(Fundamental) Physics of Elementary Particles

QCD: quantum chromodynamics & Feynman rules; Quark-(anti)quark interaction & color antisymmetrization;

Tristan Hübsch

Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

Fundamental Physics of Elementary Particles

PROGRAM

Concrete QCD computations

- Feynman rules
- Gluon loops & interactions
 - nonlinearity
 - gauge conditions
- Quark-quark interaction
 - Color factor computation
 - $(qq)_{3^*} vs. (qq)_6$
 - $f_c(3^*|3^*), f_c(3^*'|3^*), f_c(6|3^*), f_c(3^*|6), f_c(6|6), f_c(6'|6)$
- Quark-antiquark interaction
 - Color factor computation
 - $(qq^*)_1 vs. (qq^*)_8$
 - $f_c(1|1), f_c(8|1), f_c(8|8), f_c(8'|8)$
- Conclusion: $SU(3)_c$ formalism

But, First and Foremost

COMMUNICATION

- When reporting errors in a 344-page document...
- Help locating the error:
 - specify page, paragraph & line, table, figure or equation
 - For example: p. 123, P. 3, l. 2 (page 123, paragraph 3, line 2)
 Eq. (4.1), Figure 4.1, Table 4.1, ...
- State the error/typo:
 - Compare, for example, "Te to the paragraph after 4.50" with
 - "Change 'Since te ...' to 'Since the ...' four lines after Eq. (4.50)."
 - The latter version allows for an effective electronic search.
- Itemize the suggested corrections.
 - A concatenation of several sentences (even if written clearly)
 - ...runs together. (Remember: I need to be able to tell them apart.)

FEYNMAN RULES

- 1. Notation:
 - 4-momenta: external = $p_1, p_2, ..., internal = q_1, q_2, ...$
 - Orientations:
 - For a spin-1/2 particle, with 4-momentum
 - For a spin-1/2 antiparticle, against 4-momentum
 - Gluon lines: external (real) with time, internal (virtual) = arbitrary

• Polarizations:

FEYNMAN RULES

2. Vertices

• Quark-gluon: $_{j,\beta,f_1}$ $\sum_{\mu} a \rightarrow -ig_{c} \boldsymbol{\gamma}^{\mu} \, \delta_{f_{2}}^{f_{1}} \left(\frac{1}{2} \lambda_{a} \right)^{\beta} \alpha$ i, α, f₂

• 3-gluons:

 $a, \mu \not \rightarrow \qquad -g_c f^{abc} [\eta_{\mu\nu}(k_1 - k_2)_{\rho} + \eta_{\nu\rho}(k_2 - k_3)_{\mu}]$ $+\eta_{\rho\mu}(k_3-k_1)_{\nu}$]

• 4-gluons: b, v lege 6 c, p ood, o a, µ, 99

$$-ig_{c}^{2}[f^{abe}f^{cd}_{e}(\eta_{\mu\sigma}\eta_{\nu\rho}-\eta_{\mu\rho}\eta_{\nu\sigma}) + f^{ace}f^{db}_{e}(\eta_{\mu\sigma}\eta_{\nu\rho}-\eta_{\mu\nu}\eta_{\rho\sigma}) + f^{ade}f^{bc}_{e}(\eta_{\mu\nu}\eta_{\rho\sigma}-\eta_{\mu\rho}\eta_{\nu\sigma})]$$

 \rightarrow

FEYNMAN RULES

- 3. Propagators = internal lines
 - Quarks:

$$n, \alpha \quad q_j \qquad n', \beta \quad \rightarrow \quad \frac{i\delta^{n,n'}\delta^{\beta}_{\alpha}}{q_j - m_j c} = i\delta^{n,n'}\delta^{\beta}_{\alpha}\frac{q_j + m_j c\mathbb{1}}{q_j^2 - m_j^2 c^2},$$

• Gluons:

$$\mu, a \xrightarrow{\mathbf{q}_g} \nu, b \rightarrow -i \frac{\eta_{\mu\nu}}{\mathbf{q}_g^2} \delta^{ab}$$

- Recall: internal lines represent virtual particles that are off-shell.
 4. 4-momentum conservation
 - Assign to each vertex $(2\pi)^4 \delta^4(\Sigma_j \mathbf{k}_j)$
- 5. Integrate over all internal momenta: $(2\pi)^{-4}\int d^4q_j$
 - 6. Read off: $-i \mathfrak{M}(2\pi)^4 \delta^4(\Sigma_j \mathbf{p}_j)$

FEYMAN RULES

- 7. Each fermion loop = one (-1) factor
- 8. Amplitudes for partial processes that are related by an exchange of an odd pair of fermions have a relative sign.
 As before, we can order the Feynman diagrams by:
 - counting the orders of g_c ,
 - and counting loops.
- These amplitudes cannot be used as in electromagnetism,
- ... because quarks do not appear as free particles.
- Nevertheless, they *can* indicate *relative* probabilities,
- ... somewhat akin to applying the Wigner-Eckardt theorem.

 $\frac{\sigma_{\text{proces 1}}}{\sigma_{\text{proces 2}}} = \frac{\left|\mathfrak{M}_{1}\right|^{2}}{\left|\mathfrak{M}_{2}\right|^{2}} = \frac{\left|(\text{spin})_{1} \cdot (\text{isospin})_{1} \cdot (\text{color})_{1} \cdot (\text{other})_{1}\right|^{2}}{\left|(\text{spin})_{2} \cdot (\text{isospin})_{2} \cdot (\text{color})_{2} \cdot (\text{other})_{2}\right|^{2}}$

GLUON LOOPS & INTERACTIONS

The gluon Lagrangian involves

$$\begin{split} \mathbb{F}_{\mu\nu} &:= \frac{\hbar c}{ig_c} [\partial_{\mu} + \frac{ig_c}{\hbar c} \mathbb{A}_{\mu}, \partial_{\nu} + \frac{ig_c}{\hbar c} \mathbb{A}_{\nu}] = \partial_{\mu} \mathbb{A}_{\nu} - \partial_{\nu} \mathbb{A}_{\mu} + \frac{ig_c}{\hbar c} [\mathbb{A}_{\mu}, \mathbb{A}_{\nu}], \\ &= \partial_{[\mu} \mathbb{A}_{\nu]} + \frac{ig_c}{\hbar c} [\mathbb{A}_{\mu}, \mathbb{A}_{\nu}] \end{split}$$

• which when squared produces:

8

Monday, November 7, 11

QUARK-QUARK INTERACTION

- Consider a concrete process, such as $p^++n^0 \rightarrow p^++n^0$.
- Analyze as $(uud)+(udd)\rightarrow(uud)+(udd)$,
 - where the strong interaction is dominating
 - so consider quark-quark interactions
 - $(u+u) \rightarrow (u+u) \approx (u+d) \rightarrow (u+d) \approx (d+d) \rightarrow (d+d)$
 - ... up to corrections $O(|m_u-m_d|/(m_u+m_d)) \approx 33\% \dots$
 - Then also: $(p+p) \rightarrow (p+p) \approx (p+n) \rightarrow (p+n) \approx (n+n) \rightarrow (n+n)$,
 - ... as Heisenberg initially observed, introducing isospin.

Monday, November 7, 11

QUARK-QUARK INTERACTION

• The amplitude computation differs from that in electromagnetism only by color factors:

$$\mathfrak{M}_{u+d\to u+d} = -\frac{g_s^2}{2} \frac{1}{q^2} \left[\overline{u}_3 \, \boldsymbol{\gamma}^{\mu} \, u_1 \right] \left[\overline{u}_4 \, \boldsymbol{\gamma}_{\mu} \, u_1 \right] \left(\chi_3^{\dagger} \, \boldsymbol{\lambda}^a \, \chi_1 \right) \left(\chi_4^{\dagger} \, \boldsymbol{\lambda}_a \, \chi_2 \right),$$

old stuff new stuff

Re-use the electromagnetism computation, with the g_e→g_c replacement,
Compute the color factor, f_c(3,4|1,2) = ¼(χ₃⁺λ^aχ₁)(χ₄⁺λ_aχ₂)
... for all the different possible cases.
Since the EM amplitude would have given 1/(4πε₀ e²/r) = α_eħc/r
... the QCD amplitude will yield

remaining to be determined

QUARK-QUARK INTERACTION

• So, consider computing

$$f_{c}(3,4|1,2) = \frac{1}{4}(\chi_{3}^{\dagger}\boldsymbol{\lambda}^{a}\chi_{1})(\chi_{4}^{\dagger}\boldsymbol{\lambda}_{a}\chi_{2}) = \frac{1}{4}\boldsymbol{\chi}_{3\gamma}^{\dagger}\boldsymbol{\chi}_{4\delta}^{\dagger}(\lambda^{a})_{\alpha}{}^{\gamma}(\lambda_{a})_{\beta}{}^{\delta}\boldsymbol{\chi}_{1}^{\alpha}\boldsymbol{\chi}_{2}^{\beta}$$

out out

... for the different possible two-quark in- and out-states.
Use the color—tensor—matrix notation translations:

 $\chi^{r} \leftrightarrow \delta_{1}^{\alpha} \leftrightarrow \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad \chi^{y} \leftrightarrow \delta_{2}^{\alpha} \leftrightarrow \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad \chi^{b} \leftrightarrow \delta_{3}^{\alpha} \leftrightarrow \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$ Use also that

$$(\mathbf{3}\otimes\mathbf{3})_{A} = \mathbf{3}^{*} \quad \chi_{1}^{[\alpha}\chi_{2}^{\beta]} := \frac{1}{\sqrt{2}} (\delta_{\gamma}^{\alpha}\delta_{\delta}^{\beta} - \delta_{\gamma}^{\beta}\delta_{\delta}^{\alpha}) \chi_{1}^{\gamma}\chi_{2}^{\delta} \qquad \alpha \neq \beta, \ \alpha, \beta = 1, 2, 3$$
$$(\mathbf{3}\otimes\mathbf{3})_{S} = \mathbf{6} \quad \chi_{1}^{(\alpha}\chi_{2}^{\beta)} := \left\{ \frac{1}{\sqrt{2}} (\delta_{\gamma}^{\alpha}\delta_{\delta}^{\beta} + \delta_{\gamma}^{\beta}\delta_{\delta}^{\alpha}) \\ \delta_{\gamma}^{\alpha}\delta_{\delta}^{\beta} \end{array} \right\} \chi_{1}^{\gamma}\chi_{2}^{\delta} \quad \left\{ \begin{array}{l} \alpha \neq \beta, \\ \alpha = \beta, \end{array} \right. \alpha, \beta = 1, 2, 3$$

SOME SU(3) REPRESENTATIONS

- The fundamental representation
 - denoted **3**, for a complex 3-dimensional vector space,
 - ... spanned by (t^1, t^2, t^3) : $c_1t^1 + c_2t^2 + c_3t^3$, *i.e.*, $\mathbb{C}^3 = \{c_1, c_2, c_3\}$
 - ... which are transformed one into another by $SU(3)_c$.
- The antisymmetric product = antisymmetric rank-2 tensor
 - may be identified with **3***: $t_{\alpha} = \varepsilon_{\alpha\beta\gamma} t^{[\beta\gamma]}$
 - represented by linear combinations of $t^{[12]}$, $t^{[13]}$ and $t^{[23]}$,
 - ... which are transformed one into another by $SU(3)_c$.
- The symmetric product = symmetric rank-2 tensor
 - may be identified with **6**:
 - represented by linear combinations of
 - $t^{(11)}, t^{(22)}, t^{(33)}, t^{(12)}, t^{(13)}$ and $t^{(23)}, t^{(23)}, t^{(23)$
 - ... which are transformed one into another by $SU(3)_c$.

QUARK-QUARK INTERACTION

- Cases of f_c(3,4|1,2) to be examined
 where (1,2) and (3,4) range over:
 - two copies of the same element of 3^* : $f_c(3^*|3^*)$, e.g., [13][13];
 - two different elements of 3^* : $f_c(3^*'|3^*)$, e.g., [12]|[13];
 - one element of **3**^{*} & one of **6**: $f_c(6|3^*)$, e.g., (11)|[12], (33)|[12], (13)|[13] & (12)|[13];
 - two copies of the same element of **6**: $f_c(\mathbf{6}|\mathbf{6})$, e.g., (11)|(11);
 - two different elements of 6: fv(6'|6). e.g., (11)|(33).
- There are plenty of other choices, but they may all be transformed into one of the <u>eight</u> above, by $SU(3)_c$.
- It then suffices to work with the above eight representatives.

QUARK-QUARK INTERACTION

• Consider a representative of $f(3^*|3^*)$: $\left\{\frac{1}{4}\left(\chi_{3\gamma}^{\dagger}\chi_{4\delta}^{\dagger}\right)_{\mathbf{3}}\left(\lambda^{a}\right)_{\alpha}{}^{\gamma}\left(\lambda_{a}\right)_{\beta}{}^{\delta}\left(\chi_{1}^{\alpha}\chi_{2}^{\beta}\right)_{\mathbf{3}^{*}}\right\}$ $\supset \frac{1}{4} \frac{1}{\sqrt{2}} \left(\delta_{\gamma}^{1} \delta_{\delta}^{3} - \delta_{\delta}^{1} \delta_{\gamma}^{3} \right) (\lambda^{a})_{\alpha}{}^{\gamma} (\lambda_{a})_{\beta}{}^{\delta} \frac{1}{\sqrt{2}} \left(\delta_{1}^{\alpha} \delta_{3}^{\beta} - \delta_{1}^{\beta} \delta_{3}^{\alpha} \right),$ $= \frac{1}{8} \left[\lambda^{a_{1}}{}^{1} \lambda_{a_{3}}{}^{3} - \lambda^{a_{3}}{}^{1} \lambda_{a_{1}}{}^{3} - \lambda^{a_{1}}{}^{3} \lambda_{a_{3}}{}^{1} + \lambda^{a_{3}}{}^{3} \lambda_{a_{1}}{}^{1} \right]$ $= \frac{1}{4} \left[\lambda^{a}{}_{1}{}^{1} \lambda_{a3}{}^{3} - \lambda^{a}{}_{3}{}^{1} \lambda_{a1}{}^{3} \right].$ $\boldsymbol{\lambda}_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \boldsymbol{\lambda}_2 = \begin{bmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \boldsymbol{\lambda}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \boldsymbol{\lambda}_4 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix},$ $\boldsymbol{\lambda}_{5} = \begin{bmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{bmatrix}, \quad \boldsymbol{\lambda}_{6} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad \boldsymbol{\lambda}_{7} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{bmatrix}, \quad \boldsymbol{\lambda}_{8} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ $= \frac{1}{4} \left[\lambda_{81}^{8} \lambda_{83}^{3} - \lambda_{31}^{4} \lambda_{41}^{3} - \lambda_{31}^{5} \lambda_{51}^{3} \right]$ $= \frac{1}{4} \left[\frac{1}{\sqrt{3}} \cdot \frac{-2}{\sqrt{3}} - 1 \cdot 1 - i \cdot (-i) \right] = \left(-\frac{2}{3} \right)$

QUARK-QUARK INTERACTION

- So: $f_c(3^*|3^*)$, represented by $f_c([13]|[13])$, = $-\frac{2}{3}$ (attractive!)
 - Similarly, $f_c(3^{*'}|3^{*})$ represented by $f_c([12]|[13])$,
 - $\frac{1}{4} \frac{1}{\sqrt{2}} \left(\delta_{\gamma}^{\mathbf{1}} \delta_{\delta}^{\mathbf{2}} \delta_{\delta}^{\mathbf{1}} \delta_{\gamma}^{\mathbf{2}} \right) \left(\lambda^{a} \right)_{\alpha}{}^{\gamma} \left(\lambda_{a} \right)_{\beta}{}^{\delta} \frac{1}{\sqrt{2}} \left(\delta_{\mathbf{1}}^{\alpha} \delta_{\mathbf{3}}^{\beta} \delta_{\mathbf{1}}^{\beta} \delta_{\mathbf{3}}^{\alpha} \right)$
 - $= \frac{1}{8} \left[\lambda^{a}{}_{1}{}^{1} \lambda_{a3}{}^{2} \lambda^{a}{}_{3}{}^{1} \lambda_{a1}{}^{2} \lambda^{a}{}_{1}{}^{2} \lambda_{a3}{}^{1} + \lambda^{a}{}_{3}{}^{2} \lambda_{a1}{}^{1} \right]$
 - $= \frac{1}{4} \left[\lambda^{a}{}_{1}{}^{1} \lambda_{a3}{}^{2} \lambda^{a}{}_{3}{}^{1} \lambda_{a1}{}^{2} \right] = 0 \text{not happening!}$
 - $f_c(6|3^*)$, represented by $f_c((11)|[12])$, = 0
 - $f_c(6|3^*)$, represented by $f_c((33)|[12])$, = 0 not happening!
 - $f_c(6|3^*)$, represented by $f_c((13)|[13])$, = 0
 - $f_c(6|3^*)$, represented by $f_c((13)|[13])$, = 0
 - $f_c(6|6)$, represented by $f_c((11)|(11))$, = +¹/₃ (repulsive!)
 - $f_c(6'|6)$, represented by $f_c((11)|(33))$, = 0 not happening!

QUARK-QUARK INTERACTION

- To summarize:
- The quark-quark 1-gluon-exchange interaction is
 - *attractive* when the quarks' colors are antisymmetrized
 - — and stay in the same particular state,
 - *repulsive* when the quarks' colors are symmetrized
 - — and stay in the same particular state,
 - *forbidden* (*verboten*) in all other cases.
- More-gluons' exchange interaction <u>does</u> follow this pattern.
 In a baryon, there are three quarks.
 - For the color of each pair to be antisymmetrized,
 - ... the triple color factor has to be fully antisymmetrized.
 - $(\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3})_A = \mathbf{1}$, *i.e.*, $(t^{\alpha} t^{\beta} t^{\gamma})_A \propto \varepsilon^{\alpha\beta\gamma}$, which is an SU(3)-invariant.
 - Ψ baryon = [Ψ (space) $\cdot \chi$ (spin) $\cdot \chi$ (flavor)]_S $\cdot \chi_A$ (color)

Concrete QCD Computations QUARK-ANTIQUARK INTERACTION • A 1-gluon exchange: d antiquark *u*-quark color: γ color: anti- δ δ_{ab} $(\lambda^b)_{\delta}{}^{\beta}$ $(\lambda^a)_{\alpha}{}^{\gamma}$ color: α color: anti- β u-quark / P₁ d antiquark p_2 produces the amplitude $\mathfrak{M}_{u+\overline{d}\to u+\overline{d}} = -\frac{g_c^2}{4\mathfrak{q}^2} [\overline{u}_3 \boldsymbol{\gamma}^{\mu} u_1] [\overline{v}_2 \boldsymbol{\gamma}_{\mu} v_4] (\chi_3^{\dagger} \boldsymbol{\lambda}^a \chi_1) (\chi_2^{\dagger} \boldsymbol{\lambda}_a \chi_4),$ • with the color factor $f_c(3,\overline{4}|1,\overline{2}) = \frac{1}{4}(\chi_3^{\dagger}\lambda^a\chi_1)(\chi_2^{\dagger}\lambda_a\chi_4)$

QUARK-ANTIQUARK INTERACTION

- The incoming and outgoing quarks may now have the colors in the
 - color-singlet $(SU(3)_c$ -invariant) state $(\chi_1\chi_2^{\dagger})^{\alpha}{}_{\beta} = \delta^{\alpha}_{\beta} \mathring{\chi}$
 - or the (traceless hermitian matrix) color-octet state:

$$\{ \chi_{12}{}^{\alpha}{}_{\beta} = \sqrt{1 + \frac{1}{2}} \delta^{\alpha}_{\beta} (\chi_{1}^{\alpha} \chi_{2\beta}^{\dagger} - \frac{1}{\sqrt{3}} \delta^{\alpha}_{\beta} \mathring{\boldsymbol{\chi}}), \quad \alpha, \beta = red, yellow, blue = 1, 2, 3 \},$$

$$= \left\{ \sqrt{\frac{3}{2}} (\delta^{\alpha}_{1} \delta^{1}_{\beta} - \mathring{\boldsymbol{\chi}}), \quad \sqrt{\frac{3}{2}} (\delta^{\alpha}_{2} \delta^{2}_{\beta} - \mathring{\boldsymbol{\chi}}), \quad \sqrt{\frac{3}{2}} (\delta^{\alpha}_{3} \delta^{3}_{\beta} - \mathring{\boldsymbol{\chi}}),$$

$$(\delta^{\alpha}_{1} \delta^{2}_{\beta}), \quad (\delta^{\alpha}_{1} \delta^{3}_{\beta}), \quad (\delta^{\alpha}_{2} \delta^{1}_{\beta}), \quad (\delta^{\alpha}_{2} \delta^{3}_{\beta}), \quad (\delta^{\alpha}_{3} \delta^{1}_{\beta}), \quad (\delta^{\alpha}_{3} \delta^{2}_{\beta}) \right\},$$
• Symbolically:

- $3 \otimes 3^* = 1 \oplus 8$
- $t^{\alpha} \otimes s_{\beta} = \left[\frac{1}{3} \,\delta^{\alpha}{}_{\beta} \left(t^{\gamma} s_{\gamma}\right)\right] + \left[t^{\alpha} s_{\beta} \frac{1}{3} \,\delta^{\alpha}{}_{\beta} \left(t^{\gamma} s_{\gamma}\right)\right]$

QUARK-ANTIQUARK INTERACTION

- Since the color charge of an antiquark is *opposite* of the color of the corresponding quark,
- ... the 1-gluon exchange gives rise to the potential $V_{q\bar{q}}(r) = -f_c \frac{\alpha_c \hbar c}{r}$,

• Need to compute $f_c(3,\overline{4}|1,\overline{2})$ for:

- $f_c(8|8)$, represented by $f_c(1_3|1_3)$,
- $f_c(8'|8)$, represented by $f_c(3_1|1_3)$,
- $f_c(8|1)$, represented by $f_c(1_3|1)$,
- $f_c(1|1)$, represented by $f_c(1|1)$.

• Proceed as before: $\frac{1}{4} \left(\delta_{\gamma}^{1} \delta_{3}^{\delta} \right) \left(\lambda^{a} \right)_{\alpha}{}^{\gamma} \left(\lambda_{a} \right)_{\delta}{}^{\beta} \left(\delta_{1}^{\alpha} \delta_{\beta}^{3} \right),$

$$= \frac{1}{4} \lambda^{a}{}_{1}{}^{1} \lambda_{a3}{}^{3} = \frac{1}{4} \lambda^{8}{}_{1}{}^{1} \lambda_{83}{}^{3} = \frac{1}{4} \frac{1}{\sqrt{3}} \frac{-2}{\sqrt{3}} = -\frac{1}{6},$$

QUARK-ANTIQUARK INTERACTION

- Obtain:
 - $f_c(8|8)$, represented by $f_c(1_3|1_3)$, = -1/6 repulsive!
 - $f_c(8'|8)$, represented by $f_c(3_1|1_3)$, = 0
 - *f_c*(8|1), represented by *f_c*(13|1), = 0 *f_c*(1|1), represented by *f_c*(1|1):

$$V_{q\overline{q}}(r)=-f_c\frac{\alpha_c\hbar c}{r},$$

attractive!

 $\frac{1}{4} \left(\chi_{3\gamma}^{\dagger} \chi_{4}^{\delta} \right)_{\mathbf{1}} (\lambda^{a})_{\alpha}{}^{\gamma} (\lambda_{a})_{\delta}{}^{\beta} (\chi_{1}^{\alpha} \chi_{2\beta}^{\dagger})_{\mathbf{1}}$

 $= \frac{1}{4} \frac{1}{\sqrt{3}} \left(\delta_{\gamma}^{1} \delta_{1}^{\delta} + \delta_{\gamma}^{2} \delta_{2}^{\delta} + \delta_{\gamma}^{3} \delta_{3}^{\delta} \right) \left(\lambda^{a} \right)_{\alpha}{}^{\gamma} \left(\lambda_{a} \right)_{\delta}{}^{\beta} \frac{1}{\sqrt{3}} \left(\delta_{1}^{\alpha} \delta_{\beta}^{1} + \delta_{2}^{\alpha} \delta_{\beta}^{2} + \delta_{3}^{\alpha} \delta_{\beta}^{3} \right),$ $= \frac{1}{12} \lambda^{a}{}_{\alpha}{}^{\gamma} \lambda_{a}{}_{\gamma}{}^{\alpha} = \frac{1}{12} \delta_{ab} \operatorname{Tr}(\boldsymbol{\lambda}^{a} \boldsymbol{\lambda}^{b}) = \frac{1}{12} \delta_{ab} 2\delta^{ab} = \frac{1}{6} 8 = \frac{4}{3}$

• The quark-antiquark 1-gluon exchange potential is:

- *attractive* for in- and out-state color-singlets,
- *repulsive* for in- and out-state (*same!*) color octets,
- *forbidden* (verboten) otherwise.

Mesons must be $SU(3)_c$ -invariant.

QUARK-ANTIQUARK INTERACTION

• How about the possible (virtual) annihilation + re-creation?

$$\begin{split} \mathfrak{M}_{u+\overline{u}\to u+\overline{u}} &= -\frac{g_c^2}{4(\mathbf{p}_1-\mathbf{p}_3)^2} [\overline{u}_3\boldsymbol{\gamma}^{\mu}u_1] [\overline{v}_2\boldsymbol{\gamma}_{\mu}v_4] (\chi_3^{\dagger}\boldsymbol{\lambda}^a\chi_1) (\chi_2^{\dagger}\boldsymbol{\lambda}_a\chi_4) \\ &+ \frac{g_c^2}{4(\mathbf{p}_1+\mathbf{p}_2)^2} [\overline{v}_2\boldsymbol{\gamma}^{\mu}u_1] [\overline{u}_3\boldsymbol{\gamma}_{\mu}v_4] (\chi_2^{\dagger}\boldsymbol{\lambda}^a\chi_1) (\chi_3^{\dagger}\boldsymbol{\lambda}_a\chi_4), \end{split}$$

QUARK-ANTIQUARK INTERACTION

- How about the possible (virtual) annihilation + re-creation?
 The color factors are now:
 - $f_c(8|8)$:

 $\{ \frac{1}{4} (\chi_{3\gamma}^{\dagger} \chi_{4}^{\delta})_{8} (\lambda^{a})_{\alpha}{}^{\beta} (\lambda_{a})_{\delta}{}^{\gamma} (\chi_{1}^{\alpha} \chi_{2\beta}^{\dagger})_{8} \} \supset \frac{1}{4} (\delta_{\gamma}^{1} \delta_{3}^{\delta}) (\lambda^{a})_{\alpha}{}^{\beta} (\lambda_{a})_{\delta}{}^{\gamma} (\delta_{1}^{\alpha} \delta_{\beta}^{3}),$ $= \frac{1}{4} \lambda^{a}{}_{1}{}^{3} \lambda_{a3}{}^{1} = \frac{1}{4} (\lambda^{4}{}_{1}{}^{3} \lambda_{43}{}^{1} + \lambda^{5}{}_{1}{}^{3} \lambda_{53}{}^{1}) = \frac{1}{4} (1 \cdot 1 + (-i) \cdot (i)) = \frac{1}{2},$

- $f_c(8'|8)$:
- $$\begin{split} \left\{ \frac{1}{4} \left(\chi_{3\gamma}^{\dagger} \chi_{4}^{\delta} \right)_{\mathbf{8}'} (\lambda^{a})_{\alpha}{}^{\beta} (\lambda_{a})_{\delta}{}^{\gamma} \left(\chi_{1}^{\alpha} \chi_{2\beta}^{\dagger} \right)_{\mathbf{8}} \right\} \supset \frac{1}{4} \left(\delta_{\gamma}^{3} \delta_{1}^{\delta} \right) (\lambda^{a})_{\alpha}{}^{\beta} (\lambda_{a})_{\delta}{}^{\gamma} (\delta_{1}^{\alpha} \delta_{\beta}^{3}), \\ &= \frac{1}{4} \lambda^{a}{}_{1}{}^{3} \lambda_{a1}{}^{3} = \frac{1}{4} (\lambda^{4}{}_{1}{}^{3} \lambda_{41}{}^{3} + \lambda^{5}{}_{1}{}^{3} \lambda_{51}{}^{3}) = \frac{1}{4} \left(1 \cdot 1 + (-i) \cdot (-i) \right) = 0, \end{split}$$

•
$$\begin{aligned} f_{c}(\mathbf{1}|\mathbf{1}): \\ \frac{1}{4} (\chi_{3\gamma}^{\dagger} \chi_{4}^{\delta})_{\mathbf{1}} (\lambda^{a})_{\alpha}{}^{\beta} (\lambda_{a})_{\delta}{}^{\gamma} (\chi_{1}^{\alpha} \chi_{2\beta}^{\dagger})_{\mathbf{1}} \\ &= \frac{1}{4} \frac{1}{\sqrt{3}} (\delta_{\gamma}^{1} \delta_{1}^{\delta} + \delta_{\gamma}^{2} \delta_{2}^{\delta} + \delta_{\gamma}^{3} \delta_{3}^{\delta}) (\lambda^{a})_{\alpha}{}^{\beta} (\lambda_{a})_{\delta}{}^{\gamma} \frac{1}{\sqrt{3}} (\delta_{1}^{\alpha} \delta_{\beta}^{1} + \delta_{2}^{\alpha} \delta_{\beta}^{2} + \delta_{3}^{\alpha} \delta_{\beta}^{3}), \\ &= \frac{1}{12} \lambda^{a}{}_{\alpha}{}^{\alpha} \lambda_{a}{}_{\gamma}{}^{\gamma} = \frac{1}{12} \operatorname{Tr}(\boldsymbol{\lambda}^{a}) \operatorname{Tr}(\boldsymbol{\lambda}_{a}) = 0, \end{aligned}$$

QUARK-ANTIQUARK INTERACTION

How about the possible (virtual) annihilation + re-creation?
The algebraic sum (actually difference) of the two amplitudes is

$$\mathfrak{M}_{u+\overline{u}\to u+\overline{u}} = -\frac{g_c^2}{(\mathbf{p}_1 - \mathbf{p}_3)^2} \begin{pmatrix} -\frac{1}{6} \\ +\frac{4}{3} \end{pmatrix} [\overline{u}_3 \boldsymbol{\gamma}^{\mu} u_1] [\overline{v}_2 \boldsymbol{\gamma}_{\mu} v_4] + \frac{g_c^2}{(\mathbf{p}_1 + \mathbf{p}_2)^2} \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} [\overline{v}_2 \boldsymbol{\gamma}^{\mu} u_1] [\overline{u}_3 \boldsymbol{\gamma}_{\mu} v_4], \text{ if } \begin{cases} \boldsymbol{\chi}_{12} \subset \boldsymbol{8}, \\ \boldsymbol{\chi}_{12} = \boldsymbol{1}. \end{cases}$$

An SU(3)_c-invariant quark-antiquark pair cannot decay into a single gluon—even virtually—by color-conservation.
Similarly, (SU(3)_c-invariant) hadrons can neither emit nor absorb a single gluon—by color-conservation.

• All hadron-hadron interaction must be mediated by $SU(3)_c$ -invariant objects: $(n \ge 2)$ -gluons and/or quark-antiquark pairs.

QUARK-ANTIQUARK INTERACTION

So, in a $n^0 + \pi^- \rightarrow n^0 + \pi^-$ scattering, 1-gluon exchange could happen as follows:

... except that two SU(3)_c-invariant hadrons cannot exchange an SU(3)_c-variant gluon and stay SU(3)_c-invariant.
So, the processes depicted in (a) must additionally involve an exchange of at least one more gluon, or a *d*-quark ...

QUARK-ANTIQUARK INTERACTION

So, in a $n^0 + \pi^- \rightarrow n^0 + \pi^-$ scattering, 1-gluon exchange will include

• ... which is still $O(g_c^2)$, but is significantly complicated by the d-quark exchange. The mediating particle effectively becomes another hadron (π^0 , or its *P*-wave excitation, ρ^0 , or ...).

CONCLUSIONS

- Generally speaking,
- the QCD interactions must proceed so as to
- ... not change the color-invariance of the hadrons involved
- ... nor any other (real) intermediate state.

CONCLUSIONS

- QCD interactions favor color-antisymmetrization:
- In a baryon, the three quarks attract each other by way of QCD precisely if they form an $SU(3)_c$ -invariant state.
 - That is the color factor must be totally antisymmetric.
- In a meson, the quark-antiquark pair attract each other by way of QCD precisely if they form an $SU(3)_c$ -invariant state.
 - Two $SU(3)_c$ -invariant hadrons cannot exchange an $SU(3)_c$ -*variant* gluon and stay $SU(3)_c$ -invariant.
- Thus, two hadrons can interact only by exchanging
 - $SU(3)_c$ -invariant objects, consisting of 2 or more of
 - ...gluons and/or quark-antiquark pairs.
 - The hadron-hadron force is thus a "remnant" (*à la* van der Waals).

CONCLUSIONS

- The 1-gluon exchange produces a reasonable qualitative statement (antisymmetrization \Leftrightarrow attraction).
- But, it is indicative of:
 - neither large-distance ($\geq 10^{-15}$ m) confinement
 - nor short-distance ($\ll 10^{-15}$ m) *asymptotic freedom* (next time)
 - Confinement is a large-distance feature
 - akin to the Coulomb (static) field in EM
 - ... formed as a condensate of indefinitely many quanta
 - ... essentially a non-perturbative phenomenon
- Asymptotic freedom is a perturbative result
 - 1973, David Gross & Frank Wiczek, & David Politzer
 - ... a year before the "November (1974) revolution."

Thanks!

Tristan Hubsch

Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

http://homepage.mac.com/thubsch/