(Fundamental) Physics of Elementary Particles

Non-abelian gauge symmetry; QCD Lagrangian,

 color-conservation law and equations of motionTristan Hübsch

Depairtment of Physics and Astronomy
Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

Fundamental Physics of Elementary Particles

PRロGRAM

- A gauge (local) symmetry principle recap
- The partial derivative vs. the gauge-covariant derivative
- General transformation "rules"
- The $S U(3)_{c}$ transformations
- Color as a 3-dimensional charge
- Matrix-valued phases and local symmetry
- Matrix representations of $\operatorname{SU}(3)$

The $S U(3)_{c}$-invariant Lagrangian

- The curvature tensor and the Bianchi identity
- Equations of motion
- Color conservation and equation of continuity

Gauge (Local) Symmetry Principle

PARTIAL VS. GAUGE-CIVARIANT DERIVATIVES

- First and foremost:
- The mathematical object, $\Psi(\boldsymbol{r}, t)$, used to represent a particle
- depends on (is a function of)
external • the position in space and time,
- the phase (as a complex function),
- additional degrees of freedom
- spin
- isospin
- color

Gauge (local symmetry) principle:

- internal coordinates are free to depend on external ones.

Gauge (Local) Symmetry Principle

PARTIAL VS. GAUGE-CIVARIANT DERIVATIVES

- Derivatives compute the rate of change
- So, if $\Psi(\boldsymbol{r}, t)$ also depends on a (\boldsymbol{r}, t)-dependent phase,
- then the rate of change stems from
- varying $\Psi(\boldsymbol{r}, t)$ explicitly, and
- varying $\Psi(r, t)$ implicitly, via varying its phase.

If "gauge" refers to "fixing" that phase,
...then a "gauge-covariant" derivative
\ldots must contain two terms: $D_{\mu}=\partial_{\mu}+A_{\mu}(\boldsymbol{r}, t)$,
where $A_{\mu}(\boldsymbol{r}, t)$ is the gauge potential, a.k.a. connexion.
Mathematicians: $\mathrm{d} x^{\mu} D_{\mu}=\mathrm{d} x^{\mu} \partial_{\mu}+\mathrm{d} x^{\mu} A_{\mu}(\boldsymbol{r}, t)$ connexion 1-form

- is now the (external) coordinate-independent definition.

Gauge (Local) Symmetry Principle

GENERAL TRANSFIRMATIUN "RULES"

- The unitary gauge (local symmetry) transformation is of the form $U_{\varphi}=\exp \{\mathrm{i} \varphi \cdot Q\},\left(U_{\varphi^{+}}=U_{\varphi}{ }^{-1}\right)$
- where φ is the (array of) gauge parameter(s),
- where Q is the (array of) gauge transformation generator(s).
- Then,
- $\Psi(\boldsymbol{r}, t) \rightarrow U_{\varphi} \Psi(r, t)$;
- $\Psi^{+}(\boldsymbol{r}, t) \rightarrow \Psi^{+}(\boldsymbol{r}, t) U_{\varphi^{-1}} ;$
- $\mathfrak{C}(\boldsymbol{r}, t) \rightarrow U_{\varphi} \mathfrak{C}(\boldsymbol{r}, t) U_{\varphi}{ }^{-1}$;
- ... and therefore also: $D_{\mu} \rightarrow U_{\varphi} D_{\mu} U_{\varphi}{ }^{-1}$.

Thus,

- $\partial_{\mu}+A_{\mu}(\boldsymbol{r}, t) \rightarrow U_{\varphi}\left(\partial_{\mu}+A_{\mu}(\boldsymbol{r}, t)\right) U_{\varphi^{-1}}$ implies that
- $A_{\mu}(\boldsymbol{r}, t) \rightarrow U_{\varphi}\left(-i\left(\partial_{\mu} \varphi\right)+A_{\mu}(\boldsymbol{r}, t)\right) U_{\varphi^{-1}}$.

The SU(3)c Transformations

CロLロR AS A 3-DIMENSIGNAL CHARGE

- Recall:
- $\Delta^{++}=(u u u), \quad$ Spin- $^{3} / 2$ baryons
$\left.\begin{array}{l}\Delta^{-}=(d d d), \\ -\Omega^{-}=(s s s) .\end{array}\right\}$
S-states; no orbital angular momentum
Spatially symmetric wave-functions
- It follows that:
either quarks are not fermions (O.W. Greenberg, 1964),

$$
\begin{aligned}
\left.b_{i}, b_{j}^{+}\right]=\delta_{i j}, & {\left[b_{i}, b_{j}\right]=0=\left[b_{i}^{\dagger}, b_{j}^{\dagger}\right], } \\
\left\{f_{i}, f_{j}^{+}\right\}=\delta_{i j}, & \left\{f_{i}, f_{j}\right\}=0=\left\{f_{i}^{+}, f_{j}^{\dagger}\right\}, \\
\left\{\tilde{f}_{i, \alpha}, \tilde{f}_{j, \alpha}^{+}\right\}=\delta_{i j}, & \left\{\tilde{f}_{i, \alpha}, \tilde{f}_{j, \alpha}\right\}=0=\left\{\tilde{f}_{i, \alpha}^{\dagger}, \tilde{f}_{j, \alpha}^{\dagger}\right\}, \\
{\left[\tilde{f}_{i, \alpha}, \tilde{f}_{j, \beta}^{+}\right]=\delta_{i j}, } & {\left.\left[\tilde{f}_{i, \alpha}, \tilde{f}_{j, \beta}\right]=0=\left[\tilde{f}_{i, \alpha}^{\dagger}, \tilde{f}_{j, \alpha}^{\dagger}\right], \quad \alpha \neq \beta, \quad\right\} \text { fermions, } }
\end{aligned}
$$

....or...

The SU(3)c Transformations

CILIR AS A 3-DIMENSIONAL CHARGE

- Quarks are fermions,
... but have an additional degree of freedom.
- January 1965: Boris V. Struminsky, Dubna (Moscow, Russia)
- ...then with N. Bogolyubov + Albert Tavchelidze
- May 1965, A. Tavchelidze: ICTP, Trieste (Italy)
- December 1965, Moo-Young Han + Yoichiro Nambu
- integrally charged, colored quarks + 8 (color-anticolor) gluons
- Final version (w/fractionally charged quarks): 1974, William Bardeen, Harald Fritzsch \& Murray Gell-Mann
- Quark: $\Psi_{n}{ }^{\alpha A}(\boldsymbol{r}, t)$, where:
- $\mathrm{n}=u, d, s, c, \ldots$ indicates the flavor
- $a=$ red, blue, yellow indicates the "color"

- $A=1,2,3,4$ indicates the component of the Dirac spinor
- P.S.: Greenberg subsequently proved equivalence ...

The SU(3)c Transformations

MATRIX-VALUED PHASES AND LICAL SYMMETRY

- Without spelling out the Dirac components,

$$
\boldsymbol{\Psi}_{n}(\mathrm{x})=\hat{\mathrm{e}}_{\alpha} \Psi_{n}^{\alpha}(\mathrm{x})=\hat{\mathrm{e}}_{\mathrm{r}} \Psi_{n}^{\mathrm{r}}(\mathrm{x})+\hat{\mathrm{e}}_{\mathrm{y}} \Psi_{n}^{\mathrm{y}}(\mathrm{x})+\hat{\mathrm{e}}_{\mathrm{b}} \Psi_{n}^{\mathrm{b}}(\mathrm{x})=\left[\begin{array}{l}
\Psi_{n}^{\mathrm{r}}(\mathrm{x}) \\
\Psi_{n}^{\mathrm{y}}(\mathrm{x}) \\
\Psi_{n}^{\mathrm{b}}(\mathrm{x})
\end{array}\right],
$$

- ... where $n=u, d, s, c, b, t$ indicates the "flavor."
- Arranging the colors in a matrix format,
- the quark wave-function phase becomes 3×3 matrix-valued,
- as does the unitary phase-transformation operator U_{φ}.

$$
\boldsymbol{\Psi}_{n}(\mathrm{x}) \rightarrow e^{i g_{c} \boldsymbol{\varphi}(\mathrm{x}) / \hbar} \boldsymbol{\Psi}_{n}(\mathrm{x}), \quad \boldsymbol{\varphi}(\mathrm{x}):=\varphi^{a}(\mathrm{x}) Q_{a}
$$

- where Q_{a} are 3×3 matrices
- Hermitian, so U_{φ} would be unitary,
- traceless, so U_{φ} would be unimodular. Diagonal phase-transformation pertains to electromagnetism...

The SU(3)c Transformations

MATRIX-VALUED PHASES AND LロCAL SYMMETRY

- Gauge (local symmetry) transformations

$$
\begin{aligned}
& {[i \hbar \not \square-m c] \mathbf{\Psi}_{n}(\mathrm{x})=0 \rightarrow } {\left[i \hbar \square^{\prime}-m c\right] \boldsymbol{\Psi}_{n}^{\prime}(\mathbf{x})=0 } \\
& D_{\mu} \rightarrow D_{\mu}^{\prime}:=U_{\boldsymbol{\varphi}} D_{\mu} U_{\boldsymbol{\varphi}}^{-1} \\
& U_{\boldsymbol{\varphi}}:=e^{i g_{c} \boldsymbol{\varphi} / \hbar}
\end{aligned}
$$

Notice the multi-component-ness:

$$
\not \subset \mathbf{\Psi}_{n} \equiv \boldsymbol{\gamma}^{\mu} D_{\mu} \mathbf{\Psi}_{n}, \quad\left(\not \square \mathbf{\Psi}_{n}\right)^{\alpha} \equiv \boldsymbol{\gamma}^{\mu} D_{\mu}^{\alpha} \Psi_{n}^{\beta}, \quad\left(\not \square \Psi_{n}\right)^{\alpha A} \equiv\left(\gamma^{\mu}\right)^{A}{ }_{B} D_{\mu}{ }_{\beta}^{\alpha} \Psi_{n}^{\beta B},
$$

... which is usually suppressed in notation.
In general:

$$
D_{\mu}:=\mathbb{1} \partial_{\mu}+\frac{i g_{c}}{\hbar c} A_{\mu}^{a} Q_{a}
$$

where however the form of Q_{a} depends on what it acts upon.

The SU(3)c Transformations

MATRIX REPRESENTATIロNS ロF SU(3)

- As obtained in the "general" formalism:
$A_{\mu}^{\prime a} Q_{a}=A_{\mu}^{a} U_{\boldsymbol{\varphi}} Q_{a} U_{\boldsymbol{\varphi}}^{-1}+\frac{\hbar c}{i g_{c}} U_{\boldsymbol{\varphi}}\left(\partial_{\mu} U_{\boldsymbol{\varphi}}^{-1}\right)=A_{\mu}^{a} U_{\boldsymbol{\varphi}} Q_{a} U_{\boldsymbol{\varphi}}^{-1}-c\left(\partial_{\mu} \varphi^{a}\right) Q_{a}$,
- ... where

$$
\mathbb{A}_{\mu}^{\prime}=\cup_{\boldsymbol{\varphi}} \mathbb{A}_{\mu} \cup_{\boldsymbol{\varphi}}^{-1}-c\left(\partial_{\mu} \boldsymbol{\varphi}\right), \quad \mathbb{A}_{\mu}:=A_{\mu}^{a} Q_{a}
$$

... and where

$$
\left[Q_{a}, Q_{b}\right]=i f_{a b}^{c} Q_{c} .
$$

are the 3×3 matrices that act upon the (quark) color 3-vector.
But, what about the Q_{a} 's acting on the $8 A_{\mu}{ }^{a}$'s or $8 \varphi^{a}$ s?

$$
\begin{aligned}
\delta A_{\mu}^{a}=-\left(D_{\mu} \boldsymbol{\varphi}\right)^{a}: & =-c\left(\partial_{\mu} \varphi^{a}\right)+\frac{i g_{c}}{\hbar c} A_{\mu}^{b}\left(\widetilde{Q}_{b}\right)_{c} \varphi^{c} a, b, c=1, \ldots, 8 \\
\left(\widetilde{Q}_{b}\right)_{c}{ }^{a}=i f_{b c}{ }^{a}, \quad & =-\left(\partial_{\mu} \varphi^{a}\right)-\frac{g_{c}}{\hbar c} A_{\mu}^{b} f_{b c}{ }^{a} \varphi^{c},
\end{aligned}
$$

The SU(3)c-invariant Lagrangian

THE CURVATURE TENSGR AND THE BIANCHI IDENTITY

- Notice the differences: $D_{\mu}^{\prime}=U_{\varphi} D_{\mu} U_{\varphi}{ }^{-1}$ implies

$$
\begin{aligned}
& \Rightarrow \quad A_{\mu}^{\prime}=A_{\mu}-\left(\partial_{\mu} \varphi\right) \text { for electromagnetism, } \\
& \Rightarrow \quad\left(A^{\prime}\right)_{\mu}^{a}=A_{\mu}^{a}-\left(D_{\mu} \varphi^{a}\right)=A_{\mu}^{a}-\left(\partial_{\mu} \varphi^{a}\right)+\begin{array}{|c}
\frac{g_{c}}{\hbar c} A_{\mu}^{b} f_{b c}{ }^{a} \varphi^{c} \\
\text { nonlinear }
\end{array}
\end{aligned}
$$

Also,

$$
F_{\mu v}\left(A^{\prime}\right)=F_{\mu v}(A),
$$

But, for the non-abelian (matrix-valued) case:

$$
\begin{aligned}
& \left(\partial_{\mu}\left(A^{\prime}\right)_{v}^{a}-\partial_{\nu}\left(A^{\prime}\right)_{\mu}^{a}\right) \neq\left(\partial_{\mu} A_{v}^{a}-\partial_{\nu} A_{\mu}^{a}\right) \\
& \left(\partial_{\mu}\left(A^{\prime}\right)_{v}^{a}-\partial_{\nu}\left(A^{\prime}\right)_{\mu}^{a}\right) \neq U_{\varphi}\left(\partial_{\mu} A_{v}^{a}-\partial_{\nu} A_{\mu}^{a}\right) \cup_{\varphi}^{-1}
\end{aligned}
$$

- Recall however that

$$
D_{\mu}^{\prime}=U_{\boldsymbol{\varphi}} D_{\mu} U_{\boldsymbol{\varphi}}^{-1}
$$

The SU(3)c-invariant Lagrangian

THE CURVATURE TENSGR AND THE BIANCHI IDENTITY

- In electrodynamics:

$$
\left[D_{\mu}, D_{v}\right]=\left[\partial_{\mu}+\frac{i q}{\hbar c} A_{\mu}, \partial_{\nu}+\frac{i q}{\hbar c} A_{\nu}\right]=+\frac{i q}{\hbar c}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)=\frac{i q}{\hbar c} F_{\mu v} .
$$

- It must be a commutator, so that the result would not be a differential operator, but an "ordinary" function.
- A commutator also computes the mismatch in ... well,
...commuting.
In general: $[D, D]=($ torsion $) \cdot D+($ curvature $)$.
So:

$$
\begin{aligned}
& \mathbb{F}_{\mu \nu}: \\
&=\frac{\hbar c}{i g_{c}}\left[D_{\mu}, D_{\nu}\right]=\frac{\hbar c}{i g_{c}}\left[\partial_{\mu}+\frac{i g_{c}}{\hbar c} A_{\mu}^{b} Q_{b}, \partial_{\nu}+\frac{i g_{c}}{\hbar c} A_{\nu}^{c} Q_{c}\right] \\
&=\left(\partial_{\mu} A_{v}^{a}-\partial_{\nu} A_{\mu}^{a}\right) Q_{a}+\frac{\hbar c}{i g_{c}}\left(\frac{i g_{c}}{\hbar c}\right)^{2} A_{\mu}^{b} A_{\nu}^{c}\left[Q_{b}, Q_{c}\right]=F_{\mu \nu}^{a} Q_{a} \\
& F_{\mu \nu}^{a}:=\left(\partial_{\mu} A_{v}^{a}-\partial_{\nu} A_{\mu}^{a}\right)-\frac{g_{c}}{\hbar c} f_{b c}^{a} A_{\mu}^{b} A_{v}^{c}
\end{aligned}
$$

Digression

CURVATURE AND TロRSIロN

- Picture the result of computing $\left[D, D^{\prime}\right]=D D^{\prime}-D^{\prime} D$
- ...in the total space of a fiber bundle:

Generally, the rate-of-change operators (D) will fail to commute both in the fiber-space direction (= curvature: at the same "place" but of a different "value") and in the
base-space direction (= torsion: not even at the same "place").

The $S U(3)_{c}$-invariant Lagrangian

THE CURVATURE TENSDR AND THE BIANCHI IDENTITY

- Of course, we have that

$$
\begin{aligned}
\mathbb{F}_{\mu \nu} \rightarrow \mathbb{F}_{\mu \nu}^{\prime}:=\frac{i \hbar c}{g_{c}}\left[D_{\mu}^{\prime}, D_{\nu}^{\prime}\right] & =\frac{i \hbar c}{g_{c}}\left[U_{\boldsymbol{\varphi}} D_{\mu} U_{\boldsymbol{\varphi}}^{-1}, U_{\boldsymbol{\varphi}} D_{\nu} \cup_{\boldsymbol{\varphi}}^{-1}\right] \\
& =\frac{i \hbar c}{g_{c}} U_{\boldsymbol{\varphi}}\left[D_{\mu}, D_{\nu}\right] \cup_{\boldsymbol{\varphi}}^{-1}, \\
& =U_{\boldsymbol{\varphi}} \mathbb{F}_{\mu \nu} \cup_{\boldsymbol{\varphi}}^{-1} .
\end{aligned}
$$

Independently,

$$
\begin{aligned}
& D_{\mu}\left(\mathbb{F}_{v \rho}\right)=\left[D_{\mu}, \mathbb{F}_{\mu v}\right]=\frac{\hbar c}{i g c}\left[D_{\mu},\left[D_{v}, D_{\rho}\right]\right] \\
& {[A,[B, C]]+[B,[C, A]]+[C,[A, B]] \equiv 0,} \\
& \quad \varepsilon^{\mu v \rho \sigma} D_{\mu}\left(\mathbb{F}_{v \rho}\right)=\frac{\hbar c}{i g c} \varepsilon^{\mu v \rho \sigma}\left[D_{\mu},\left[D_{v}, D_{\rho}\right]\right]=0,
\end{aligned}
$$

- And, for all $\operatorname{SU}(n)$:

$$
\operatorname{Tr}\left[\mathbb{F}_{\mu \nu}\right]=F_{\mu \nu}^{k} \operatorname{Tr}\left[Q_{k}\right]=0
$$

The $S U(3)_{c}$-invariant Lagrangian

EqUATIGNS OF MOTION

- Since the matrix-valued ($\mathfrak{s u}(3)$ algebra-valued) curvature transforms by similarity transformation,
- ... with respect to which the trace function is invariant,

$$
\begin{aligned}
\operatorname{Tr}\left[\mathbb{F}_{\mu \nu} \mathbb{F}^{\mu \nu}\right] \rightarrow \operatorname{Tr}\left[\mathbb{F}_{\mu \nu}^{\prime} \mathbb{F}^{\prime \mu \nu}\right] & =\operatorname{Tr}\left[\cup_{\boldsymbol{\varphi}} \mathbb{F}_{\mu \nu} \cup_{\boldsymbol{\varphi}}^{-1} U_{\boldsymbol{\varphi}} \mathbb{F}^{\mu \nu} \cup_{\boldsymbol{\varphi}}^{-1}\right] \\
& =\operatorname{Tr}\left[\mathbb{F}_{\mu \nu} \mathbb{F}^{\mu \nu} U_{\boldsymbol{\varphi}}^{-1} U_{\boldsymbol{\varphi}}\right] \\
& =\operatorname{Tr}\left[\mathbb{F}_{\mu \nu} \mathbb{F}^{\mu \nu}\right]
\end{aligned}
$$

... so one chooses:

$$
\begin{aligned}
\mathscr{L}_{Q C D}= & \sum_{n} \operatorname{Tr}\left[\overline{\mathbf{\Psi}}_{n}(\mathrm{x})\left[i \hbar c \not \square-m_{n} c^{2}\right] \mathbf{\Psi}_{n}(\mathrm{x})\right]-\frac{1}{4} \operatorname{Tr}\left[\mathbb{F}_{\mu \nu} \mathbb{F}^{\mu \nu}\right] \\
= & \sum_{n} \bar{\Psi}_{\alpha n}(\mathrm{x})\left[i \boldsymbol{\gamma}^{\mu}\left(\hbar c \delta_{\beta}^{\alpha} \partial_{\mu}+i g_{c} A_{\mu}^{a}\left(\frac{1}{2} \lambda_{a}\right)^{\alpha}{ }_{\beta}\right)-m_{n} c^{2} \delta_{\beta}^{\alpha}\right] \Psi_{n}^{\beta}(\mathrm{x}) \\
& -\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}
\end{aligned}
$$

The $S U(3)_{c}$-invariant Lagrangian

EqUATIGNS OF MQTION

- Variation by $A^{a}{ }_{\mu}$ yields:

$$
\begin{aligned}
D_{\mu} F^{a \mu v} & =g_{c} \sum_{n} \bar{\Psi}_{n \alpha A}\left(\gamma^{v}\right)^{A}{ }_{B}\left(\frac{1}{2} \lambda^{a}\right)^{\alpha}{ }_{\beta} \Psi_{n}^{\beta B}, \\
j_{(q)}^{a \mu} & :=g_{c} \sum_{n} \bar{\Psi}_{n \alpha A}\left(\gamma^{\mu}\right)^{A}{ }_{B}\left(\frac{1}{2} \lambda^{a}\right)^{\alpha}{ }_{\beta} \Psi_{n}^{\beta B} .
\end{aligned}
$$

But, while

$$
\left(D_{\mu} F^{\mu v}=\partial_{\mu} F^{\mu v}\right)=g_{e} \bar{\Psi}_{A}\left(\gamma^{\nu}\right)_{B}^{A} \Psi^{A},
$$

implies

$$
\partial_{\nu} j_{e}^{\nu}=\frac{4 \pi \epsilon_{0} c}{4 \pi} \partial_{\nu} \partial_{\mu} F^{\mu \nu} \equiv 0, \quad \text { since } \quad F_{\mu \nu}=-F_{\nu \mu}
$$

the same is not true of $D_{\mu} F^{a \mu \nu}$.

- Instead:

$$
D_{\nu} j_{(q)}^{a v}=D_{\nu} D_{\mu} F^{a \mu v}=-\frac{1}{2}\left[D_{\mu}, D_{\nu}\right] F^{a \mu v}=-\frac{1}{2} f_{b c}^{a} F_{\mu v}^{b} F^{c \mu v}=0
$$

The $S U(3)_{c}$－invariant Lagrangian

CロLロR CロNGERVATIロN AND EQUATIロN ロF CONTINUITY
－This does not lead to a conserved color：

$$
\begin{aligned}
0 & =D_{\mu} j_{(q)}^{a \mu}=\partial_{\mu} j_{(q)}^{a \mu}-\frac{g_{c}}{\hbar c} f_{b c}^{a} A_{\mu}^{b} j_{(q)}^{c \mu} \\
& \Rightarrow \quad \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\int_{V} \mathrm{~d}^{3} \vec{r} j_{(q)}^{a 0}\right)=-\oint_{\partial V} \mathrm{~d}^{2} \vec{r} \cdot \vec{j}_{(q)}^{a}+\frac{g_{c}}{\hbar c} f^{a}{ }_{b c}\left(\int_{V} \mathrm{~d}^{3} \vec{r} A_{\mu}^{b} j_{(q)}^{c \mu}\right),
\end{aligned}
$$

\ldots as the additional right－hand side term doesn＇t vanish．
However，use that

$$
\begin{aligned}
D_{\mu} F^{a \mu v} & =\partial_{\mu} F^{a \mu v}-\frac{g_{c}}{\hbar c} f_{b c}{ }^{a} A_{\mu}^{b} F^{c \mu v}, \\
D_{\mu} F^{a \mu v} & =j_{(q)}^{a v} \Rightarrow \partial_{\mu} F^{a \mu \nu}=J_{(c)}^{a v}, \quad \Rightarrow \quad \partial_{v} J_{(c)}^{a v}=0, \\
J_{(c)}^{a v} & :=j_{(q)}^{a \mu}+\frac{g_{c}}{\hbar c} f_{b c}{ }^{a} A_{\mu}^{b} F^{c \mu v},
\end{aligned}
$$

2．．．．so both quarks and gluons contribute to the color charge：

$$
Q_{(c)}^{a}:=\int \mathrm{d}^{3} \vec{r} J_{(c)}^{a 0}=g_{c} \int \mathrm{~d}^{3} \vec{r}\left(\sum_{n_{17}}\left[\bar{\Psi}_{n} \boldsymbol{\gamma}^{\mu} \frac{1}{2} \lambda^{a} \Psi_{n}\right]+\frac{1}{\hbar c} f_{b c}{ }^{a} A_{\mu}^{b} F^{c \mu v}\right)
$$

The $S U(3)_{\mathrm{c}}$－invariant Lagrangian

CロLロR CロNSERVATIロN AND EQUATIロN ロF CロNTINUITY
－This changes the analogues of Gauss－Ampère laws．
－Consider the $v=0$ case of the equation $D_{\mu} F^{a \mu \nu}=j(q)^{a v}$ ：

$$
\partial_{\mu} F^{a \mu 0}-\frac{g_{c}}{\hbar c} f^{a}{ }_{b c} A_{\mu}^{b} F^{c \mu 0}=j_{(q)}^{a 0},
$$

．．．and define：

$$
\vec{E}^{a}:=\hat{\mathrm{e}}_{i} F^{a i 0}, \quad \rho_{(q)}^{a}:=j_{(q)}^{a 0}, \quad \vec{A}^{a}:=-\hat{\mathrm{e}}^{i} A_{i}^{a}
$$

Then，

$$
\vec{\nabla} \cdot \vec{E}^{a}=\rho_{(\varphi)}^{a}-\frac{g_{c}}{\hbar c} f^{a}{ }_{b c} \vec{A}^{b} \cdot \vec{E}^{c},
$$

and
－it is impossible to write analogues of Maxwell＇s equations with no reference to the gauge potentials
－both quarks and gluons serve as＂sources＂for the color force－field
－the equations are nonlinear．

The $S U(3)_{\mathrm{c}}$－invariant Lagrangian

CロLロR CロNSERVATIロN AND EQUATIGN GF CONTINUITY
－To sum up：

$$
\begin{aligned}
& D_{\mu} \mathbb{F}^{\mu \nu}=\mathbb{J}_{(q)}^{\nu} \quad \text { and } \quad \varepsilon^{\mu \nu \rho \sigma} D_{\mu}\left(\mathbb{F}_{\nu \rho}\right)=0, \\
& \mathbb{J}_{(q)}^{v}:=g_{c}\left(\sum_{n} \bar{\Psi}_{n \alpha A}\left(\gamma^{\mu}\right)^{A}{ }_{B}\left(\frac{1}{2} \lambda^{a}\right)^{\alpha}{ }_{\beta} \Psi_{n}^{\alpha A}\right) Q_{a} \\
& \partial_{\mu} \mathbb{F}^{\mu \nu}=\mathbb{J}_{(c)}^{v}, \quad \mathbb{J}_{(c)}^{v}:=\mathbb{J}_{(q)}^{v}+\frac{i g_{c}}{\hbar c}\left[\mathbb{A}_{\mu}, \mathbb{F}^{\mu v}\right], \\
& \partial_{\nu} \Psi_{(c)}^{\nu}=0, \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{V} \mathrm{~d}^{3} \vec{r} \mathbb{J}_{(c)}^{0}=-\oint_{\partial V} \mathrm{~d}^{2} \vec{\sigma} \cdot \overrightarrow{\mathbb{J}}_{(c)} .
\end{aligned}
$$

are the matrix－valued analogues of
－the Maxwell＇s equations
－the conserved color－current \＆color－charge．

Thanks!

Tristan Hubsch

Department of Physics and Astronomy
Howard University, Washington DC
Prirodno-Matematički Fakultet
\%. Univerzitet u Novom Sadu
http://homepage.mac.com/thubsch/

