(Fundamental) Physics of Elementary Particles

Renormalization, color confinement, anti-screening, asymptotic freedom and "all that"

Tristan Hübsch
Department of Physics and Astronomy
Howard University, Washington DC Prirodno-Matematicki Fakultet Univerzitet u Novom Sadu

Fundamental Physics of Elementary Particles

PRロGRAM

- Renormalization in QCD as compared to QED
- Decoupling of unphysical QED gauge potentials
- Gluon loops and non-commutativity
- Non-decoupling of unphysical QCD gauge potentials
- The $S U(n)$ running coupling parameter

Screening of charge
Non-abelian anti-screening of charge

- Non-abelian Gauss's law
- The Landau pole \& dimensional transmutation

The effective QCD potential revisited

- asymptotic (ultraviolet) freedom
- infrared confinement

Renormalization in QCD as compared to QED

decoupling af unphysical qed gauge potentials

- Remember the photon Lagrangian?

$$
\begin{aligned}
F_{\mu \nu} F^{\mu \nu} & =\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right) \\
& =\left(\partial_{0} A_{i}-\partial_{i} A_{0}\right)\left(\partial^{0} A^{i}-\partial^{i} A^{0}\right)+\left(\partial_{i} A_{j}-\partial_{j} A_{i}\right)\left(\partial^{i} A^{j}-\partial^{j} A^{i}\right)
\end{aligned}
$$

Remember the 4-vector \rightarrow (scalar, 3 -vector) notation?

$$
\begin{aligned}
A_{\mu}= & (\Phi,-c \vec{A}) \text { but } A^{\mu}=(\Phi, c \vec{A}) \\
\partial_{\mu}= & \left(\frac{1}{c} \partial_{t}, \vec{\nabla}\right) \text { but } \partial^{\mu}=\left(\frac{1}{c} \partial_{t},-\vec{\nabla}\right) \quad\left[\eta_{\mu v}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \\
F_{\mu v} F^{\mu v}= & \left(\left(\frac{1}{c} \partial_{t}\right)(-c \vec{A})-(\vec{\nabla})(\Phi)\right) \cdot\left(\left(\frac{1}{c} \partial_{t}\right)(c \vec{A})-(-\vec{\nabla})(\Phi)\right) \\
& +((\vec{\nabla}) \times(-c \vec{A})) \cdot((-\vec{\nabla}) \times(c \vec{A})) \\
= & -\vec{E} \cdot \vec{E}+c^{2} \vec{B} \cdot \vec{B}
\end{aligned}
$$

Renormalization in QCD as compared to QED

DECIUPLING QF UNPHYSICAL QED GAUGE PGTENTIALS

- Re-express the QED Lagrangian in terms of potentials:

$$
\begin{aligned}
F_{\mu \nu} F^{\mu v}= & -(\dot{\vec{A}}+\vec{\nabla} \Phi)^{2}+c^{2}(\vec{\nabla} \times \vec{A})^{2} \\
= & -\left(\dot{A}_{1}+\Phi, 1\right)^{2}-\left(\dot{A}_{2}+\Phi, 2\right)^{2}-\left(\dot{A}_{3}+\Phi_{, 3}\right)^{2} \\
& +c^{2}\left[\left(A_{2,1}-A_{1,2}\right)^{2}+\left(A_{3,2}-A_{2,3}\right)^{2}+\left(A_{1,3}-A_{3,1}\right)^{2}\right]
\end{aligned}
$$

Now recall that $A_{\mu} \simeq A_{\mu}-c\left(\partial_{\mu} \lambda\right) \ldots$
\ldots and choose $\lambda=-\int \mathrm{d} t \Phi$, so that

$$
\begin{aligned}
-c A_{i} & \simeq-c A_{i}+c \int \mathrm{~d} t \Phi_{, i} \\
A_{i} & \simeq A_{i}-\int \mathrm{d} t \Phi_{, i} \\
\dot{A}_{i} & \simeq \dot{A}_{i}-\Phi_{, i}
\end{aligned}
$$

Use this to simplify the Lagrangian.

Renormalization in QCD as compared to QED

DECGUPLING QF UNPHYSICAL QED GAUGE POTENTIALS

- So, the QED Lagrangian is gauge-equivalent to

$$
\begin{aligned}
F_{\mu \nu} F^{\mu \nu} \simeq & -\left(\dot{A}_{1}\right)^{2}-\left(\dot{A}_{2}\right)^{2}-\left(\dot{A}_{3}\right)^{2} \\
& +c^{2}\left[\left(A_{2,1}-A_{1,2}\right)^{2}+\left(A_{3,2}-A_{2,3}\right)^{2}+\left(A_{1,3}-A_{3,1}\right)^{2}\right]
\end{aligned}
$$

- ... since

$$
A_{j, i}-A_{i, j} \simeq\left(A_{j, i}-\int \mathrm{d} t \Phi_{, j i}\right)-\left(A_{i, j}-\int \mathrm{d} t \Phi_{, i j}\right)=A_{j, i}-A_{i, j}
$$

Expanding:

$$
\begin{gathered}
F_{\mu v} F^{\mu \nu} \simeq-\left(\dot{A}_{1}\right)^{2}-\left(\dot{A}_{2}\right)^{2}-\left(\dot{A}_{3}\right)^{2} \\
\quad+c^{2}\left[\left(A_{2,1}\right)^{2}+\left(A_{1,2}\right)^{2}+\left(A_{3,2}\right)^{2}+\left(A_{2,3}\right)^{2}+\left(A_{1,3}\right)^{2}+\left(A_{3,1}\right)^{2}\right. \\
\left.\quad-2 A_{2,1} A_{1,2}-2 A_{3,2} A_{2,3}-2 A_{1,3} A_{3,1}\right]
\end{gathered}
$$

Renormalization in QCD as compared to QED

decoupling of unphysical qed gauge potentials

- For a photon traveling at the speed of light along \hat{e}_{3},
- ... A_{1} and A_{2} are physical (transversal) polarizations,
- ... A_{3} is not.

$$
\begin{aligned}
F_{\mu v} F^{\mu v} \simeq & -\left(\dot{A}_{1}\right)^{2}-\left(\dot{A}_{2}\right)^{2}-\left(\dot{A}_{3}\right)^{2} \\
& +c^{2}\left[\left(A_{2,1}-A_{1,2}\right)^{2}+\left(A_{3,2}\right)^{2}+\left(A_{3,1}\right)^{2}+\left(A_{2,3}\right)^{2}+\left(A_{1,3}\right)^{2}\right. \\
& \left.-2 A_{3,2} A_{2,3}-2 A_{1,3} A_{3,1}\right]
\end{aligned}
$$

- Additionally, A_{1} and A_{2} do not vary in the 3rd direction,
- ... so also $\left|A_{1,3}\right|=0=\left|A_{2,3}\right| .(\approx$ FitzGerald-Lorentz contraction.)

Thus:

$$
\begin{aligned}
F_{\mu v} F^{\mu v} \simeq & -\left(\dot{A}_{1}\right)^{2}-\left(\dot{A}_{2}\right)^{2}-\left(\dot{A}_{3}\right)^{2} \text { decouple } \\
& +c^{2}\left[\left(A_{2,1}-A_{1,2}\right)^{2}+\left(A_{3,2}\right)^{2}+\left(A_{3,1}\right)^{2}\right]
\end{aligned}
$$

Renormalization in QCD as compared to QED

DECIUPLING GF UNPHYSICAL QED GAUGE POTENTIALS

- Why does classical decoupling also indicate a decoupling in the full quantum theory?
- Because of the Feynman-Hibbs construction.
- The partition functional

$$
\begin{aligned}
\mathcal{Z}[\vartheta] & :=\int \mathbf{D}[\phi] e^{i \hbar^{-1} \int \mathrm{~d}^{4} \mathrm{x}(\mathscr{L}(\phi)+\vartheta \cdot \phi)} \text { Lagrangian } \\
\left.\frac{\delta \theta\left(\mathrm{x}_{1}\right)}{} \cdots \frac{\delta}{\delta \vartheta\left(\mathrm{x}_{n}\right)} \mathcal{Z}[\vartheta]\right]_{\vartheta=0} & =\left[\int \mathbf{D}[\phi] \phi\left(\mathrm{x}_{1}\right) \cdots \phi\left(\mathrm{x}_{n}\right) e^{i \hbar^{-1} \int \mathrm{~d}^{4} \mathrm{x}\left(\mathscr{L}^{\prime}(\phi)+\vartheta \cdot \phi\right)}\right]_{\vartheta=0} \\
& =G\left(\mathrm{x}_{1}, \cdots, \mathrm{x}_{n}\right) \text { computed by Feynman calculus }
\end{aligned}
$$

... are correlation functions, stating the correlation of perturbations in the ϕ-field at the spacetime points $\mathrm{x}_{1} \ldots \mathrm{x}_{n}$.

- $G\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ is the well-known Green's function.

Renormalization in QCD as compared to QED

GLபロN LロロPS AND NロN－CロMMUTATIVITY
－Non－abelian（non－commutative）QCD：a similar Lagrangian
$\operatorname{Tr}\left[\mathbb{F}_{\mu \nu} \mathbb{F}^{\mu \nu}\right]=\operatorname{Tr}\left[\left(\partial_{\mu} \mathbb{A}_{\nu}-\partial_{\nu} \mathbb{A}_{\mu}+\frac{i g_{c}}{\hbar c}\left[\mathbb{A}_{\mu}, \mathbb{A}_{\nu}\right]\right)\right.$

$$
\left.\left(\partial^{\mu} \mathbb{A}^{v}-\partial^{v} \mathbb{A}^{\mu}+\frac{i g_{c}}{\hbar c}\left[\mathbb{A}^{\mu}, \mathbb{A}^{v}\right]\right)\right]
$$

$$
=\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}-\frac{g_{c}}{\hbar c} f^{a}{ }_{b c} A_{\mu}^{b} A_{\nu}^{c}\right)
$$

$$
\left(\partial^{\mu} A_{a}^{v}-\partial^{v} A_{a}^{\mu}-\frac{g_{c}}{\hbar c} f_{a}^{e h} A_{e}^{\mu} A_{h}^{v}\right)
$$

$$
=\left(\partial_{\mu} A_{v}^{a}-\partial_{\nu} A_{\mu}^{a}\right)\left(\partial^{\mu} A_{a}^{v}-\partial^{v} A_{a}^{\mu}\right)
$$

 of the $S U(3)_{c}$ group

Renormalization in QCD as compared to QED

GLUロN LロロPS AND NロN－CロMMUTATIVITY
－Non－abelian（non－commutative）QCD：a similar Lagrangian
$\operatorname{Tr}\left[\mathbb{F}_{\mu v} \mathbb{F}^{\mu v}\right]=\operatorname{Tr}\left[\left(\partial_{\mu} \mathbb{A}_{v}-\partial_{v} \mathbb{A}_{\mu}+\frac{i g_{c}}{\hbar c}\left[\mathbb{A}_{\mu}, \mathbb{A}_{v}\right]\right)\right.$

$$
\left.\left(\partial^{\mu} \mathbb{A}^{v}-\partial^{v} \mathbb{A}^{\mu}+\frac{i g_{c}}{\hbar c}\left[\mathbb{A}^{\mu}, \mathbb{A}^{v}\right]\right)\right]
$$

$\partial_{[\mu} \mathbf{A}_{v]} \partial^{[\mu} \mathbb{A}^{\nu]}$	$+\frac{2 i g_{c}}{\hbar c c} \partial_{[\mu} \mathrm{A}_{\nu]}\left[\mathbb{A}^{\mu}, \mathbb{A}^{v}\right]$	$\frac{g_{c}^{2}}{\frac{\hbar^{2} c^{2}}{}\left[\mathbb{A}_{\mu}, \mathbf{A}_{v}\right]\left[\mathbb{A}^{\mu}, \mathbb{A}^{v}\right]}$
$\overrightarrow{p, a} \frac{e_{0}}{a_{8}} \overrightarrow{v, b}$		

．．．where the $S U(3)_{c}$ trace is implied．

Renormalization in QCD as compared to QED

GLU日N LIGPS AND NON-cロmmutativity

- Owing to these 3 -gluon and 4 -gluon vertices,

is being corrected by:

Just like in QED.

Renormalization in QCD as compared to QED

NON-DECDUPLING IN QCD

- Although it is again possible to use the gauge transformation
- $A^{a}{ }_{\mu} \simeq A^{a}{ }_{\mu}-c\left(\partial_{\mu} \lambda^{a}\right)$ with $\lambda^{a}=-\int \mathrm{d} t \Phi^{a}$,
- ...this does not eliminate Φ^{a} :

$$
\operatorname{Tr}\left[\mathbb{F}_{\mu \nu} \mathbb{F}^{\mu \nu}\right] \supset \frac{2 g_{c}}{\hbar c}\left(\dot{\vec{A}}^{a}-\vec{\nabla} \Phi^{a}\right) f_{a b c} \Phi^{b}\left(c \vec{A}^{c}\right)
$$

\ldots nor does $A^{a}{ }_{3}$ decouple from $A^{a}{ }_{1}$ and $A^{a}{ }_{2}$.

No decoupling in QCD!

Therefore,

- owing to the non-abelian nature of $\mathrm{SU}(3) \mathrm{c}$,
- manifested by gluon-gluon couplings \& "new" Feynman graphs
... QCD amplitudes inextricably include non-physical gauge potential components.
- This necessarily violates unitarity.
...but can be "cured" by introducing Fadeev-Popov ghosts \& BRST symmetry.

Renormalization in QCD as compared to QED

THE $\operatorname{SU}(N)$ RUNNING CロUPLING PARAMETER

- Suffice it here to merely cite the leading-log result:

$$
\alpha_{s, R}\left(\left|\mathrm{q}^{2}\right|\right) \approx \frac{\alpha_{s, R}\left(\mu^{2} c^{2}\right)}{1+\frac{\alpha_{s, R}\left(\mu^{2} c^{2}\right)}{3 \pi} \frac{11 n-2 n_{f}}{4} \ln \left(\frac{\left|\mathrm{q}^{2}\right|}{\mu^{2} c^{2}}\right)}, \quad\left|\mathrm{q}^{2}\right| \gg \mu^{2} c^{2}
$$

Here,

- $n=$ number of colors $\left[n=3\right.$ for $\operatorname{SU}(3)_{c}$]
- $n_{f}=$ number of n-color fermions $\left[n_{f}=6\right.$ flavors of 3 -color quarks for $\mathrm{q}>171.3 \mathrm{GeV}$ (top quark mass; for lower energies $n_{f}<6$]
This is unlike the electromagnetic one:

$$
\alpha_{e, R}\left(\left|\mathrm{q}^{2}\right|\right) \approx \frac{\alpha_{e, R}(0)}{1-\frac{\alpha_{e, R}(0)}{3 \pi} \ln \left(\frac{\left|\mathrm{q}^{2}\right|}{m_{e}^{2} c^{2}}\right)}, \quad\left|\mathrm{q}^{2}\right| \gg m_{e}^{2} c^{2}
$$

Renormalization in QCD as compared to QED

THE SU(N) RUNNING COUPLING PARAMETER

- Suffice it here to merely cite the leading-log result:

$$
\alpha_{s, R}\left(\left|\mathrm{q}^{2}\right|\right) \approx \frac{\alpha_{s, R}\left(\mu^{2} c^{2}\right)}{1+\frac{\alpha_{s, R}\left(\mu^{2} c^{2}\right)}{3 \pi} \frac{11 n-2 n_{f}}{4} \ln \left(\frac{\left|\mathrm{q}^{2}\right|}{\mu^{2} c^{2}}\right)}, \quad\left|\mathrm{q}^{2}\right| \gg \mu^{2} c^{2}
$$

- On a logarithmic scale, $\alpha_{s, R}$ then looks like:

Screening of charge

FERMIロN－ANTIFERMIロN VACUUM PロLARIZATIロN

－In QED，around a real electron，
－virtual electron－positron afirs act as dipoles
－where the virtual positron is closer to the realelectron

Screening of charge

FERMIロN－ANTIFERMIロN VACUUM PロLARIZATIロN

－Just as in QED，around a real quark，
－virtual quark－antiquark pairs act as＂dipoles＂
－where the virtual antiquark is closer to the real quark
The red－ antired pairs are polarized

This effectively cancels out some of the color of the real quark， smearing it out and screening it．
Other pairs are not polarized

Non-abelian anti-screening of charge

NロN-ABELIAN GAபSS'S LAW

- But, in QCD the gluons contribute too!
- Recall:

$$
\left(D_{\mu} F^{a \mu v}=\partial_{\mu} F^{a \mu v}-\frac{g_{c}}{\hbar c} f_{b c}{ }^{a} A_{\mu}^{b} F^{c \mu v}\right)=j_{(q)}^{a v}
$$

- where the $v=0$ component is the quark color density. Define:

$$
\vec{E}^{a}:=\hat{\mathrm{e}}_{i} F^{a i 0}, \quad \rho_{(q)}^{a}:=j_{(q)}^{a 0}, \quad \vec{A}^{a}:=-\hat{\mathrm{e}}^{i} A_{i}^{a}
$$

... and obtain:

$$
\vec{\nabla} \cdot \vec{E}^{a}=\rho_{(q)}^{a}-\frac{g_{c}}{\hbar c} f^{a}{ }_{b c} \vec{A}^{b} \cdot \vec{E}^{c}
$$

- where the nonlinear coupling (owing to the non-abelian structure) serves as an additional (gluonic) source of the chromo-electric field.

Non-abelian anti-screening of charge

NロN-ABELIAN GAUSS'S LAW

- Following Peskin \& Schroeder, consider a color-1 quark, and a color-2 virtual gluon 3-vector potential:

The color-1 chromoelectric field from the quark, together with the virtual color-2 potential act as a source for the color-3
 chromo-electric field.

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{E}^{3} & =-\frac{g_{c}}{\hbar c} f^{3}{ }_{21} \vec{A}^{2} \cdot \vec{E}^{1}=-\frac{g_{c}}{\hbar c}(-1)\left|\vec{A}^{2}\right|\left|\vec{E}^{1}\right|\left(\cos \theta_{12}=+\frac{1}{2}\right) \\
& =+\frac{c_{c}}{2 \hbar c}\left|\vec{A}^{2}\right|\left|\vec{E}^{1}\right|
\end{aligned}
$$

Non-abelian anti-screening of charge

NロN-ABELIAN GAUSS'S LAW

- Following Peskin \& Schroeder, consider a color-1 quark, and a color-2 virtual gluon 3-vector potential:

> The coupling of color- 3 chromoelectric field and the color-2 gauge potential act as a dipole of color-1
 sources.

$$
\vec{\nabla} \cdot \vec{E}^{1}=-\frac{g_{c}}{\hbar c} f^{1}{ }_{23} \vec{A}^{2} \cdot \vec{E}^{3}=-\frac{g_{c}}{\hbar c}(+1)\left|\vec{A}^{2}\right|\left|\vec{E}^{3}\right| \cos \theta_{32}
$$

where $\cos \theta_{32}$ is positive SW from the color-3 "source", and negative on the other, NE side of it.

Non-abelian anti-screening of charge

NロN-ABELIAN GAUSS'S LAW

- Following Peskin \& Schroeder, consider a color-1 quark, and a color-2 virtual gluon 3-vector potential:

The virtual color-1 dipole (mimicked by the nonlinear coupling of the virtual color-2 gluon) does not screen the color-1 of the original (quark) source, but anti-screens (reinforces) it.

Non-abelian anti-screening of charge

THE LANDAU PロLE \& DIMENSIINAL TRANSMUTATIロN

- The renormalized coupling parameter

$$
\alpha_{s, R}\left(\left|\mathrm{q}^{2}\right|\right) \approx \frac{\alpha_{s, R}\left(\mu^{2} c^{2}\right)}{1+\frac{\alpha_{s, R}\left(\mu^{2} c^{2}\right)}{3 \pi} \frac{11 n-2 n_{f}}{4} \ln \left(\frac{\left|\mathrm{q}^{2}\right|}{\mu^{2} c^{2}}\right)}, \quad\left|\mathrm{q}^{2}\right| \gg \mu^{2} c^{2},
$$

- depends on two parameters:
- the "reference" mass parameter μ,
- the value of $\alpha_{s, R}$ at the 4 -momentum $\sqrt{ }\left|q^{2}\right|=\mu c$.

We may instead introduce a mass scale, $\Lambda_{Q C D}$:

$$
\begin{aligned}
\ln \left(\Lambda_{\mathrm{QCD}}^{2}\right) & :=\ln \left(\mu^{2} c^{2}\right)-\frac{12}{\left(11 n-2 n_{f}\right)} \\
\alpha_{S, R}\left(\left|\mathrm{q}^{2}\right|\right) & \approx \frac{12 \pi}{\left(11 n-2 n_{f}\right) \ln \left(\frac{\left|\mathrm{q}^{2}\right|}{\Lambda_{\mathrm{QCD}}^{2}}\right)}
\end{aligned}
$$

diverges at $\Lambda_{Q C D}$
... where perturbative computations fail...

The effective QCD potential revisited

ASYMPTロTIC（ULTRAVIロLET）FREEDロM

－The magnitude of $\alpha_{s, R}\left(\left|\mathfrak{q}^{2}\right|\right)$ decreases as $\left|\mathfrak{q}^{2}\right|$ increases，
－i．e．，as the distance of interaction shrinks．
－That is，the strength of the strong interaction decreases to zero with the distance between the two interacting quarks．
－This was dubbed＂asymptotic freedom＂
－counterpoint to the fact that quarks are confined within hadrons
－quarks cease to be＂held＂by the strong interaction．．．
－．．．when they don＇t try to leave the hadron．
－．．．Just like the restoring force of a spring．
The effective potential describing their interaction is then approximately flat（constant）at small distance．

The effective QCD potential revisited

INFRARED CONFINEMENT

- In turn, when $\sqrt{ }\left|\mathrm{q}^{2}\right| \ll \mu$, or $\sqrt{ }\left|\mathrm{q}^{2}\right| \searrow \Lambda_{\text {QcD }}$,
- ...all perturbative computations fail.
- Experimentally, separating (anti)quarks
- to larger and larger distances
- requires larger and larger $\sqrt{ }\left|\mathrm{q}^{2}\right|$,
- ... which eventually creates a quark-antiquark pair:

Thanks!

Tristan Hubsch

Department of Physics and Astronomy
Howard University, Washington DC
Prirodno-Matematicki Fakultet Univerzitet u Novom Sadu
http://homepage.mac.com/thubsch/

