. { . « ) . -
804 ® is the “escape speed” from a gravitational source of mass M.

£/ 2

~ . £ 2 2G € rs

| #1/S o= 2onM oS 01:\/ N gy
; 2 2GxN ¥ ¥

..... so the “escape speed” becomes unattainable. Event horizon.
Location of no-return.

@@ Oh, and one more thing! Within the event horizon,

ds? =@If:(n)] 24P, fsb) dr ¢ 72(d6? + sin(6) dg?)

Wical meaning of r & t is swapped.

23
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ypecial Solutions: Intro

IMATERIAL (RICCI-FLAT) SOLUTIONS

® When discussing Yang-Mills (EM, Strong, Weak) interactions, we
- assumed a flat, R13-like spacetime. Even the “topologically non-
trivial” solutions do not change the spacetime. It's an arena.

®® In general relativity, non-trivial spacetimes are not R13-like.
g2

S

| 3‘ In so-modeling gravity, we can excise portions of spacetime
® though that may render the spacetime somehow incomplete.

Spacetlme (non-)singularity may well thus be a subtle issue.

'~ ® Geodesically complete; refine: time-like, null, space-like.
; ® Metrically complete: convergence of all Cauchy sequences.

- ® B-complete: if every C!-curve of finite length is contained.
® Curvature invariants: R,,,° has 20 independent DoF’s; no known list.

e ¥ - ® B-completeness implies geodesic completeness, and coincides
#‘- with metric completeness—only for ¢, = 0, not for spacetime.
h

s 24
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