(Fundamental) Physics of Elementary Particles

Quantum Electrodynamics of Leptons: Feynman Rules and Renormalization

Tristan Hübsch

Department of Physics and Astronomy
Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

Fundamental Physics of Elementary Particles

PRロGRAM

- Quantum Electrodynamics Calculations
- The Lagrangian and classical field theory
- Feynman rules: fundamental processes
- ... and their combinations
- Effective Cross-Sections and Lifetimes
- Mott and Rutherford scattering
- Electron-positron annihilation/creation

Renormalization

- A computation
- ... and its physical meaning
- The renormalization "group"
- Effective action \& partition functional

Quantum Electrodynamics Calculations

THE LAGRANGIAN AND CLASSICAL FIELD THEDRY

- Recall:

$$
\partial_{\mu} \rightarrow D_{\mu}:=\partial_{\mu}+\frac{i}{\hbar c} A_{\mu} Q,
$$

$$
\begin{aligned}
\mathscr{L}_{Q E D}= & \bar{\Psi}(\mathrm{x})\left[i \hbar c \not \square-m c^{2}\right] \Psi(\mathrm{x})-\frac{4 \pi \epsilon_{0}}{4} F_{\mu \nu} F^{\mu v}, \quad \not \subset:=\boldsymbol{\gamma}^{\mu} D_{\mu}, \\
= & \bar{\Psi}(\mathrm{x})\left[\boldsymbol{\gamma}^{\mu}\left(\hbar c i \partial_{\mu}-q_{\Psi} A_{\mu}\right)-m c^{2}\right] \Psi(\mathrm{x}) \\
& -\frac{4 \pi \epsilon_{0}}{4}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) \eta^{\mu \rho} \eta^{v \sigma}\left(\partial_{\rho} A_{\sigma}-\partial_{\sigma} A_{\rho}\right) .
\end{aligned}
$$

To obtain (classical) equations of motion, vary.

$$
\begin{aligned}
\frac{\delta}{\delta A_{\rho}(\mathrm{x})} & \int \mathrm{d}^{4} \mathrm{y} \mathscr{F}\left(A_{\mu}(\mathrm{y}),\left(\partial_{\mu} A_{\nu}(\mathrm{y})\right)\right) \\
& =\int \mathrm{d}^{4} \mathrm{y} \frac{\delta A_{\sigma}(\mathrm{y})}{\delta A_{\rho}(\mathrm{x})} \frac{\delta}{\delta A_{\sigma}(\mathrm{y})} \mathscr{F}\left(A_{\mu}(\mathrm{y}),\left(\partial_{\mu} A_{\nu}(\mathrm{y})\right)\right) \\
& =\int \mathrm{d}^{4} \mathrm{y} \delta^{4}(\mathrm{x}-\mathrm{y}) \delta_{\rho}^{\sigma} \frac{\partial}{\partial A_{\sigma}(\mathrm{y})} \mathscr{F}\left(A_{\mu}(\mathrm{y}),\left(\partial_{\mu} A_{\nu}(\mathrm{y})\right)\right) \\
& =\frac{\partial}{\partial A_{\rho}(\mathrm{x})} \mathscr{F}\left(A_{\mu}(\mathrm{x}),\left(\partial_{\mu} A_{\nu}(\mathrm{x})\right)\right)
\end{aligned}
$$

Quantum Electrodynamics Calculations

THE LAGRANGIAN AND CLASSICAL FIELD THEGRY

- Using thus

$$
\begin{aligned}
\frac{\partial}{\partial A_{\rho}(\mathrm{x})} A_{\mu}(\mathrm{x}) & =\delta_{\mu}^{\rho}, & \frac{\partial}{\partial A_{\rho}(\mathrm{x})}\left(\partial_{\mu} A_{\nu}(\mathrm{x})\right) & =0 \\
\frac{\partial}{\partial\left(\partial_{\rho} A_{\sigma}(\mathrm{x})\right)} A_{\mu}(\mathrm{x}) & =0, & \frac{\partial}{\partial\left(\partial_{\rho} A_{\sigma}(\mathrm{x})\right)}\left(\left(\partial_{\mu} A_{\nu}(\mathrm{x})\right)\right. & =\delta_{\mu \nu}^{\rho \sigma}:=\delta_{\mu}^{\rho} \delta_{v}^{\sigma}
\end{aligned}
$$

we obtain

$$
\partial_{\mu} \frac{\partial \mathscr{L}_{Q E D}}{\partial\left(\partial_{\mu} A_{\nu}\right)}=\frac{\partial \mathscr{L}_{Q E D}}{\partial A_{\nu}} \quad \Rightarrow \quad \partial_{\mu} F^{\mu v}=\frac{q_{\Psi}}{4 \pi \epsilon_{0}} \bar{\Psi} \gamma^{\nu} \Psi,
$$

and

Quantum Electrodynamics Calculations

THE LAGRANGIAN AND CLASSICAL FIELD THEDRY

- So, varying with respect to A_{μ} and $\bar{\Psi}$ (from the left),

$$
\partial_{\mu} F^{\mu v}=\frac{q_{\Psi}}{4 \pi \epsilon_{0}} \bar{\Psi} \boldsymbol{\gamma}^{\nu} \Psi, \quad\left[i \hbar c \boldsymbol{\gamma}^{\mu} \partial_{\mu}-m c^{2} \mathbb{1}\right] \Psi=q_{\Psi} A_{\mu} \boldsymbol{\gamma}^{\mu} \Psi .
$$

- A little fermionic digression:
- Algebra: $[f, g]=0,[f, \psi]=[f, \chi]=0=[g, \psi]=[g, \chi]$, but $\{\psi, \chi\}=0$. - Calculus:
$\left[\frac{\partial}{\partial f}, \frac{\partial}{\partial g}\right]=0,\left[\frac{\partial}{\partial f}, \frac{\partial}{\partial \psi}\right]=\left[\frac{\partial}{\partial f}, \frac{\partial}{\partial \chi}\right]=0=\left[\frac{\partial}{\partial g}, \frac{\partial}{\partial \psi}\right]=\left[\frac{\partial}{\partial g}, \frac{\partial}{\partial \chi}\right]$, but $\left\{\frac{\partial}{\partial \psi}, \frac{\partial}{\partial \chi}\right\}=0$.
...so

$$
\frac{\partial}{\partial \psi} \chi \cdots=-\chi \frac{\partial}{\partial \psi} \cdots \text { and } \frac{\partial}{\partial \chi} \psi \cdots=-\psi \frac{\partial}{\partial \chi} \cdots,
$$

- Alternatively:

$$
\psi \frac{\overleftarrow{\partial}}{\partial \psi}=1, \quad(\psi \chi) \frac{\overleftarrow{\partial}}{\partial \psi}=-\left(\psi \frac{\overleftarrow{\partial}}{\partial \psi}\right) \chi=-\chi, \quad(\psi \chi) \frac{\overleftarrow{\partial}}{\partial \chi}=\psi\left(\chi \frac{\overleftarrow{\partial}}{\partial \chi}\right)=\psi, \text { etc. }
$$

Quantum Electrodynamics Calculations

FEYNMAN RULES: FUNDAMENTAL PRロCESSES

- 4-momenta \& polarizations
- Denote in/out-coming 4-momenta by $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots$ Denote internal 4-momenta by $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots$
- For spin- $1 / 2$ particles, orient lines along with 4 -momenta, oppositely for spin $-1 / 2$ antiparticles.
- Polarizations:

Spin- $1 / 2$ particle
incoming outgoing incoming outgoing incoming Photon

$$
s=\text { spin projection }=\uparrow, \downarrow
$$

\bar{u}_{s}
$\bar{v}_{S} \quad(\cong$ spin $-1 / 2$ particle, travels backwards in time)
$\epsilon^{\mu} \quad \epsilon^{\mu} p_{\mu}=0 \quad$ and $\quad \epsilon^{0}=0$
$\epsilon^{\mu *}$

Quantum Electrodynamics Calculations

FEYNMAN RULES：FUNDAMENTAL PRDCESSES
－Vertices：

$$
\mathscr{L}_{\mathrm{QED}}=\cdots-\bar{\Psi}_{A}\left(\boldsymbol{\gamma}^{\mu}\right)^{A}{ }_{B}\left(q_{\Psi} A_{\mu}\right) \Psi^{B}+\ldots
$$

Internal propagations＝lines：

$$
\text { spin- } 112 \text { particle: } \longrightarrow \mathrm{q}_{j} \quad \rightarrow \frac{i}{\not \mathbb{q}_{j}-m_{j} c}=i \frac{\not ⿴ 囗 ⿱ 一 一 ⿰ 亻_{j}+m_{j} c \mathbb{1}}{\mathrm{q}_{j}^{2}-m_{j}^{2} c^{2}},
$$

－．．．which are off－shell．
－4－momentum conservation：
－assign each vertex a factor $(2 \pi)^{4} \delta^{4}\left(\sum_{j} \mathrm{k}_{j}\right)$ ，
－．．．just like in Kirchoff rules for electrical circuits．

Quantum Electrodynamics Calculations

FEYNMAN RULES: FUNDAMENTAL PRロCESSES

- Integrate over $(2 \pi)^{-4} \mathrm{~d}^{4} \mathrm{q}_{j}$, for all internal 4-momenta.
- Notice, the δ-functions at each vertex are used to eliminate some of the integrations over internal 4-momenta. Do the math!
- Closed internal (virtual) fermion loops incur " $\times(-1)$ " each.
- The result equals $-i \mathfrak{M}(2 \pi)^{4} \delta^{4}\left(\Sigma_{j} \mathrm{p}_{j}\right)$,
- ...from which we read off the matrix element, \mathfrak{M}.

All amplitudes that contribute to the same process,

- (as defined by incoming and outgoing particle states)
- are summed to produce the total amplitude of the process.

If the Feynman graphs for two amplitudes, \mathfrak{M}_{1} and \mathfrak{M}_{2}, differ by the swap of two identical fermions,

- they must be added with a relative sign -1 .

Quantum Electrodynamics Calculations

cambinations af Fundamental Pracesses

- Twelve Apostles:

Quantum Electrodynamics Calculations

CロMBINATIロNS ロF FUNDAMENTAL PRロCESSES
－1st：

$\int \frac{\mathrm{d}^{4} \mathrm{q}}{(2 \pi)^{4}}(2 \pi)^{4} \delta^{4}\left(\mathrm{p}_{1}-\mathrm{p}_{3}-\mathrm{q}\right)(2 \pi)^{4} \delta^{4}\left(\mathrm{p}_{2}-\mathrm{p}_{4}+\mathrm{q}\right)$
$\left[\overline{u^{s_{3}}}{ }_{A}\left(\mathrm{p}_{3}\right)\left(i g_{e} \gamma^{\mu A}{ }_{B}\right) u^{s_{1}, B}\left(\mathrm{p}_{1}\right)\right]\left(\frac{-i \eta_{\mu v}}{\mathrm{q}^{2}}\right)\left[\overline{U^{s_{4}}} C\left(\mathrm{p}_{4}\right)\left(i g_{e} \gamma^{\nu C_{D}}\right) U^{s_{2}, D}\left(\mathrm{p}_{2}\right)\right]$
－Using the 1 st δ－function，sets $q=p_{1}-p_{3}$ ，and removes the integration（but not the factors of 2π ）．
－This turns the 2 nd δ－function into $\delta^{4}\left(\mathrm{p}_{1}+\mathrm{p}_{2}-\mathrm{p}_{3}-\mathrm{p}_{4}\right)$ ．

Quantum Electrodynamics Calculations

CロMBINATIロNS ロF FUNDAMENTAL PRロCESSES
－A bit of simplifying yields

$$
\begin{aligned}
& \frac{i g_{e}^{2}(2 \pi)^{4}}{\left(\mathrm{p}_{1}-\mathrm{p}_{3}\right)^{2}} \delta^{4}\left(\mathrm{p}_{2}-\mathrm{p}_{4}+\mathrm{p}_{1}-\mathrm{p}_{3}\right) \\
& \quad\left[\bar{u}^{s^{3}}\left(\mathrm{p}_{3}\right) \gamma^{\mu A}{ }_{B} u^{s_{1}, B}\left(\mathrm{p}_{1}\right)\right]\left[\bar{U}^{s_{4}}{ }_{C}\left(\mathrm{p}_{4}\right) \gamma_{\mu}{ }^{C}{ }_{D} U^{s_{2}, D}\left(\mathrm{p}_{2}\right)\right],
\end{aligned}
$$

－which lets us identify

$$
\mathfrak{M}_{(a)}=-\frac{g_{e}^{2}}{\left(\mathrm{p}_{1}-\mathrm{p}_{3}\right)^{2}}\left[\bar{u}^{s_{3}}\left(\mathrm{p}_{3}\right) \gamma^{\mu A_{B}} u^{s_{1, B}}\left(\mathrm{p}_{1}\right)\right]\left[\bar{U}^{s_{4}}{ }_{C}\left(\mathrm{p}_{4}\right) \gamma_{\mu}{ }^{C}{ }_{D} U^{s_{2}, D}\left(\mathrm{p}_{2}\right)\right] .
$$

If the spins $\left(s_{j}\right)$ of the in／out particles are known，insert them， and use the Dirac spinors and Dirac matrices as given before．
－If they are not known／measured，one must sum over all possible contributions．
－Note，however，that we need $|\mathfrak{M}|^{2}$ ，not \mathfrak{M} alone．

Quantum Electrodynamics Calculations

CロMBINATIロNS ロF FUNDAMENTAL PRロCESSES
－But， \mathfrak{M}^{\dagger} contains the conjugate factor：

$$
\begin{aligned}
& {\left[\bar{u}_{A}\left(\mathrm{p}_{3}\right) \gamma^{\mu A}{ }_{B} u^{B}\left(\mathrm{p}_{1}\right)\right]^{\dagger}=\left[u^{\dagger}\left(\mathrm{p}_{3}\right) \boldsymbol{\gamma}^{0} \boldsymbol{\gamma}^{\mu} u\left(\mathrm{p}_{1}\right)\right]^{\dagger}=\left[u^{\dagger}\left(\mathrm{p}_{1}\right)\left(\boldsymbol{\gamma}^{\mu}\right)^{\dagger}\left(\boldsymbol{\gamma}^{0}\right)^{\dagger} u\left(\mathrm{p}_{3}\right)\right], } \\
&=\left[u^{\dagger}\left(\mathrm{p}_{1}\right) \mathbb{1}\left(\boldsymbol{\gamma}^{u}\right)^{\dagger} \boldsymbol{\gamma}^{0} u\left(\mathrm{p}_{3}\right)\right]=\left[u^{\dagger}\left(\mathrm{p}_{1}\right) \boldsymbol{\gamma}^{0} \boldsymbol{\gamma}^{0}\left(\boldsymbol{\gamma}^{u}\right)^{\dagger} \boldsymbol{\gamma}^{0} u\left(\mathrm{p}_{3}\right)\right], \\
&\left.\left.\mathrm{p}_{1}\right) \overline{\boldsymbol{\gamma}}^{\mu} u\left(\mathrm{p}_{3}\right)\right], \quad \overline{\boldsymbol{\gamma}}^{\mu}:=\boldsymbol{\gamma}^{0}\left(\boldsymbol{\gamma}^{\mu}\right)^{+} \boldsymbol{\gamma}^{0},
\end{aligned}
$$

．．．so（the sum over spins of）$|\mathfrak{M}|^{2}$ contains the factor：

$$
\begin{gathered}
\sum_{s_{1}, s_{3}}[\underbrace{c}_{\left.u^{s_{3}{ }_{A}}\left(\mathrm{p}_{3}\right) \gamma^{\mu A}{ }_{B} u^{s_{1} B}\left(\mathrm{p}_{1}\right)\right]\left[\bar{u}^{s_{1}} c\right.}\left(\mathrm{p}_{1}\right) \bar{\gamma}^{\nu C}{ }_{D} u^{s_{3} D}\left(\mathrm{p}_{3}\right)], \\
=\operatorname{Tr}\left[\gamma^{u}\left(\not \mathfrak{p}_{1}+m_{e} c \mathbb{1}\right) \bar{\gamma}^{v}\left(\not{ }_{3}+m_{e} c \mathbb{1}\right)\right],
\end{gathered}
$$

．．．which expands into a multinomial in the components of the 4 －momenta p_{1} and p_{3} ．
－The same is then done for the $p_{2}-p_{4}$（muon）part．．．

Quantum Electrodynamics Calculations

CImbinations af Fundamental Processes

- ...obtaining:

$$
\left.\left.\langle | \mathfrak{M}_{(a)}\right|^{2}\right\rangle=\frac{8 g_{e}^{4}}{\left(\mathrm{p}_{1}-\mathrm{p}_{3}\right)^{4}}\left[\left(\mathrm{p}_{1} \cdot \mathrm{p}_{2}\right)\left(\mathrm{p}_{3} \cdot \mathrm{p}_{4}\right)+\left(\mathrm{p}_{1} \cdot \mathrm{p}_{4}\right)\left(\mathrm{p}_{3} \cdot \mathrm{p}_{2}\right)+2\left(m_{e} m_{\mu} c^{2}\right)^{2}\right.
$$

$$
\left.-\left(m_{\mu} c\right)^{2}\left(\mathrm{p}_{1} \cdot \mathrm{p}_{3}\right)-\left(m_{e} c\right)^{2}\left(\mathrm{p}_{2} \cdot \mathrm{p}_{4}\right)\right]
$$

$$
\begin{aligned}
& \left.\left.\langle | \mathfrak{M}_{(a)}\right|^{2}\right\rangle=\frac{g_{e}^{4}}{\left(\mathrm{p}_{1}-\mathrm{p}_{3}\right)^{4}} \sum_{s_{1}, s_{3}} \operatorname{Tr}\left[\overline{u^{s_{3}}}\left(\mathrm{p}_{3}\right) \boldsymbol{\gamma}^{\mu} u^{s_{1}}\left(\mathrm{p}_{1}\right)\right] \operatorname{Tr}\left[\overline{u^{s_{1}}}\left(\mathrm{p}_{1}\right) \overline{\boldsymbol{\gamma}}^{v} u^{s_{3}}\left(\mathrm{p}_{3}\right)\right] \\
& \times \sum_{s_{2}, s_{4}} \operatorname{Tr}\left[\overline{U^{s_{4}}}\left(\mathrm{p}_{4}\right) \boldsymbol{\gamma}_{\mu} U^{s_{2}}\left(\mathrm{p}_{2}\right)\right] \operatorname{Tr}\left[\overline{U^{s_{2}}}\left(\mathrm{p}_{2}\right) \overline{\boldsymbol{\gamma}}_{\nu} U^{s_{4}}\left(\mathrm{p}_{4}\right)\right], \\
& \begin{aligned}
&=\frac{g_{e}^{4}}{\left(\mathrm{p}_{1}-\mathrm{p}_{3}\right)^{4}} \frac{\operatorname{Tr}\left[\boldsymbol{\gamma}^{\mu}\left(\not \boldsymbol{p}_{1}+m_{e} c \mathbb{1}\right) \overline{\boldsymbol{\gamma}}^{v}\left(\not \mathfrak{p}_{3}+m_{e} c \mathbb{1}\right)\right]}{} \\
& \times \operatorname{Tr}\left[\boldsymbol{\gamma}_{\mu}\left(\not{ }_{2}+m_{\mu} c \mathbb{1}\right) \overline{\boldsymbol{\gamma}}_{v}\left(\not{ }_{4}+m_{\mu} c \mathbb{1}\right)\right],
\end{aligned} \\
& =\frac{g_{e}^{4}}{\left(\mathrm{p}_{1}-\mathrm{p}_{3}\right)^{4}} X^{\mu v}\left(1,3 ; e^{-}\right) X_{\mu v}\left(2,4 ; \mu^{-}\right) .
\end{aligned}
$$

Quantum Electrodynamics Calculations

cambinatians af Fundamental Processes

- Adapt this for $e^{-}-e^{-}$scattering:

$$
\begin{aligned}
\mathfrak{M}_{2 e^{-} \rightarrow 2 e^{-}}= & \mathfrak{M}_{(b)}-\mathfrak{M}_{(c)} \\
= & -\frac{g_{e}^{2}}{\left(\mathrm{p}_{1}-\mathrm{p}_{3}\right)^{2}}\left[\overline{u_{3}} \boldsymbol{\gamma}^{\mu} u_{1}\right]\left[\overline{u_{4}} \boldsymbol{\gamma}_{\mu} u_{2}\right] \\
& +\frac{g_{e}^{2}}{\left(\mathrm{p}_{1}-\mathrm{p}_{4}\right)^{2}}\left[\overline{u_{4}} \boldsymbol{\gamma}^{\mu} u_{1}\right]\left[\overline{u_{3}} \boldsymbol{\gamma}_{\mu} u_{2}\right], \\
\left.\mathfrak{N}_{2 e^{-} \rightarrow 2 e^{-}}\right|^{2}= & \left|\mathfrak{M}_{(b)}\right|^{2}+\left|\mathfrak{M}_{(c)}\right|^{2}-2 \Re e\left(\mathfrak{M}_{(b)}^{\dagger} \mathfrak{M}_{(c)}\right) \text {. } \\
\mathfrak{M}_{(b)}^{\dagger} \mathfrak{M}_{(c)} \propto & {\left[\bar{u}_{2} \overline{\boldsymbol{\gamma}}^{\mu} u_{4}\right]\left[\bar{u}_{1} \overline{\boldsymbol{\gamma}}_{\mu} u_{3}\right]\left[\bar{u}_{4} \boldsymbol{\gamma}^{v} u_{1}\right]\left[\bar{u}_{3} \boldsymbol{\gamma}_{\nu} u_{2}\right], \quad } \\
& =\left[\bar{u}_{2} \overline{\boldsymbol{\gamma}}^{\mu} u_{4} \bar{u}_{4} \boldsymbol{\gamma}^{v} u_{1} \bar{u}_{1} \overline{\boldsymbol{\gamma}}_{\mu} u_{3} \bar{u}_{3} \boldsymbol{\gamma}_{v} u_{2}\right], \begin{array}{l}
\text { may be summed } \\
\text { over spins as before }
\end{array}
\end{aligned}
$$

Quantum Electrodynamics Calculations

CIMBINATIINS םF FUNDAMENTAL Processes

- Adapt this for $e^{-}-e^{+}$scattering:

$\mathfrak{M}_{e^{-} e^{+} \rightarrow e^{-} e^{+}}=\mathfrak{M}_{(d)}-\mathfrak{M}_{(e)}$,

$$
=-\frac{g_{e}^{2}}{\left(\mathrm{p}_{1}-\mathrm{p}_{3}\right)^{2}}\left[\bar{u}_{3} \boldsymbol{\gamma}^{\mu} u_{1}\right]\left[\bar{v}_{2} \boldsymbol{\gamma}_{\mu} v_{4}\right]+\frac{g_{e}^{2}}{\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)^{2}}\left[\bar{v}_{2} \boldsymbol{\gamma}^{\mu} u_{1}\right]\left[\bar{u}_{3} \boldsymbol{\gamma}_{\mu} v_{4}\right],
$$

... and so on and so forth...

Quantum Electrodynamics Calculations

cambinatians af Fundamental Processes

- Adapt this for $e^{-}-e^{+}$annihilation:

$$
\mathfrak{M}_{e^{-}+e^{+}+\rightarrow 2 \gamma}=\mathfrak{M}_{(h)}+\mathfrak{M}_{(i)}=
$$

\ldots or $e^{-}-e^{+}$pair creation:

This makes it evident that

$$
\mathfrak{M}_{2 \gamma \rightarrow e^{-}+e^{+}}=\mathfrak{M}_{e^{-}+e^{+} \rightarrow 2 \gamma}^{\dagger} .
$$

Effective Cross-Sections and Lifetimes

Matt AND RUTHERFロRD SCATTERING

- For scattering experiments, work in the " 2 "-rest frame (target), with " 1 " the "probe."
- Unlike in QM, however, the target does move after scattering, although we may look into the approximation where the target recoil is neglected.
- Now, you did do the homework problems; right?

Right? Riiight??
... ahem ...
And, you recall examples 1.3 (for 2-particle decay) and 1.4 (for a 2-particle scattering)?

- So, you remember:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\left(\frac{\hbar c}{8 \pi}\right)^{2} \frac{S|\mathfrak{M}|^{2}}{\left(E_{A}+E_{B}\right)^{2}} \frac{\left|\vec{p}_{f}\right|}{\left|\vec{p}_{i}\right|} .
$$

Effective Cross-Sections and Lifetimes

MatT AND RUTHERFロRD SCATTERING

- OK, now that we ... ahem ... refreshed our memories ...
- Let me ask again:
- You did do the homework problems; right? Riiight??

2 1.3.3 For the elastic collision $A+B \rightarrow A^{\prime}+B^{\prime}$, in a system where B is originally at rest (and is the target), derive:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \approx S\left(\frac{\hbar}{8 \pi}\right)^{2} \frac{|\mathfrak{M}|^{2}}{m_{B}} \frac{\vec{p}_{A^{\prime}}^{2}}{\left|\vec{p}_{A}\right|\left|\left(\left|\vec{p}_{A^{\prime}}\right|\left(E_{A}+m_{B} c^{2}\right)-\left|\vec{p}_{A}\right| E_{A^{\prime}} \cos \theta\right)\right|} .
$$

1.3.4 Show that the result of the previous problem simplifies when $\left(m_{A} / m_{B}\right) \ll 1:$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \approx S\left(\frac{\hbar E_{A^{\prime}}}{8 \pi E_{A}}\right)^{2} \frac{|\mathfrak{M}|^{2}}{m_{B}^{2}} .
$$

Effective Cross-Sections and Lifetimes

MロTT AND RUTHERFロRD SCATTERING

- Furthermore,
1.3.5 For the elastic collision in exercise 1.3.3 but in the case when the recoil of the target after the collision may be neglected since $m_{B} c^{2} \gg E_{A}$, derive:
... and:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \approx\left(\frac{\hbar}{8 \pi m_{B} c}\right)^{2}|\mathfrak{M}|^{2} .
$$

1.3.6 For the inelastic collision $A+B \rightarrow C_{1}+C_{2}$, in a system where B (the target) is originally at rest, and $\left(m_{C_{i}} / m_{A}\right) \ll 1$ and $\left(m_{c_{i}} / m_{B}\right) \ll 1$, derive:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \approx\left(\frac{\hbar}{8 \pi}\right)^{2} \frac{S|\mathfrak{M}|^{2}}{m_{B}\left(E_{A}+m_{B} c^{2}-\left|\vec{p}_{A}\right| c \cos \theta\right)} \frac{\left|\vec{p}_{C_{1}}\right|}{\left|\vec{p}_{A}\right|},
$$

where θ is the angle between \vec{p}_{1} and \vec{p}_{3}.

Effective Cross-Sections and Lifetimes

MロTT AND RUTHERFロRD SCATTERING

- Sooo...
- For the scattering of e^{-}on p^{+}(or on $\mu^{ \pm}$, at a stretch),

$$
\begin{aligned}
& \left.\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \approx\left(\frac{\hbar}{8 \pi M_{c}}\right)^{2}\langle | \mathfrak{M}\right|^{2}\right\rangle \\
& \mathrm{p}_{1}=\underset{\text { probe }}{\left.\left(E / c, \vec{p}_{1}\right), \quad \mathrm{p}_{2}=\underset{\text { target }}{(M c, \overrightarrow{0}),} \quad \underset{\text { probe, scattered }}{\mathrm{p}_{3} \approx\left(E / c, \vec{p}_{3}\right), \quad \mathrm{p}_{4} \approx(M c, \overrightarrow{0})} \text { no recoil }\right) ~} \\
& \left.\mathrm{p}_{3}\right)^{2} \approx-\left(\vec{p}_{1}-\vec{p}_{3}\right)^{2}=-\vec{p}_{1}^{2}-\vec{p}_{3}^{2}+2 \vec{p}_{1} \cdot \vec{p}_{3}=-4 \vec{p}^{2} \sin ^{2}(\theta / 2), \\
& \left(\mathrm{p}_{1} \cdot \mathrm{p}_{3}\right) \approx \frac{E^{2}}{c^{2}}-\vec{p}_{1} \cdot \vec{p}_{3}=\vec{p}^{2}+m^{2} c^{2}-\vec{p}^{2} \cos \theta=m^{2} c^{2}+2 \vec{p}^{2} \sin ^{2}(\theta / 2) \text {, } \\
& \left(\mathrm{p}_{1} \cdot \mathrm{p}_{2}\right)=M E \approx\left(\mathrm{p}_{2} \cdot \mathrm{p}_{3}\right) \approx\left(\mathrm{p}_{1} \cdot \mathrm{p}_{4}\right) \approx\left(\mathrm{p}_{3} \cdot \mathrm{p}_{4}\right), \quad\left(\mathrm{p}_{2} \cdot \mathrm{p}_{4}\right) \approx M^{2} c^{2} .
\end{aligned}
$$

...producing:

$$
\left.\left.\langle | \mathfrak{M}\right|^{2}\right\rangle \approx\left(\frac{g_{e}^{2} M c}{\vec{p}^{2} \sin ^{2}(\theta / 2)}\right)^{2}\left(m^{2} c^{2}+\vec{p}^{2} \cos ^{2}(\theta / 2)\right)
$$

Effective Cross-Sections and Lifetimes

MaTT AND RUTHERFロRD SCATTERING

- Mott's formula:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \approx\left(\frac{\alpha \hbar}{2 \vec{p}^{2} \sin ^{2}(\theta / 2)}\right)^{2}\left(m^{2} c^{2}+\vec{p}^{2} \cos ^{2}(\theta / 2)\right)
$$

- In the approximation where $\vec{p}^{2} \ll m^{2} c^{2}$, this reduces to:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \approx\left(\frac{\alpha \hbar}{2 \vec{p}^{2} \sin ^{2}(\theta / 2)}\right)^{2} m^{2} c^{2}=\left(\frac{\alpha \hbar c}{2 m \vec{v}^{2} \sin ^{2}(\theta / 2)}\right)^{2}
$$

... the classical Rutherford formula.
Recall the approximations:

- $m_{A} \ll m_{B}$,
- target recoil neglected,
- non-relativistic linear momenta.

Effective Cross－Sections and Lifetimes

ELECTRロN－PロSITRロN ANNIHILATIロN

－The positronium decay into two photons（why not one？）may be described as an inelastic scattering $e^{-}+e^{+} \rightarrow 2 \gamma$ ．
－The electron and the positron have to be at the same place， and it is known that they move slowly； $\mathrm{KE} \ll m c^{2} \ldots$
－．．．so，we＇ll approximate them as static： $\mathrm{p}_{1}=\mathrm{p}_{2}=m_{e} c(1,0,0,0)$ ．
－The photons，in turn，are far from static： $\mathrm{p}_{3}=\mathrm{p}_{4}=m_{e} c(1,0,0, \pm 1)$ ．
－Photon polarization vectors：
－Lorenz gauge： $\boldsymbol{\varepsilon}_{3} \cdot \boldsymbol{p}_{3}=0=\boldsymbol{\varepsilon}_{4} \cdot \boldsymbol{p}_{4}$ ．
－Coulomb gauge： $\boldsymbol{\varepsilon}_{3} \cdot \boldsymbol{p}_{1}=0=\boldsymbol{\varepsilon}_{4} \cdot \boldsymbol{p}_{1}$ and $\boldsymbol{\varepsilon}_{3} \cdot \boldsymbol{p}_{2}=0=\boldsymbol{\varepsilon}_{4} \cdot \boldsymbol{p}_{2}$ ．

$$
\mathfrak{M}_{e^{-}+e^{+}+\rightarrow 2 \gamma}=\mathfrak{M}_{(h)}+\mathfrak{M}_{(i)}=
$$

Effective Cross－Sections and Lifetimes

ELECTRUN－PGSITRGN ANNIHILATIUN

－For the amplitudes，we get：

$$
\begin{aligned}
& \mathfrak{M}_{(h)}=\frac{g_{e}^{2}}{\left(\mathrm{p}_{1}-\mathrm{p}_{3}\right)^{2}-m_{e}^{2} c^{2}}\left(\left[\bar{v}_{2} \ell_{4}^{*}\left(\not \wp_{1}-\not \wp_{3}+m_{e} c \mathbb{1}\right) \&_{3}^{*} u_{1}\right]\right), \\
& \mathfrak{M}_{(i)}=\frac{\left(\mathrm{p}_{1}-\mathrm{p}_{3}\right)^{2}-m_{e}^{2} c^{2}}{\left(\mathrm{p}_{1}-\mathrm{p}_{4}\right)^{2}-m_{e}^{2} c^{2}}\left(\left[\bar{v}_{2} \ell_{3}^{*}\left(\not 巾_{1}-p_{4}+m_{e} c \mathbb{1}\right) \ell_{4}^{*} u_{1}\right]\right), \ell_{i}^{*}:=\epsilon_{i}^{* \mu} \boldsymbol{r}_{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\not \downarrow_{1}-\not 巾_{3}+m_{e} c \mathbb{1}\right) \otimes_{3}^{*} u_{1}=\phi_{3}^{*}\left(-\not \downarrow_{1}+\not \wp_{3}+m_{e} c \mathbb{1}\right) u_{1}=\phi_{3}^{*} \not \wp_{3} u_{1} \text {, } \\
& \text { since }\left(\not{ }_{1}-m_{e} c \mathbb{1}\right) u_{1}=0 \text {. } \\
& \mathfrak{M}_{e^{-}+e^{+} \rightarrow 2 \gamma}=-\frac{g_{e}^{2}}{2 m_{e} c} \bar{v}_{2}\left[\phi_{4}^{*} \phi_{3}^{k}\left(\boldsymbol{\gamma}^{0}+\boldsymbol{\gamma}^{3}\right)+\phi_{3}^{*} \phi_{4}^{*}\left(\boldsymbol{\gamma}^{0}-\boldsymbol{\gamma}^{3}\right)\right] u_{1}, \\
& =-\frac{g_{e}^{2}}{2 m_{e} c} \bar{v}_{2}\left[-2 \vec{\epsilon}_{4}^{*} \cdot \vec{\epsilon}_{3}^{*} \boldsymbol{\gamma}^{0}+i\left(\vec{\epsilon}_{4}^{*} \times \vec{\epsilon}_{3}^{*}\right) \cdot \vec{\Sigma} \boldsymbol{\gamma}^{3}\right] u_{1}, \\
& \boldsymbol{\Sigma}_{i}:=2 \varepsilon_{i j k} \boldsymbol{\gamma}^{j k}=\frac{i}{2} \varepsilon_{i j k}\left[\boldsymbol{\gamma}^{j}, \boldsymbol{\gamma}^{k}\right] .
\end{aligned}
$$

Effective Cross-Sections and Lifetimes

ELECTRQN-PGSITRIN ANNIHILATIUN

- Using the Dirac basis of Dirac matrices,

$$
\mathfrak{M}_{\uparrow \downarrow}=-2 i g_{e}^{2}\left(\vec{\epsilon}_{3}^{*} \times \vec{\epsilon}_{4}^{*}\right)_{z}=-\mathfrak{M}_{\downarrow \uparrow},
$$

- ... and the $e^{-}+e^{+}$-system had to have been in the "singlet" state, antisymmetric in the spins: $(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) / \sqrt{ } 2$.
- Choose $\varepsilon_{3}=(0,-1,-i, 0) / \sqrt{2}$ and $\varepsilon_{4}=(0,1,-i, 0)$ 㕉 $/ 2$

$$
\left.\left(\vec{\epsilon}_{3}^{*} \times \vec{\epsilon}_{4}^{*}\right)_{\uparrow \downarrow}=\left(\vec{\epsilon}_{3,|1,+1\rangle}^{*} \times \vec{\epsilon}_{4,|1,-1\rangle}^{*}\right)=-\frac{1}{2} \right\rvert\, \begin{array}{ccc}
\hat{\mathrm{e}}_{1} & \hat{\mathrm{e}}_{2} & \hat{\mathrm{e}}_{3} \\
1 & -i & 0 \\
1 & i & 0
\end{array}=-i \hat{\mathrm{e}}_{3}
$$

and the photons's spins must be antisymmetrized too.

- Putting all this together yields:

$$
\mathfrak{M}_{e^{-}+e^{+} \rightarrow 2 \gamma}=-4 g_{e}^{2} .
$$

Effective Cross-Sections and Lifetimes

ELECTRQN-PGSITRGN ANNIHILATION

- The differential cross section is then:

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\left(\frac{\hbar c}{8 \pi\left(E_{1}+E_{2}\right)}\right)^{2} \frac{\left|\vec{p}_{f}\right|}{\left|\vec{p}_{i}\right|}|\mathfrak{M}|^{2}=\left(\frac{\hbar c}{16 \pi\left(m_{e} c\right)}\right)^{2} \frac{\left|E_{\gamma} / c\right|}{\left|m_{e} v\right|}\left|-4 g_{e}^{2}\right|^{2} \\
E_{1}=m c^{2}=E_{2} \text { and } E_{\gamma}=m_{e} c^{2}
\end{gathered}
$$

- Simplifying,

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{c v}\left(\frac{\hbar \alpha}{m_{e}}\right)^{2}, \quad \sigma=\frac{4 \pi}{c v}\left(\frac{\hbar \alpha}{m_{e}}\right)^{2} .
$$

Except, for a decay, we need a decay constant:

$$
\begin{aligned}
\Gamma & =v \sigma|\Psi(\overrightarrow{0}, t)|^{2} \quad|\Psi(\overrightarrow{0}, t)|^{2}=\left(\frac{\alpha m_{e} c}{\hbar n}\right)^{3} \\
\Gamma & =\frac{4 \pi}{c}\left(\frac{\hbar \alpha}{m_{e}}\right)^{2}\left[\frac{1}{\pi}\left(\frac{\alpha\left(\frac{1}{2} m_{e}\right) c}{\hbar n}\right)^{3}\right]=\frac{\alpha^{5} m_{e} c^{2}}{2 \hbar n^{3}} \\
\tau & =\frac{1}{\Gamma}=\frac{2 \hbar n^{3}}{\alpha^{5} m_{e} c^{2}} \approx\left(1.24494 \times 10^{-10} \mathrm{~s}\right) \times n^{3} .
\end{aligned}
$$

Renormalization

A CIMPUTATIGN...

- Consider the $O\left(g^{4}\right)$ corrections to $e^{-}+\mu^{-}$-scattering:

Label \& orient the 4-momenta:

... and then see how the result depends on the mass of $\mathrm{p}_{2}-\mathrm{p}_{4}$.

Renormalization

A CIMPUTATIGN...

- Following the procedure:
$\int \frac{\mathrm{d}^{4} \mathrm{q}}{(2 \pi)^{4}} \frac{\mathrm{~d}^{4} \mathrm{q}^{\prime}}{(2 \pi)^{4}} \frac{\mathrm{~d}^{4} \mathrm{k}}{(2 \pi)^{4}} \frac{\mathrm{~d}^{4} \mathrm{k}^{\prime}}{(2 \pi)^{4}}$
$\times(2 \pi)^{4} \delta^{4}\left(\mathrm{p}_{1}-\mathrm{p}_{3}-\mathrm{q}\right)(2 \pi)^{4} \delta^{4}\left(\mathrm{q}-\mathrm{k}+\mathrm{k}^{\prime}\right)(2 \pi)^{4} \delta^{4}\left(\mathrm{k}-\mathrm{k}^{\prime}-\mathrm{q}^{\prime}\right)$
$\times(2 \pi)^{4} \delta^{4}\left(\mathrm{p}_{2}-\mathrm{p}_{4}+\mathrm{q}^{\prime}\right)\left[\bar{u}_{3}\left(i g_{e} \boldsymbol{\gamma}^{\mu}\right) u_{1}\right]\left(\frac{-i \eta_{\mu \nu}}{\mathrm{q}^{2}}\right)$
$\times(-1) \operatorname{Tr}\left[\left(i g_{e} \boldsymbol{\gamma}^{v}\right) \frac{i}{\nless-m_{e} c}\left(i g_{e} \boldsymbol{\gamma}^{\rho}\right) \frac{i}{\nmid-m_{e} c}\right]\left(\frac{-i \eta_{\rho \sigma}}{\left(q^{\prime}\right)^{2}}\right)\left[\bar{U}_{4}\left(i g_{e} \boldsymbol{\gamma}^{\sigma}\right) U_{2}\right]$,
$=-i(2 \pi)^{4} \delta^{4}\left(\mathrm{p}_{1}+\mathrm{p}_{2}-\mathrm{p}_{3}-\mathrm{p}_{4}\right)$

\times	$\left[\begin{array}{ll}\frac{-i g_{e}^{4}}{\mathrm{q}^{4}} \int \frac{\mathrm{~d}^{4} \mathrm{k}}{(2 \pi)^{4}}\left[\bar{u}_{3} \boldsymbol{\gamma}^{\mu} \boldsymbol{u}_{1}\right]\left[\bar{U}_{4} \boldsymbol{\gamma}^{\rho} \mathcal{U}_{2}\right] & \mathfrak{M}\end{array}\right.$	$\begin{array}{l}\text { Note that one } \\ \text { integration is }\end{array}$
$\left.\times \frac{\operatorname{Tr}\left[\boldsymbol{\gamma}_{\mu}\left(\mathfrak{k}+m_{e} c\right) \boldsymbol{\gamma}_{\rho}\left(\not \mathbb{Z}-\not \subset+m_{e} c\right)\right]}{}\right]$	left, not having	

$\left.\left(\mathrm{k}^{2}-m_{e}^{2} c^{2}\right)\left[(\mathrm{k}-\mathrm{q})^{2}-m_{e}^{2} c^{2}\right]\right]_{\mathrm{q}=\mathrm{p}_{1}-\mathrm{p}_{3}}$
been eliminated.

Renormalization

A CIMPUTATION...

- This changes the photon propagator (internal line factor):

$$
\begin{aligned}
& \mathfrak{M}_{(a)} \rightarrow \mathfrak{M}_{(a ; 2)}+\mathfrak{M}_{\left(a^{\prime} ; 4\right)}+\cdots \\
& \frac{-i \eta_{\mu \rho}}{\mathrm{q}^{2}} \rightarrow \frac{-i \eta_{\mu \rho}}{\mathrm{q}^{2}}+\frac{-i H_{\mu \rho}}{\mathrm{q}^{4}}+\cdots=\frac{-i}{\mathrm{q}^{2}}\left[\eta_{\mu \rho}+\frac{H_{\mu \rho}}{\mathrm{q}^{2}}+\cdots\right], \\
& H_{\mu \rho}:=i g_{e}^{2} \int \frac{\mathrm{~d}^{4} \mathrm{k}}{(2 \pi)^{4}} \frac{\operatorname{Tr}\left[\boldsymbol{\gamma}_{\mu}\left(\mathbb{k}+m_{e} \mathrm{c}\right) \boldsymbol{\gamma}_{\rho}\left(\mathfrak{k}-\mathfrak{q}+m_{e} c\right)\right]}{\left(\mathrm{k}^{2}-m_{e}^{2} c^{2}\right)\left[(\mathrm{k}-\mathrm{q})^{2}-m_{e}^{2} c^{2}\right]} .
\end{aligned}
$$

It behooves us to use the fact that

$$
H_{\mu \rho}=-\eta_{\mu \rho} \mathrm{q}^{2} I\left(\mathrm{q}^{2}\right)+q_{\mu} q_{\rho} J\left(\mathrm{q}^{2}\right),
$$

$\& \operatorname{drop} J\left(\mathrm{q}^{2}\right):$ in $\mathfrak{M},\left[\bar{u}_{3} \boldsymbol{\gamma}^{\mu} u_{1}\right] q_{\mu}=\left[\bar{u}_{3}\left(\not \wp_{1}-\not \wp_{3}\right) u_{1}\right]=0$. 28 on-shell: $\propto_{1} u_{1}=m_{e} c u_{1}$

Renormalization

A CIMPUTATILN...

- The remaining integral becomes

$$
I\left(\mathrm{q}^{2}\right)=\frac{g_{e}^{2}}{12 \pi^{2}}\left\{\left\{\begin{array}{c|c}
\int_{m_{e}^{2}}^{\infty} \frac{\mathrm{d} \xi}{\zeta} & -6 \int_{0}^{1} \mathrm{~d} \zeta \zeta(1-\zeta) \ln \left(1-\frac{\mathrm{q}^{2}}{m_{e}^{2} c^{2}} \zeta(1-\zeta)\right) \\
f\left(-\mathrm{q}^{2} / m_{e}^{2} c^{2}\right)
\end{array}\right\}\right.
$$

$$
f(x)=\frac{4}{x}-\frac{5}{3}-\frac{2(x-2)}{x} \sqrt{\frac{x+4}{x}} \tan ^{-1}\left(\sqrt{\frac{x}{x+4}}\right)
$$

$$
\begin{aligned}
& f(x) \sim \ln (x) \text { for }|x| \gg 1 \\
& f(x) \sim x / 5 \text { for }|x| \ll 1 \\
& \min (\Re e(f(x)))=-8 / 3 \\
& \lim _{x \rightarrow-\infty} \Im m(f(x))=-\pi \\
& \Im m(f(x))=0 \text { for } x \geqslant-4
\end{aligned}
$$

Renormalization

A CロMPUTATIロN...

- The total $\left(O\left(g^{2}\right)+O\left(g^{4}\right)+\ldots\right)$ amplitude becomes

$$
\mathfrak{M}_{(a)}=\lim _{\mu \rightarrow \infty} \mathfrak{M}_{(a)}\left(\mathrm{q}^{2}, \mu\right)+\cdots,
$$

$\mathfrak{M}_{(a)}\left(\mathrm{q}^{2}, \mu\right)=-g_{R}^{2}(\mu)\left[\bar{u}_{3} \boldsymbol{\gamma}^{\mu} u_{1}\right]\left(\frac{\eta_{\mu v}}{\mathrm{q}^{2}}\right)\left\{1+\frac{g_{R}^{2}(\mu)}{12 \pi^{2}} f\left(\frac{-\mathrm{q}^{2}}{m_{e}^{2} c^{2}}\right)\right\}\left[\bar{U}_{4} \boldsymbol{\gamma}^{\nu} U_{2}\right]+\cdots$,

$$
\begin{aligned}
& g_{e, R}(\mu):=g_{e} \sqrt{1-\frac{g_{e}^{2}}{6 \pi^{2}} \ln \left(\frac{\mu}{m_{e}}\right)}, \quad \begin{array}{c}
\text { Notice the functional } \\
\text { dependence on the } \\
\text { 4-momentum exchange }
\end{array} \\
& \text { Amazingly, it is possible to: }
\end{aligned}
$$

- eliminate the divergent contributions
- (including all contributions will guarantee appropriate cancellations)
- compute the "running" coupling constant $g_{e, \mathrm{R}}(\mu)$
- order by order in $\mathrm{O}\left(\mathrm{g}^{2 n}\right)$, and it tends to converge,
- ... as a non-trivial function of μ. (The coupling constant \neq constant.)

Renormalization

THE PHYSICAL MEANING

- Conceptual error:
- The (dimensionless) parameter

$$
g_{e}:=\sqrt{4 \pi \alpha_{e}}=\frac{|e|}{\sqrt{\epsilon_{0} \hbar c}} \quad(=|e| \sqrt{4 \pi / \hbar c}, \text { in Gauss's units })
$$

- used to characterize the strength of the electromagnetic coupling,
- ... is in classical (field) theory identified with the measured value.
- But the amplitude-which is what figures in actual, physical measurements of charge-depends on the momentum exchange:
- so that the measured coupling parameter

$$
g_{e, R}(\mu):=g_{e} \sqrt{1-\frac{g_{e}^{2}}{6 \pi^{2}} \ln \left(\frac{\mu}{m_{e}}\right)+\ldots}
$$

- is definitely not the one in the original Lagrangian.

Renormalization

THE PHYSICAL MEANING

- In addition, there is the reasonable requirement

$$
g_{e, R}:=\lim _{\mu \rightarrow \infty} g_{e}(\mu) \sqrt{1-\frac{g_{e}^{2}(\mu)}{6 \pi^{2}} \ln \left(\frac{\mu}{m_{e}}\right)+\ldots}<\infty,
$$

- ...for the "vanishingly small distance" interactions.
- The $\mu \rightarrow 0$ limit—at very large distance—better be finite too!
- This can only be arranged when $g_{e}(\mu)$ is in fact a formally divergent quantity itself.
Well, in fact, the Lagrangian itself is not an observable. The Hamiltonian (energy) is, so that's not quite "it."
- It's rather that the measured values of the parameters appearing in the classical Lagrangian are "renormalized" values of the symbols that appear in the classical Lagrangian.

Renormalization

THE PHYSICAL MEANING

- Formally: "X" ${ }_{\text {measured }}=$ "X" ${ }_{\text {bare }}+$ " X " ${ }_{\text {renormalization }}$.
- The "bare" value can be picked at convenience,
- ... defining what the "renormalization" correction ought to be.
- So, it is convenient to pick

$$
\begin{aligned}
g_{e, R}\left(\mathrm{q}^{2}\right) & =g_{e, R}(0) \sqrt{1+\frac{g_{e, R}^{2}(0)}{12 \pi^{2}} f\left(\frac{-\mathrm{q}^{2}}{m_{e}^{2} c^{2}}\right)} \\
\alpha_{e, R}\left(\mathrm{q}^{2}\right) & =\alpha_{e, R}(0)\left\{1+\frac{\alpha_{e, R}(0)}{3 \pi} f\left(\frac{-\mathrm{q}^{2}}{m_{e}^{2} c^{2}}\right)+\ldots\right\}, \\
& \approx \alpha_{e, R}(0)\left\{1+\frac{\alpha_{e, R}(0)}{3 \pi} \ln \left(\frac{\mathrm{q}^{2}}{m_{e}^{2} c^{2}}\right)+\ldots\right\}, \quad \mathrm{q}^{2} \gg m_{e}^{2} c^{2},
\end{aligned}
$$

- ... and compare with experiments.
- Indeed: $a_{e}(0) \approx 1 / 137$, but $a_{e}(200 \mathrm{GeV}) \approx 1 / 127$.

$$
1 /\left(2^{7}+2^{3}+2^{1}\right)
$$

Renormalization

THE PHYSICAL MEANING

- The higher-order, but only to "leading log" contributions:

.. defines a geometric series, which sums to:

$$
\alpha_{e, R}\left(\left|q^{2}\right|\right) \approx \frac{\alpha_{e, R}(0)}{1-\frac{\alpha_{e, R}(0)}{3 \pi} \ln \left(\frac{\left|\mathrm{q}^{2}\right|}{m_{e}^{2} c^{2}}\right)}, \quad m_{e}^{2} c^{2} \ll \mathrm{q}^{2} \ll m_{e}^{2} c^{2} e_{\approx 10^{280}}^{3 \pi / 2 \alpha(0)}
$$

$$
\uparrow 1 / \alpha_{e}\left(q^{2}\right)
$$

... a very small downward slope $\left(\approx-7.74 \times 10^{-4}\right)$

Renormalization

THE RENロRMALIZATIロN＂GRロUP＂

－Computations are done iteratively，order－by－order．
－This defines a sense of＂flow＂：

$$
\left.\begin{array}{c}
\text { initial value } \\
\left(\alpha_{e, R}^{(0)}\left(\left|\mathrm{q}^{2}\right|\right):=\alpha_{e, R}(0)\right) \mapsto \cdots \mapsto{ }^{\text {intermediate values }}
\end{array} \begin{array}{c}
\text { real value }
\end{array}\right)
$$

These formal operations form a chain－like algebraic structure． Ernst Stückleberg \＆Andre Petermann，＇53 ．．．
－M．Gell－Mann \＆F．J．Low＇54，（and C．Callan \＆K．Symanzik＇70＇s）
－R．Feynman，J．Schwinger，S．－I．Tomonaga（＇65 Nobel）\＆F．Dyson
－．．．L．P．Kadanoff＇66；K．Wilson＇74－75（＇82，Nobel！）
－＋J．Polchinski（1984）；M．E．Peskin \＆D．V．Schröder（1995）
－Renormalization flow．．．
－．．．and fixed points of that flow．\Rightarrow Quantum stability．

Renormalization

EFFECTIVE ACTIロN \& PARTITIGN FUNCTIGNAL

- Which brings us to the concept of an effective action, and a renormalizable theory.
- Suppose $S\left[\phi_{i}\right]:=\int \mathrm{d}^{4} \mathrm{x} \mathscr{L}\left(\phi_{i}, \partial \phi_{i}, \ldots\right)$
- Then

$$
Z[\vartheta]:=\int \mathbf{D}[\phi] e^{-i\left(S[\phi]+\int \mathrm{d}^{4} \mathrm{x} \theta \cdot \phi\right) / \hbar},
$$

$$
\frac{\delta}{\delta \theta^{i}\left(\mathrm{x}_{1}\right)} \frac{\delta}{\delta \theta j\left(\mathrm{x}_{2}\right)} Z[\vartheta]=\frac{(-i)^{2}}{\hbar^{2}} \int \mathbf{D}[\phi] \phi_{i}\left(\mathrm{x}_{1}\right) \phi_{j}\left(\mathrm{x}_{2}\right) e^{-i\left(S[\phi]+\int \mathrm{d}^{4} \mathrm{x} \theta \cdot \phi\right) / \hbar}
$$

Then

$$
\begin{gathered}
e^{-i\left(S_{\text {eff. }}[\varphi]+\int \mathrm{d}^{4} \mathrm{x} \vartheta \cdot \varphi\right) / \hbar}:=Z[\vartheta]:=\int_{\text {a veery sketcthy heuristic of thl s relation }} \mathrm{D}[\phi] e^{-i\left(S[\phi]+\int \mathrm{d}^{4} \mathrm{x} \vartheta \cdot \phi\right) / \hbar} .
\end{gathered}
$$

- ...iff the already present parameters become renormalized, - ... in which case the model/theory is renormalizable.

Thanks!

Tristan Hubsch

Department of Physics and Astronomy Howard University, Washington DC

Prirodno-Matematički Fakultet Univerzitet u Novom Sadu
http://homepage.mac.com/thubsch/

