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Parity

Finite Symmetries
Cartesian space coordinate re!ection

Re!ecting one coordinate ≃ plane mirror re!ection
Re!ecting all space coordinates (in odd-dim’l space)
Squares to 𝟙 (the “do nothing” identity operator),

eigenvalue = +1: symmetric eigenstate (e.g., cos(x)),
eigenvalue = –1: antisymmetric eigenstate (e.g., sin(x)).

"is is de#nitely not a symmetry in the macroscopic world
It was believed to be a symmetry of fundamental physics

For example, Pauli refused to use the Weyl equation for neutrinos
…although their mass was known to be possibly zero…
…because parity is not a symmetry of the Weyl equation

Parity of a composite system equals
(parity1)·(parity2)·(–1)ℓ, where ℓ = orbital angular momentum.
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Parity

Finite Symmetries
T.D. Lee & C.N. Yang (1956) studied the decays:

Spin(θ+)=0=Spin(τ+), Parity(θ+)=+1, while Parity(τ+)=–1.
Lee & Yang: they are the same particle, but weak interactions 
violate parity.
Proposed several tests of P-violation in weak interactions.
C.S. Wu (+E. Ambler, R.W. Hayward, D.D. Hoppes and R.P. Hudson)  
tested

…and found most electrons to emerge in correlation with the 
spin of Cobalt-60:
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the decay, it follows that hY|~pe·~S|Yi 6= 0. Now, since parity
momentum but not of spin, it follows that
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Parity

Finite Symmetries
Now,

In turn, if [H	  ,	  P] = 0, i.e., P is a symmetry, then
either P|Ψ〉 = |Ψ´〉= c |Ψ〉, so P〈Ψ| = 〈Ψ´| = c* 〈Ψ|, so

or P|Ψ〉 = |Ψ´〉 ≠ c |Ψ〉, so that |Ψ´〉 and |Ψ〉 are degenerate,
…which does not agree with otherwise good nuclear models.
It follows that [H	  ,	  P] ≠ 0, i.e., P is not a symmetry.
Once uncovered, P-violation was con#rmed elsewhere too.
Right-handed neutrinos differ from the le(-handed ones
No more than 10–10 observed neutrinos may be right-handed.
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hY|~pe·~S|Yi P

= hY0|~p 0
e ·~S 0|Y0i = �hY0|~pe·~S|Y0i.

0i = c|Yi and so h
imply that hY|~pe·~S|Yi = 0, which was proven wrong by madam Wu’s experiment,

Y0 are degenerate states—which does not follow from otherwise successful
NOT what Wu saw,
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Parity

Finite Symmetries
For example,

In the pion’s rest-frame, the muon and the antineutrino
move in opposite directions, and
have (|↑↓〉 – |↓↑〉) spins.

While the antineutrinos are largely unobservable,
…at most 10–10 muons may emerge le(-handed.
"us at most 10–10 of the antineutrinos are le(-handed,
…and at most 10–10 of the neutrinos are right-handed.

"is implies maximal parity-violation in weak interactions.
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Charge Conjugation

Finite Symmetries
An anti-linear operation:
 C(c1 |Ψ1〉 + c2 |Ψ2〉) = c1* C(|Ψ1〉) + c2* C(|Ψ2〉).
"is forces the operation also to be anti-unitary (unitary 
preceded by complex conjugation).
It is identi#able with complex/Hermitian/Dirac conjugation.
Eigenstates must have no electric charge if C is a symmetry
of electromagnetism.
Eigenstates must have no color “charge” if C is a symmetry
of chromodynamics (strong interactions).
If C	  is a symmetry of the “free” Hamiltonian, [H	  ,	  C] = 0 which 
is true if H is Hermitian, then |Ψ〉 and C(|Ψ〉) are degenerate.
Indeed, e.g., e– and e+ have the same mass.
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Charge Conjugation

Finite Symmetries
A bound state of a particle and its antiparticle
…is an eigenstate of C, with the eigenvalue (–1)ℓ +s,
ℓ is the orbital angular momentum, s the composite spin.
In the electromagnetic decay of the pion,

…there can only be an even number of photons.
But, C is violated by weak interactions:

…does not occur.

C is thus also maximally violated by weak interactions.
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…more than at most 10–10 part of the time.
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Time Reversal

Finite Symmetries
Also an anti-linear and anti-unitary operation.
Direct veri#cation of T-violation is hard…
No physically meaningful eigenstates.
In processes, T-violation could be checked by checking the 
“principle of detailed balance”:
Compare

But, the la)er (fusion) is swamped by other results, due to 
strong and electromagnetic interactions.
"e only (solely weak interaction) direct tests of T-violation 
then involve neutrinos.
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L0 ! p+ + p�
vs. p+ + p� ! L0

…and those are extreeemely hard.
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CPT Theorem

Finite Symmetries
"e successive application of the C,-  P-  and T-operations is a 
symmetry of all local Lorentz-invariant theories.
A simple-looking argument begins with

…and then uses that plane-waves form a complete set of 
Lorentz-invariant functions.
"us, all spacetime-dependent Lorentz-invariant observables 
may be expressed in terms of plane-waves, and so must also be 
CPT-invariant.
"e difficulty lies in proving no loss of generality.
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CPT(e±i(~k·~r�wt)) = CP(e±i(~k·~r+wt)) = C(e±i(~k·(�~r)+wt)) = (e⌥i(~k·(�~r)+wt)),

= e±i(~k·~r�wt)
,
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CP-Violation

Finite Symmetries
Direct T-violation is very hard, but CP-violation is not that hard.
J. Cronin and V. Fitch (1964) surprised everyone with their 
experimental proof of CP-violation…
…related to a 10-year old observation by M. Gell-Mann and 
A. Pais: K0 cannot be its anti-particle:

Kaons are also pseudo-scalars:

so CP-eigenstates are:
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CP-Violation

Finite Symmetries
Since

K0+ decays into two pions, K0– into three.

Indeed,

So, K0– lives some 570 times longer than K0+.
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CP

CP-Violation

Finite Symmetries
Created in pairs by strong interactions, their 50-50% 
distribution soon changes:

…is ~1.47×10–5 a(er even just 1 ns.
Cronin & Fitch found 2-pion
decays even a(er long times,
…proving that the distinct
CP-eigenstates transmogrify
one into another.
Also,
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Isospin
W. Heisenberg (1932): differences between p+ and n0 are 
irrelevant to the strong interactions.
p+ and n0 are akin to “spin-up” and “spin-down” nucleons.
E. Wigner (1937) called this isospin:

Like angular momentum, isospin can only be integral or half-
integral…
…and may well be even added to angular momentum.
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Isospin
Once a few other hardons’ isospin states are identi#ed,

we can compute!
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Applications

Isospin
Within the quark-model,

proceed as before, with:
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Applications

Isospin
Six elastic collisions:

Four inelastic collisions:

Since I(π) = 1 and I(p+,n0) = ½, their sum determines the two 
possible “reduced matrix elements” (Wigner-Eckardt "m.!)

17
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Applications

Isospin
So,

then, e.g.,
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su(2)

Flavor SU(3)

Generalization of Isospin
Pauli matrices: a basis of traceless Hermitian 2×2 matrices

span the su(2) algebra, generate the SU(2) group
For the su(3) algebra, we need traceless Hermitian 3×3 matrices

Gell-Mann’s matrices.

19

ll

l

l

1

=
h

0 1 0

1 0 0

0 0 0

i
, ll

l

l

2

=
h

0 �i 0

i 0 0

0 0 0

i
, ll

l

l

3

=
h

1 0 0

0 �1 0

0 0 0

i
, ll

l

l

4

=
h

0 0 1

0 0 0

1 0 0

i
,

ll

l

l

5

=
h

0 0 �i
0 0 0

i 0 0

i
, ll

l

l

6

=
h

0 0 0

0 0 1

0 1 0

i
, ll

l

l

7

=
h

0 0 0

0 0 �i
0 i 0

i
, ll

l

l

8

= 1p
3

h
1 0 0

0 1 0

0 0 �2

i
.

⇥
Qa , Qb

⇤
= i fab

c Qc.

f
123

= 1, f
458

= f
678

=
p

3

2

,

f
147

= � f
156

= f
246

= f
257

= f
345

= � f
367

= 1

2

,

Tr(llllallllb) = 2dab
.

Tuesday, November 1, 11



"e SUf(3) triplet: tα = (u, d, s), then we have

…and so on.
2-quark states are then given by 3⊗3 = 6S⊕3*A:

and 3-quark states by 6⊗3 = 10⊕8:

20

Flavor SU(3)

Generalization of Isospin
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Tuesday, November 1, 11



Note, the “funny” 8 is annihilated by antisymmetrization:

Also, antiquark-quark states form 3*⊗3 = 8⊕1:

"e two 8’s are related:

Finally, 3⊗3⊗3 = (6S⊕3A)⊗3 = (10S⊕8)⊕(8⊕1A).
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Flavor SU(3)

Generalization of Isospin

where it follows that t(a[b)sg]
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︸mixed symmetry
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"ere are really four linearly independent choices:

proving that

22

Flavor SU(3)

Generalization of Isospin

abg agb gab gba bga bag

10 : t(abg) +1 +1 +1 +1 +1 +1
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10S 8 8 1A
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Light Meson Masses

Quark Bound States
Charmonium (and later bo)omonium) are well modeled by
…and non-relativistic “equal mass modi#ed” H-atom model.
Turn to light mesons.
Only (u, d) at #rst & isospin SU(2).
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Light Meson Masses

Quark Bound States
In particular,

"ere is no symmetry between a quark and an antiquark.
In fact, however, the η-particle also contains a
strange-antistrange component.
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Light Meson Masses

Quark Bound States
Mesons with u, d and s:

Recall:

In turn, however, amongst the “P-state” (ℓ = 1) mesons
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3

=
h

1 0 0

0 �1 0

0 0 0

i
, ll

l

l

4

=
h

0 0 1

0 0 0

1 0 0

i
,

ll

l

l

5

=
h

0 0 �i
0 0 0

i 0 0

i
, ll

l

l

6

=
h

0 0 0

0 0 1

0 1 0

i
, ll

l

l

7

=
h

0 0 0

0 0 �i
0 i 0

i
, ll

l

l

8

= 1p
3

h
1 0 0

0 1 0

0 0 �2

i
.

w 6= 1p
6

(uu + dd � 2

¯s), but w ⇡ 1p
2

(uu + dd),

f 6= 1p
3

(uu + dd + ¯s), but f ⇡ ( ¯ss).
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Light Meson Masses

Quark Bound States
Since pseudo-scalar (S-state) and vector (P-state) mesons 
differ only in the relative orientation of spins,
…the spin-spin coupling should provide the dominant 
“correction” to the meson masses:

…where A is #)ed from experimental data, and

26

M(meson) ⇡ mq + mq +
A

mqmq

⌦
Sq·Sq

↵
,

~Sq·~Sq =

⇢
1

4

h̄2

, for S = 1 (vector mesons),

� 3

4

h̄2

, for S = 0 (pseudo-scalar mesons).

Meson Comp. Exp.

p 140 138

K 485 496

h 559 549

h0
303 958

Meson Comp. Exp.

r 780 776

w 780 783

K⇤
896 892

f 1 032 1 020
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Light Baryon Masses

Quark Bound States
Being 3-quark states, baryon classi#cation is harder.
For S-states (both orbital angular momenta = 0),
the baryon spin stems from quark spins, added.
Use the basis

and note that

and then factorize

27

| 1

2

,+ 1

2

i[12] = 1p
2

�
|"#"i � |#""i

�
, | 1

2

,� 1

2

i[12] = 1p
2

�
|"##i � |#"#i

�
;

| 1

2

,+ 1

2

i[23] = 1p
2

�
|""#i � |"#"i

�
, | 1

2

,� 1

2

i[23] = 1p
2

�
|#"#i � |##"i

�
,

| 1

2

,+ 1

2

i[13] = 1p
2

�
|""#i � |#""i

�
= | 1

2

,+ 1

2

i[12] + | 1

2

,+ 1

2

i[23],

Y(baryon) = Y(~r, t) c(spin) c(“flavor”) c(color).
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Light Baryon Masses

Quark Bound States
"e totally symmetric spin states are easy:

"e mixed states are tricky:

So then, either

or

28

| 3

2

,+ 3

2

i = |"""i, | 3

2

,+ 1

2

i = 1p
3

�
|""#i+ |"#"i+ |#""i

�
,

| 3

2

,� 3

2

i = |###i, | 3

2

,� 1

2

i = 1p
3

�
|"##i+ |#"#i+ |##"i

�
,

c[12](spin) c[12](“flavor”) + c[13](spin) c[13](“flavor”) + c[23](spin) c[23](“flavor”)

Y(baryon) = Y(~r, t) c(spin) c(“flavor”) c(color).
S S S = 10 A

Y(baryon) = Y(~r, t) c(spin) c(“flavor”) c(color).
S M M = 8 A︸symmetric
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Light Baryon Masses

Quark Bound States
Again, the distinction between the bayon 10-plet and 8-plet 
stem from differences in spin-orientations, so:

Since mu ≈ md < ms ,

works well for the 10-plet.
29

M(baryon) ⇡ m
1

+ m
2

+ m
3

+ A0 Â
i 6=j

1

mimj

⌦
Si·S j

↵
,

⌦ ↵ � �

M(D) ⇡ 3mu +
3A0 h̄2

4m2

u
, and M(W�) ⇡ 3ms +

3A0 h̄2

4m2

s
,

0

M(S⇤) ⇡ 2mu + ms +
A0 h̄2

4

⇣
1

m2

u
+

2

mums

⌘
,

M(X⇤) ⇡ mu + 2ms +
A0 h̄2

4

⇣
2

mums
+

1

m2

s

⌘
.

are a just little more involved.
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Light Baryon Masses

Quark Bound States
Use also

and obtain:

30

~S
1

· ~S
2

+ ~S
1

· ~S
3

+ ~S
2

· ~S
3

= 1

2

⇣
(~S

1

+ ~S
2

+ ~S
3

)2 � S2

1

� S2

2

� S2

3

⌘
,

⇣
⌦
~S

1

· ~S
2

+ ~S
1

· ~S
3

+ ~S
2

· ~S
3

↵
=

⇢
3

4

h̄2 for spin-3

/

2

10-plet,
� 3

4

h̄2 for spin-1

/

2

8-plet.
Adding the corresponding terms we have, using that m ⇡ m ,⇡

M(p+, n0) ⇡ 3mu �
3A0 h̄2

4m2

u
,

M(L) ⇡ 2mu + ms �
3A0 h̄2

4m2

u
,

M(S) ⇡ 2mu + ms +
A0 h̄2

4

⇣
1

m2

u
� 4

mums

⌘
,

M(X) ⇡ 2mu + ms +
A0 h̄2

4

⇣
1

m2

s
� 4

mums

⌘
.

Tuesday, November 1, 11



Light Baryon Masses

Quark Bound States
"us, #nally:

Pre)y good…
…and not just for complicated 3-body bound states!!

31

Baryon Comp. Exp.

p+, n0

939 939

L 1 116 1 114

S 1 179 1 193

X 1 327 1 318

Baryon Comp. Exp.

D 1 239 1 232

S⇤
1 381 1 384

X⇤
1 529 1 533

W 1 682 1 672
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Light Baryon Magnetic Moments

Quark Bound States
Straightforwardly, to #rst order,

and then

Must use the wave-functions for the baryons…
…the simpler ones for the 10-plet,
…the more complicated for the 8-plet.

32

~µ(baryon) = ~µ(1) +~µ(2) +~µ(3).

hIu3

i =
D q

mc
S

3

E
= ± qh̄

2mc
,

µu := hIu(u),3i = ± eh̄
3muc

,

µd := hIu(d),3i = ⌥ eh̄
6mdc

,

µs := hIu(s),3i = ⌥ eh̄
6msc

,

(2.140)

｛
hIu3

(baryon)i = 2

h̄

3

Â
i=1

⌦
baryon|µi S(i),3|baryon

↵
.
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Light Baryon Magnetic Moments

Quark Bound States
"is produces:

33

Baryon h
I

u

3

i Comp. Exp.

p+ 1

3

�
4µu � µd

�
2.79 2.793

n0

1

3

�
4µd � µu

�
�1.86 �1.913

X0

1

3

�
4µs � µu

�
�1.40 �1.253

X� 1

3

�
4µu � µs

�
�0.47 �0.69

L0 µs �0.58 �0.61

S+ 1

3

�
4µu � µs

�
2.68 2.33

S0

1

3

�
2µu + µd � µs

�
0.82

S� 1

3

�
4µd � µs

�
�1.05 �1.41
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