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onrelativistic U(1) Example

{ON-OBSERVABLE PHASES & LOCAL SYMMETRY

® Quantum physics requires assigning to every observable a
Hermitian operator ?real eigenvalues » measured values).

2@ The simplest observable, “does the system/object exist?” is
" assigned a special Hermitian operator, p, so that Tr|p|=1.
!:;‘; ® Inaddition, 0 <{n|p|n)<1 for every |n).

® Allsuchp=%,r,In){nl,withO<r,<1.

/. ® For pure states, there existsa | ¥) =%, ¢, | n),
- suchthatp = |¥) (Y], ie, p2=p,and p is a projector.

® Then Y (r, t) = {r| ¥ (t)) is the wave-function.
® By construction, |n)— e |n)is ajsymmetry,
~ ®lsincep=S,r, In){nl— Sprue? I nd {nleio=3,r, |n)<nl.
®| For pure states, Y (r, t) — e ¥ (r, t). Local

® . .Evenifo=¢(rt)! “Szuge symmetry
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onrelativistic U(1) Example

{ON-OBSERVABLE PHASES & LOCAL SYMMETRY

So, consider the transformation, |n) — e*®:d|n),
~ ® and for pure states, Y(r, t) — €Y (r, t).
» At every point is space & time, ¢(r, t) = ¢(r, t)+27,
= e @(r, t) parametrizes a circle;
.. €%(n s a unitary number: (e 1)) =e-ior 1) =(eirmnn)~1,
... e his a unitary 1x1 matrix;
...element of the U(1) group;
.so¥(r,t)— e ¥(r, t)isa U(1) transformation,

® ... adifferent one at every point in space & time!
If (r, t) = const. . If p(r, t) is arbitrary
Global symmetry | =~ | Local symmetry

= uantum

Noether’s theorem \ ‘Ward-Takashi identitiesl Fi e% Theory
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onrelativistic U(1) Example

AUGE-COVARIANT DERIVATIVES

B e So, what's wrong with this picture?
- ® Use Y (r, t) to describe a particle,
- ® ...and remember that ¥(r, t) — e*® V¥ (r, t) is unobservable.

2 ® Well, ¥(r, t) is supposed to satisfy the Schrédinger equation:

32
ZmVZJrV(r t) Y,
h? 1/
“ ¥ T V@D (elw)
.. 0¥
ipli =~
t)‘l’+e ih 5
72 _ . o S
—5?[( V(i 9)¥ + el (iV2p)¥ +269(iV p)-(VY))
. #2
- v
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onrelativistic U(1) Example

AUGE-COVARIANT DERIVATIVES

® What's left then is a differential equation for ¢(r, t):

do _ T > e e e
5 = 5 ((V29) +2i(T9)-(Vin(D) — (V)?)
v ;f.x’ So, far from ¢(r, t) being a free parameter,

..it would have to to satisfy a differential equation,
..which moreover depends on ¥ (r, t)!

This just can’t be right!
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onrelativistic U(1) Example

AUGE-COVARIANT DERIVATIVES

ke ': The problem is that
i (70) # ¢ (). V(o) # e (9¥)

' | ..when ¢(r, t) = const. ““h‘ \ 1o
rig o So, what is one to do? o~ The only thing one can Ao-
i i.- Change the rule of how...

}yﬁ ...derivatives are computed, depending on the symmetry:

Vs (DrY) — (DY) = D (e'?¥) = ¢'?(Dr¥),
o (BY) — (DY) = B/ (%) = (B ¥).

o

- ~® Such derivatives would co-vary with the local transformation,
; and so are called covariant derivatives.
N 7

—
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onrelativistic U(1) Example

AUGE-COVARIANT DERIVATIVES

B e With this derivative,

ne o
in (Dt‘F) = ——(B°Y) + V(D) Y,
! ! !
[
i (D;T’) =~ (B?Y) + V(N Y,
I \
ih (D;eiw) = —o—(0'2e?Y') + V(7 1) 7Y,
| | H
L\ N s
ingd (DY) = - - X(B¥) + H V(7 1) ¥

...s0 the equation transforms with an overall factor of ei* 1),
...s0 both ¥ (r, t) and e 0¥ (r, t) satisty the same equation,
...and for completely arbitrary and local phase, ¢(r, t).
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onrelativistic U(1) Example

AUGE-COVARIANT DERIVATIVES

® So, what are the properties of this new-fangled derivatives?
® By writing ¥'=ei* ¥, and so Y=e-# ¥’, we have:

o . . . .
DY = ' ’D;Y = YDy 'Y, or D= e'?Die”'?,

DY = ¢ ?DY = ¢ ?De 9Y, or D =ePDe i?.

9
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' lectromagnetic fields and Lagrangian

AUGE-COVARIANT DERIVATIVES

® From (BL---) =¥ De™¥-- ),
it follows that

0@
X=X .
"ot
4', | ) )
_ ; (V+Y) - ] =?[(V+Y)e ] Y =Y —i(Vo).
'  Thus we obtained the local symmetry transformation rules for
',f the =correctionr’ terms. connexion/connection

+' Ay These transformations should look very familiar to anyone
. = who has mastered electromagnetlsm'

l\
%
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® There, they are referred to as “gauge transformation.”
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lectromagnetic fields and Lagrangian

AUGE-COVARIANT DERIVATIVES & POTENTIALS

® Indeed, with a wee bit of judiciqus rescaling,

CI) —_ E # A .= ﬂ?, A .= qul
1q q q
. a q . o q ;. 4
D; 1= gy -+ ZECI), D:=V — ZEA, Y\?me?;\\‘)lz{\ \’
... We recognize the E&M gauge transformations— this ™ —__J
aA J— - M ra
) r
<I>—><I>_<I>G§t, A A= VA),

' / - ...augmented by the transformation of the wave-function:
W LG ¥ (7 t) — Y'(7t) = TN/ g (7 1)
‘__..{‘; Notice: q is the charge operator, the eigenvalue of which is the

B~ charge of the particle represented by ¥, an eigenfunction.

%, ® So, chargeless particles are not transformed, nor do they
R~ require the scalar and vector potentials to interact with.

-
X = |l
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lectromagnetic fields and Lagrangian

AUGE-INVARIANT FIELDS & MAXWELL’S EQUATIONS

Notice, however, that:
VxA =Vx(A+VA)=VxA
oA\ O 0A

y T _ e (A LI — U k.
Vo +5- =V (0-5)+5(A+VV) =V. 2+

"% ® ... are invariant under the local symmetry transformation.

f | S o - 0A
r/ Maxwellwrote. B:=VxA E = —(VCID + ﬁ)

These are indeed the well-known magnetic and electric fields,

o |Maxwell implied: | |V-B=0,| aswellas
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' lectromagnetic fields and Lagrangian

AUGE-INVARIANT FIELDS & MAXWELL’S EQUATIONS

® The story so far:
» The Scrodinger equation
in SWF ) = Hoy ¥, 1),
ot
1 /hz - )2 - -
Hew = 5 - ( =0~ qA(r,t)) + [V(r,t) + qcp(r,t)]

® ...is covariant under the local symmetry transformation

CD%CD’ZCID—%—?, A— A =A+(VA),

¥ (7 t) = ¥'(7 t) = PN g7 p),
...while the following fields are invariant:

B:=VxA and E:=—(@<I>—|—%)

- ® __.asare any and all functions of these.
. 13
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lectromagnetic fields and Lagrangian

AUGE-INVARIANT FIELDS & MAXWELL’S EQUATIONS

The local symmetry transformation U, := exp {i¢(7 t) Q}
.. pertains to the phase of wave-functions, ¢,

..which is therefore another “coordinate.”

| f' Q is the charge operator, the eigenvalues of which are the
‘{f electromagnetic charges of its (wave- )eigenfunctions.

Wllly-mlly, the space where charged particles “propagate” is:
@mx

- Nordstt
1914, GUnPE T Z.T

o whereXls the ‘ordinary” space- tlme /

/dt d’7 { Cq1 (60 EZ) + Cz(% BZ) + C3(w / % EE) +c1p P+ cs TA } (3.21)
Eu.ﬁ is the Hamiltonian action the variation of which by ® and /T, using the relations (3.14),

e produces Gauss’s and Ampere’s law (3.71a).
- %__ 5 14
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Relativistic Spinors

Classical-to-Quantum correspondence

. , hea .0
P p==V, and E H—zhat.

.. assigns to the relativistic relation, E? = p2c2 + m2c* .
n =2 L 0N\2
[cz<—,V) +m2ct Y(7,t) = (zh—) Y(7,t),

z ot
{ m (%)2:‘1’(7,1?) =0
d’Alembertian: = { C12 ;:2 62}

“i‘ Dirac’s motivation:
"‘;‘ E2 — m%c* = 0 = (E+mc2)(E—mc2):(),

%

Tuesday November 1, 11

.in the particle’s rest frame; 15t order ODE.
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Relativistic Spinors

RAC SPINORS

So, attempt to factor p® —m*c* =0
0= (B"pu + me)(y"py — mc),

Y'Y pupy = p* = 1" pupy,

= B'Y" pupy + me(y! — BH)pu — m*c”.

(v v} =29,

W.K. Clifford
H. Grassmann
19th century

. 1 f
J ;‘H ...where matrix[n# | = diag(+1,-1,-1,-1).

h

e @ ...is the Dirac equation.

Q)
O =

Note the minus sign: 9y, := S > (

16
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Pu — —.ay = [ih')’yay - mc}‘Y(X) =0,
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Relativistic Spinors

RAC SPINORS

One oft-used basis of Dirac matrices:

1 O ' O o .
ly - |:® _1] J ’Y - |:_0-Z 0 :| / l 1, 2, 3.

® 4 solutions: R > a 7
| ) 0 ) 1
. Pz¢ i
C}E\f\ex \ LA E-+mc? 1 e (PE +;fcyz)c ’
N\OLV\ . \ (pxtipy)c g
ﬁ, OLSG.S" 5 f Bfme® _
- Bl - P 3
oLee® Etme? iy
- L O 1] (pxtipy)c O 1 pzC
@ G ]]_ D Uu' E+i11C2 i @ G l]_ D u - X E_|_(7)nC2 ’
0 | 1 |

‘*5 where E = +./p? c2+m2c4

Y0 = X [Nue /%00 (p) 4 Ny /10 o5(p)]

S=T:
17
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elativistic Spinors

IRAC MATRICES & THE LORENTZ GROUP

'-. Dirac matrices satisfy
['Y]/”/ / ,-Y,OO'] = 17,”(),),1/0' — ;7]’10'/)(1/10 _|_ WVO'/),VP —_ ﬂvpryl’w'

Or, with the definitions J; := Lejyy  Kj :=in¥

Jk} - iEjkam/ [Jf/ Kk] = igfkam' [K]" Kk} - _igjkam'

-/ /rﬁ So, the elements
NIV

/}/,;4 exp { —i(¢/J; + BK)} = exp {Bir"” — ejkm@ ¥} = exp { A"},
;;5

’
= I8 .
p— ...form a group, equivalent to SO(1,3), except that...

kY

R

-

® ...itis single-valued on spin-12 Dirac spinors.

® A xl-Lorentz-boost: ¥ (x) = {\/%(7 + 1)l — \/-21-(’7 - 1)701}‘?()()

|18
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elativistic Spinors

JIRAC MATRICES & THE LORENTZ GROUP

® Note: Y™V is not Lorentz-invariant, but Y™V is.

® Define the Dirac conjugate: ¥ := giq0

. . # of Independent
Expressmn Lorentz representatlon P

Components
Y'Y — scalar, 1
¥ y* ¥ = 4-vector, 4
Y 4" ¥ = antisymmetric rank-2 tensor, 6
Y y*4 ¥ = axial (i.e., pseudo-) 4-vector, 4
Y 7Y = pseudo-scalar, 1

.is a complete set of Lorentz-representations constructed
" from the spin- Dirac spinor representation.

. '@ Notice, ¥ is a “square-root” of the vector.

% o In the same sense Spin(1,3) is the double-cover of SO(1,3).
b. P
5 9
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Relativistic Spinors
. ACK TO DIRAC SPINORS
The solutions u', u!, viecylyl and viecylyl:

Y o wtusy = () spu + meds,
S=T,

Y v vsy = (vF) ppu — medi.
s=1,1

Y|, are projection matrices.

p ,YixIJ, WeY\ SpinOYS \

—
Y. +Y =Y, 9 Y=Y, 9. .¥:=0.

Ly =0={27} = 217 =7r
Y4 lihyt oy, — mel|Y = [ihy 'y — mey 1Y
= ihy (9, ¥5) — mc¥e,

20
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elativistic Spinors

ACK TO DIRAC SPINORS

& e So, splitting the 4-component Dirac spinor into two 2-
- component Weyl spinors is dynamically possible if:

’)’”ayqji =0 mY L = 0.

e o Weyl noticed this in 1929, immediately after Dirac announced
8% the Dirac equation.

§i/8& ® Ironically, although Pauli knew that m, = 0, he refused to use
8¢/ Weyl’s equation on account of it allowing parity-violation:

4 o P(V.,)=Y_aswellasP(¥.)=Y,,

- ® but Weyl’s equations decouple ¥, from ¥_,

® ...so they can be treated independently.

S = =¥ (x) [+ mc™1] ¥(x) = ¥ (x) [icy"d, — mc™1] ¥ (x)

21
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lectromagnetic fields and Lagrangian

AXWELL EQUATIONS & DUALITY

Maxwell’s equations

- 1 ~ = 10E 1 4n
-E = 4 , B — = Te,
v 471t€) ol VX‘(C ) cdt 4dmey C Je
Ampere
Gauss
Faraday
1o - ] B(CB) 1o 47 _,
B 4 — E— -
V-(cB) = g P v c ot  4m ¢ Jo

can be re-cast into relativistic, 4-vector/tensor notation.

'5 Linear action by Lorentz transformatlons
¥ =1y = Fy (v) = Lyp Fpa(X) |

L. — = - =
E‘% et £ = ézEz and B = 0 = E; = vE), but also B3 = ’)’%Ez.

22
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2lectromagnetic fields and Lagrangian

AXWELL EQUATIONS & DUALITY

® Gauss-Ampere equations:

5 PV _ 1 47t],v
. H 4rteg ¢ ¢
o Gauss-Faraday equations:
) 1 uvpo _ Ho ar
- 280y Fyp = rp—
% Direct substitutions:
| (P / %FMUFW = E% — ?B?, and }LEWWFWPPU — —cE-B,
ZLEM = _47260 F]/w Fi gﬂ,EM = U 47260 g Fpu/Fpm

Ho 47t o
47T ¢ Jm:

F]/”/ - al/{Av E ayA]/l - —— " O -

23



lectromagnetic fields and Lagrangian

AXWELL EQUATIONS & DUALITY

Duality:
@py : PV s (F)M = [1eMOF, ]

B - cos sin? B
ﬁf @'EM(ﬁ). {CE] = {CEI] - {_Smﬁ COS&} {CE}
Q' Thus: “there are no magnetic monopoles” = “there is a choice
_' of 9, such that p,, = 0 = 7, 79y F); =0 E =9, A, — A,

/,.yyé whereby the Gauss-Ampére equations (using the Lorenz
#7& gauge: 9,AY =0) imply
g

1 4 U

A,’I/l = ]61

B  4meg

“%" . ® and A¥ represents a massless field of which j¢ is the source.
...of which the photon is the quantum.

24
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E lectromagnetic fields and Lagrangian

LECTRODYNAMICS OF A DIRAC SPINOR

® Combining the EM Lagrangian, the Dirac Lagrangian, and the
- coupling enforced by the local (gauge) transformation

¥ (7 t) = ¥'(7 t) = DTy (7 p)

Loep = ¥ (%) [ihcl — mc®] ¥ (x) — ZOF,, FH,

= ¥(x) {'y” (ficioy, — g Ay) —mcz} ¥ (x)

g 0 (3, Ay —3y Ay )Y (3p Ag—dr Ap).

== Now, just include a separate copy of ¥ for every separate spin-
.0 Y2 fermion, with its appropriate charge q,.

h: ® ...and the restis work. Hard work.

I

S .
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agnetic Monopoles, Revisited

IRAC CONSTRUCTION

Magnetic monopoles, nevertheless...
® P.A.M. Dirac, 1931:

- ® Consider an ¢-narrow, long solenoid,

® ...with the North pole at the origin,

® ...the South pole at 1/¢ below the origin,
® ...inthe limit when ¢ — 0.

What you see (= what you get) is
§z.

f ® amagnetic monopole (North) at the origin,
® with a perfectly spherically symmetric magnetic field.

W1 Dirac showed that this B « g,, /r3 must be ill-defined

% ...along a branch-cut, extending “from the origin to infinity.”
® = “Dirac strmg

26
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agnetic Monopoles, Revisited

IRAC CONSTRUCTION

® For this magnetic monopole, Dirac derived that

qequZTL'hn, HEZ.

'® This implies:
- G 2 4690 n?
RS e
_- ..and since a.~ 1/137, a,,~ 34.25n2 > 1 !
8y : In fact, this will turn out to be a general feature:
r //,//é ® jf “electric™-charged particles interact perturbatively weakly,
‘--.\"5 Dirac seems to have pulled something really “funny” here!
| .o Recall: o, =0 =7, o F, =0,A, —dyAy
E:‘ ® So, like... What gives??

55 2
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® “magnetic’-charged particles interact non-perturbatively strongly!




agnetic Monopoles, Revisited

U-YANG CONSTRUCTION & DIRAC QQUANTIZATION

® T.T. Wu & C.N. Yang, 1975 (months after the “November
- revolution of 1974, tth /v, quark-model and all that):

7 qmXe€y —Yex 7 _ qm X&y Y&
Y4 or(z4r) T4 r(z—r1)
qm cos(0)—1 qm cos(0)+1
. egb/ — . egb/
47t rsin(0) 47t rsin(6)
BN::VXAN:Z—ZT—B, and BS::VXA5:Z—"7;T—3.
(except where x =0 =y and z < 0) (except where x =0 =y and z > 0)
..and
Ay — As = Ay +Vns, Ans(x) = =21 ATan(x, y)

47
...is alocal (gauge)|symmetry|transformation.

28
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agnetic Monopoles, Revisited

U-YANG CONSTRUCTION & DIRAC QQUANTIZATION

d | .essons:

® Note that the gauge parameter Ans < ATan(x, y) seems undefined
along the (x, z%—p ane, where y = 0.

® However, its limiting values there do define a continuous and
smooth function, with periodic values of period 27:

P

® ...undefined onlyl along the z-axis.
29
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agnetic Monopoles, Revisited

U-YANG CONSTRUCTION & LESSONS

The observable physical quantities (electric & magnetic fields)
need to be well-defined in all physically accessible space.

_ _' ® Auxiliary quantities (scalar and vector potentials) may be defined
A only “piecemeal”™—and need not be globally well-defined.

® Gauge parameters (“patching” functions such as Axs) need be
defined only where the “piecemeal” auxiliary quantities’ defining
regions overlap, so as to “stitch” them together. &«

Like maps in a book of maps
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