(Fundamental) Physics of Elementary Particles

Nonperturbative comments: strong CP-violation, Weinberg-Witten theorem, anomaly cancellation.

Tristan Hübsch

Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

Fundamental Physics of Elementary Particles

PROGRAM

• CP-Violation

- Weak CP-Violation, Revisited
- Strong CP-Violation —why not?
- The Weinberg-Witten Theorem
 - Are There "Quarks" Within Quarks? ... all the way down?
 - The Claim of the Theorem and its Assumptions
 - An Epilogue Segue
 - Anomalies
 - A pair of classical symmetries
 - A measure of quantum symmetry breaking...
 - ... and their consequences.
- An End-of-Semester Review
 - What have we learned?

WEAK CP-VIOLATION, REVISITED

Strange particles: (M. Gell-Mann & A. Pais, 1954) • ... created by strong interactions ($\sim 10^{-23}$ s), in pairs $\pi_{(0)}^{-} + p_{(0)}^{+} \to \Lambda_{(-1)}^{0} + K_{(+1)}^{0},$ $\pi_{(0)}^+ + p_{(0)}^+ \to p_{(0)}^+ + \overline{K}_{(-1)}^0 + K_{(+1)}^+.$... but decay by weak interactions ($\sim 10^{-8-10}$ s). strangeness is violated) • The neutral kaons are pseudo-scalars: $CP|K^0
angle = -C|K^0
angle = -|\overline{K}^0
angle, \quad CP|\overline{K}^0
angle = -C|\overline{K}^0
angle = -|K^0
angle,$... and the *CP*-eigenstates are: $|K^0_+\rangle := \frac{1}{\sqrt{2}} (|K^0\rangle - |\overline{K}^0\rangle), \quad \text{and} \quad |K^0_-\rangle := \frac{1}{\sqrt{2}} (|K^0\rangle + |\overline{K}^0\rangle),$ $CP|K^0_+\rangle = (\pm 1)|K^0_+\rangle.$

WEAK CP-VIOLATION, REVISITED

- Neutral kaons can decay (among other things) into pions.
- Pions are also pseudo-scalars, and π^0 is its own antiparticle:

$$CP|\pi^0\rangle = -C|\pi^0\rangle = -|\pi^0\rangle, \quad CP|\underbrace{\pi^0\cdots\pi^0}_n\rangle = (-1)^n|\pi^0\rangle.$$
hus,

short $K^0_+ \to 2\pi$, *vs.* $K^0_- \to 3\pi$, **long** ... so the decay constants differ:

 $\Gamma_{K^0_+} \propto \sqrt{1 - (2m_{\pi^0}/m_{K^0})^2}$ *vs.* $\Gamma_{K^0_-} \propto \sqrt{1 - (3m_{\pi^0}/m_{K^0})^2}$ • ... as do the life-times,

 $\tau_{K^0_{\perp}} = 0.8958 \times 10^{-10} \,\text{s}, \quad \nu s. \quad \tau_{K^0_{\perp}} = 5.114 \times 10^{-8} \,\text{s}.$

• K_{long} lives about 570 times longer than K_{short} .

WEAK CP-VIOLATION, REVISITED

• Starting with a 50-50% beam,

 $\frac{N(K_{+}^{0})}{N(K_{-}^{0})} = \frac{e^{-t/\tau^{+}}}{e^{-t/\tau^{-}}} = \exp\left\{-\frac{t}{\tau^{+}} + \frac{t}{\tau^{-}}\right\} \approx \exp\left\{-569.9\,\frac{t}{\tau^{-}}\right\}$

• ... approaches 10⁻⁵ in just 1ns.

• So, in 1964, James Cronin and Val Fitch simply

- looked for 2-pion decays long after *K*_{short} must have decayed
- ... and they found, about 1 in 500 3-pion (*K*_{long}) decays. This violates *CP*-symmetry:
- either if K_{long} itself decays into two pions
- or if K_{long} transmogrifies into K_{short} .
- Standard Model weak interactions (and logical consistency)
 - ... permit the latter. (K_{long} may be defined as that with a 3π decay.)

WEAK CP-VIOLATION, REVISITED

$$K_{-}^{0} < \pi^{+} + e^{-} + \bar{\nu}_{e}, \quad (a)$$

$$\pi^{-} + e^{+} + \nu_{e}, \quad (b)$$

• where the (*b*)-mode is the *CP*-image of the (*a*)-mode.

- If CP were an exact & universal symmetry,
 - the two decay modes would occur equally often.
 - But, they don't: there is a $\sim 3.3 \times 10^{-3}$ relative difference.
- The smallness of this effect agrees with the K_{long}/K_{short} one.
 The CP-violation is small/weak.
- Explained by (lower) quark mixing: the mass-eigenstates (stationary states) are not the weak interaction eigenstates.

$$\begin{vmatrix} d_{w} \\ |s_{w} \\ |b_{w} \end{vmatrix} := \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{bmatrix}$$

$$complex phase$$

Also,

STRONG CP-VIOLATION, A PUZZLE

• By contrast, in QCD:

$$\mathcal{L}_{QCD} = -\sum_{n} \operatorname{Tr} \left[\overline{\Psi}_{n}(\mathbf{x}) \left[i\hbar c \not{\!\!\!\!D} - m_{n}c^{2} \right] \Psi_{n}(\mathbf{x}) \right] - \frac{1}{4} \operatorname{Tr} \left[\mathbb{F}_{\mu\nu} \mathbb{F}^{\mu\nu} \right],$$

may be generalized (in agreement with $SU(3)_c$ & Lorentz invariance), into

$$\mathcal{L}_{QCD+} = -\sum_{n} \operatorname{Tr} \left[\overline{\Psi}_{n}(\mathbf{x}) \left[i\hbar c \overline{\rho} - m_{n} e^{i\vartheta' \widehat{\gamma}} c^{2} \right] \Psi_{n}(\mathbf{x}) \right] - \frac{1}{4} \operatorname{Tr} \left[\mathbb{F}_{\mu\nu} \mathbb{F}^{\mu\nu} \right] - \frac{n_{f} g_{s}^{2} \vartheta}{32\pi^{2}} \varepsilon^{\mu\nu\rho\sigma} \operatorname{Tr} \left[\mathbb{F}_{\mu\nu} \mathbb{F}_{\rho\sigma} \right]$$

• where experimentally $\vartheta \& \vartheta'$ are teensy $(\langle 3 \times 10^{-10} \rangle)!$

• This then (10 order of magnitude fine-tuning of $\vartheta \& \vartheta'$) is the strong *CP*-problem (the ϑ_{QCD} -problem).

STRONG CP-VIOLATION, A PUZZLE

- The extra term, $\varepsilon^{\mu\nu\rho\sigma} \operatorname{Tr} \left[\mathbb{F}_{\mu\nu} \mathbb{F}_{\rho\sigma} \right]$
- is the 4-divergence of the so-called Loos-Chern-Simons current (density)

$$\mathcal{K}^{\mu} = \frac{n_f g_s^2}{32\pi^2} \varepsilon^{\mu\nu\rho\sigma} (\delta_{ab} A^a_{\nu} F^b_{\rho\sigma} - \frac{1}{3} g_s f_{abc} A^a_{\nu} A^b_{\rho} A^c_{\sigma}).$$

• Then define a charge $\mathcal{Q} := \int d^3 \vec{r} \mathcal{K}^0$

- A corresponding ϑ -transformation, exp{ $i\vartheta Q$ },
 - ...transforms |0
 angle into |artheta
 angle, as well as all operators.
 - The Hilbert space has identical "sectors," labeled by ϑ .
- But, QCD equations of motion are non-linear
 - ... and have nontrivial solutions
 - ... that tunnel from $\vartheta = 0$ to $\vartheta \neq 0$
 - ... the sectors are not independent.

A. Belavin, A. Polyakov A.S. Schwartz & Y. Tyupkin

in 1975

Monday, November 28, 11

ARE THERE "QUARKS" WITHIN QUARKS?

- The explanation of the abundance of hadrons
- ... as (anti)quark bound states "caught" on after 1974.
- But, why are there three generations
 - $(u, d; v_e, e), (c, s; v_\mu, \mu) \text{ and } (t, b; v_\tau, \tau) ??$
 - Perhaps the latter are higher excitations of $(u, d; v_e, e)$??
 - Which would make sense if these were (orbitally excited) bound states of something else.
 - Call this "something else" **preons**.
 - In which case, (at least some of) the gauge (interaction mediating) particles could be bound states of these preons.
- Such models started being considered ...
- ... all the way back, in 1974! J.C. Pati & A. Salam

1st Grand Unification ideas!

ARE THERE "QUARKS" WITHIN QUARKS?

- Another topic, from Chapter 5, is the Higgs field:
- While some form of symmetry breaking is necessary to accommodate massive *W*[±]- and *Z*⁰-bosons
- ... the "agent" need not be an elementary particle
- ... but a *collective* state of matter.
- To that end:

Theorem [Weinberg-Witten] No Quantum field theory in 3+1-dimensional spacetime with a Poincaré-covariant and gauge-invariant 4-vector current J^{μ} that satisfies a continuity equation may have a massless particle with a helicity bigger than $\frac{1}{2}$ and non-vanishing charge of $\int d^3r J^0$.

sl'il be back.

No quantum field theory in 3+1-dimensional spacetime with a Poincaré-covariant and gauge-invariant rank-2 tensor satisfying a continuity equation may have a massless particle with a helicity bigger than 1.

THE CLAIM OF THE THEOREM AND ITS ASSUMPTIONS

- Poincaré-covariant = transforms as a tensor with respect to Lorentz & translations in spacetime.
- The general continuity equation is $\partial_{\mu}T^{\mu\nu...}=0$.
- The proof is non-perturbative and general
- ... but the assumptions are stringent.
- In all preonic and "technicolor" models, there exists at least one additional (new) strong & binding gauge interaction
 - ... which is based on a (new) non-abelian gauge symmetry
 - ... the conserved current of which is not gauge-invariant
- ... and so neither is the "charge" in

• "... no massless particle with a helicity bigger than ½ and nonvanishing charge."

THE CLAIM OF THE THEOREM AND ITS ASSUMPTIONS

• So,

- ... can there be "quarks" within quarks?
- That is, can a subset of
 - $(u, d; v_e, e), (c, s; v_\mu, \mu) \text{ and } (t, b; v_\tau, \tau)$
 - gauge & the Higgs bosons
- be composite—not elementary—structures?
- Experimentally: <u>no indication.</u> **Yet.**
 - Theoretically: no known model
 - reproduces the Standard Model fully
 - and simplifies its structure
 - in this literal substructure fashion.
 - Quarks (& leptons & gauge bosons) are elementary. Most likely.

Yet.

SMALL EPILOGUE

- For energies >> masses of the *u*,- *d* and *s*-quarks
- ... $SU(3)_f$ is a pretty good approximate symmetry
- ... even if considered locally
- ... and the lightest vector (spin-1) eight mesons

 $(\rho^{\pm}, \rho^{0}, K^{*\pm}, K^{*0}, \overline{K}^{*0}, \phi)$ although demonstrably quark bound states

- ... are approximately massless
 - ... and may be identified as the (approximate) gauge bosons of the approximate $SU(3)_f$ symmetry.
- Thus, the lightness of some hadrons may be interpreted as a signature of approximate symmetries.
- In turn, the lightness of the spin-0 mesons is related to a similarly approximate application of the Goldstone theorem.

SMALL EPILOGUE

• The QCD Lagrangian (and in fact all of the Standard Model)

 $\mathscr{L}_{QCD} = -\sum_{n} \operatorname{Tr} \left[\overline{\Psi}_{n}(\mathbf{x}) \left[i\hbar c \not{\!\!\!\!D} - m_{n}c^{2} \right] \Psi_{n}(\mathbf{x}) \right]$ $- \frac{1}{4} \operatorname{Tr} \left[\mathbb{F}_{\mu\nu} \mathbb{F}^{\mu\nu} \right], \qquad n \text{ counts flavors}$

- ... couples Ψ_{n+} with Ψ_{n-} only through the mass term.
 Thus, in the regime where the masses can be neglected
 ... there is a global SU(n_f)₊×U(1)₊×SU(n_f)₋×U(1)₋ symmetry. acting only on the left-handed right-handed fermions
- However, in the quantum theory, $\langle \overline{\Psi_{n+}} \Psi_{n-} \rangle \neq 0$. • This breaks the symmetry to $SU(n_f) \times U(1)_B$. "diagonal"
 - The $U(1)_{\rm A} = [U(1)_+ \times U(1)_-]/U(1)_{\rm B}$ complement, generated by the difference of the + and generators, is *anomalous*.

... borrowing also from Ch.5

PAIR OF CLASSICAL SYMMETRIES

• In a toy model with just two flavors of quarks, compute $i\hbar\partial_{\mu}[\overline{\Psi}_{1}\boldsymbol{\gamma}^{\mu}\Psi_{2}] = (i\hbar\partial_{\mu}\overline{\Psi}_{1}\boldsymbol{\gamma}^{\mu})\Psi_{2} + \overline{\Psi}_{1}\boldsymbol{\gamma}^{\mu}(i\hbar\partial_{\mu}\Psi_{2}),$ $= -\overline{(i\hbar\partial\Psi_{1})}\Psi_{2} + \overline{\Psi}_{1}(i\hbar\partial\Psi_{2}),$ $= -\overline{(m_{1}c\Psi_{1})}\Psi_{2} + \overline{\Psi}_{1}(m_{2}c\Psi_{2}),$ $= (m_{2}-m_{1})c\overline{\Psi}_{1}\Psi_{2},$

$$\begin{split} i\hbar\partial_{\mu}[\overline{\Psi}_{1}\widehat{\gamma}\gamma^{\mu}\Psi_{2}] &= \left(i\hbar\partial_{\mu}\overline{\Psi}_{1}(-\gamma^{\mu}\widehat{\gamma})\right)\Psi_{2} + \overline{\Psi}_{1}\widehat{\gamma}\gamma^{\mu}(i\hbar\partial_{\mu}\Psi_{2}), \\ &= \overline{(i\hbar\partial\Psi_{1})}\widehat{\gamma}\Psi_{2} + \overline{\Psi}_{1}\widehat{\gamma}(i\hbar\partial\Psi_{2}), \qquad \mathbf{EoM} \\ &= \overline{(m_{1}c\Psi_{1})}\widehat{\gamma}\Psi_{2} + \overline{\Psi}_{1}\widehat{\gamma}(m_{2}c\Psi_{2}), \qquad \mathbf{EoM} \\ &= (m_{1}+m_{2})c\overline{\Psi}_{1}\widehat{\gamma}\Psi_{2}. \end{split}$$

Classically: (m₁ = m₂) ⇒ 1st current is conserved.
 Classically: (m₁ = m₂ = 0) ⇒ both currents are conserved.

... borrowing also from Ch.5

PAIR OF CLASSICAL SYMMETRIES

• If $(m_i = m_j) \approx 0$,

densitydefinitioncontinuity4-vector: $\mathfrak{J}_{ij}^{\mu} := [\overline{\Psi}_i \boldsymbol{\gamma}^{\mu} \Psi_j]$ $\partial_{\mu} \mathfrak{J}_{ij}^{\mu} \stackrel{\text{cl.}}{=} 0$ pseudo-
4-vector: $\widehat{\mathfrak{J}}_{ij}^{\mu} := [\overline{\Psi}_i \widehat{\boldsymbol{\gamma}} \boldsymbol{\gamma}^{\mu} \Psi_j]$ $\partial_{\mu} \widehat{\mathfrak{J}}_{ij}^{\mu} \stackrel{\text{cl.}}{\approx} 0$

conserved charge $Q_{ij} := \int d^3 \vec{r} \, \mathfrak{J}^0_{ij}$ $\widehat{Q}_{ij} := \int d^3 \vec{r} \, \widehat{\mathfrak{J}}^0_{ij}$

- For example, baryon number = $3\Sigma_{j=i} Q_{ij}$. • **Conversely** to Noether's theorem,
 - each current density that satisfies a continuity equation defines a conserved charge
 - ... which generates a (global) symmetry.
- Thus these conserved charges define the classical symmetries of the quark system.

... borrowing also from Ch.5

MEASURE OF QUANTUM SYMMETRY BREAKING ...

However, quantum dynamics need not preserve all classical symmetries!
In general, then, we may *define*:

$$\partial_{\mu} \mathfrak{J}^{\mu}_{ij} = \mathfrak{A}_{ij}, \quad \text{and} \quad \partial_{\mu} \widehat{\mathfrak{J}}^{\mu}_{ij} = \widehat{\mathfrak{A}}_{ij},$$

- where the r.h.s. terms, computed as a contribution of some quantum processes, provide
- ... a measure of quantum breaking of classical symmetries
 - ... and are called *anomalies*.
- There is no *a priori* reason for perturbative computability.
- Anomalies are characteristics of the quantum dynamics.
- Curiously, most known anomalies are detected in 1st order perturbative computation, and are stable thereafter.

... borrowing also from Ch.5

.. AND THEIR CONSEQUENCES

- Approximate symmetries
 - Even classically, charge is only approximately conserved
 - "Gauge" & "Goldstone" modes have masses ~ approx. tolerance

• Global symmetries

- Anomalies break the symmetry
- Baryon number: $\mathfrak{A} \propto \vartheta \varepsilon^{\mu\nu\rho\sigma} \operatorname{Tr}[\mathbb{F}_{\mu\nu}\mathbb{F}_{\rho\sigma}] \quad \vartheta < 3 \times 10^{-10} \mathbb{W}$
- Gauge symmetries
 - Anomalies render gauge interactions inconsistent
 - ... and so must cancel from various contributions.
- 1969, S. Adler + J.S. Bell & R. Jackiw:
 - The EM continuity equation is anomalous, proportional to $\sum_{i} Q_{i}^{(EM)} = 3\left[\left(+\frac{2}{3}\right) + \left(-\frac{1}{3}\right)\right] + (0) + (-1) = 0$

• ... canceling only for complete generations, $(u, d; v_e, e^-)$, etc.

An End-of-Semester Review

WHAT HAVE YOU LEARNED?

- As for myself: I shall not seek gainful employment as a typist.
- Also, please gauge your opinion of the contents (0="no opinion," 1="too little," 2="OK" and 3="too much"):
 - The first "half" (Ch.–1, 0, 1, 2, 3 & 4) of the text
 - Ch.–1 (fundamental physics, units & dim's, Quantum limits on info)
 - Ch.0 (el. particles, historical inventory, logic & conservation laws)
 - Ch.1 (Lorentz transf., relativistic kinematics, Feynman diagrams)
 - Ch.2 (bound states, finite symmetries, isospin, eightfold way & $SU(3)_f$)
 - Ch.3 (local (gauge) symmetry, electrodynamics, QED Feynman calculus)
 - Ch.4 (local color symmetry, color factor computations, non-perturbative)
 - App. A (Groups)
 - App. B (Nobel prizes, data, some homework answers)
 - App. C (Jargon)
 - Overall structure

- Digressions & comments
- End-of-section problems
- Worked-out examples
- Breadth of the material
- Unifying all fundamentals

Thanks!

Tristan Hubsch

Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

http://homepage.mac.com/thubsch/