## (Fundamental) Physics of Elementary Particles

Finite symmetries \& the CPT-theorem; Isospin and the SU(2) group and its representations

Tristan Hübsch
Departmient of Physics and Astronomy Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

## Fundamental Physics of Elementary Particles

## PRロGRAM

- Finite Symmetries
- Parity (Space Reflection)
- Charge Conjugation
- Time Reversal
- CPT Theorem

Isospin

- Introduction
- $S U(2)$ formalism
- Applications

Quark Bound States and $S U_{f}(3)$

- Light Meson Masses
- Light Baryon Masses and Magnetic Moments


## Finite Symmetries

## PARITY

- Cartesian space coordinate reflection
- Reflecting one coordinate $\simeq$ plane mirror reflection
- Reflecting all space coordinates (in odd-dim'l space)
- Squares to $\mathbb{1}$ (the "do nothing" identity operator),
- eigenvalue $=+1$ : symmetric eigenstate (e.g., $\cos (x)$ ),
- eigenvalue $=-1$ : antisymmetric eigenstate (e.g., $\sin (x)$ ).
- This is definitely not a symmetry in the macroscopic world

It was believed to be a symmetry of fundamental physics

- For example, Pauli refused to use the Weyl equation for neutrinos
- ... although their mass was known to be possibly zero...
- ... because parity is not a symmetry of the Weyl equation
- Parity of a composite system equals
- $\left(\right.$ parity $\left._{1}\right) \cdot\left(\right.$ parity $\left._{2}\right) \cdot(-1)^{\ell}$, where $\ell=$ orbital angular momentum.


## Finite Symmetries

## PARITY

- T.D. Lee \& C.N. Yang (1956) studied the decays:

$$
" \theta^{+\prime \prime} \rightarrow \pi^{+}+\pi^{0}, \quad " \tau^{+\prime \prime} \longrightarrow \pi^{+}+\pi^{0}+\pi^{0}
$$

- $\operatorname{Spin}\left(\theta^{+}\right)=0=\operatorname{Spin}\left(\tau^{+}\right), \operatorname{Parity}\left(\theta^{+}\right)=+1$, while $\operatorname{Parity}\left(\tau^{+}\right)=-1$.
- Lee \& Yang: they are the same particle, but weak interactions violate parity.
Proposed several tests of $P$-violation in weak interactions.
C.S. Wu (+E. Ambler, R.W. Hayward, D.D. Hoppes and R.P. Hudson) tested

$$
{ }_{27}^{60} \mathrm{Co} \rightarrow{ }_{28}^{60} \mathrm{Ni}+e^{-}+\bar{v}_{e},
$$

... and found most electrons to emerge in correlation with the spin of Cobalt-60:

$$
\langle\Psi| \vec{p}_{e} \cdot \vec{s}|\Psi\rangle \neq 0 .
$$

## Finite Symmetries

## PARITY

- Now,

$$
\langle\Psi| \vec{p}_{e} \cdot \vec{S}|\Psi\rangle \stackrel{P}{=}\left\langle\Psi^{\prime}\right| \vec{p}_{e}^{\prime} \cdot \vec{S}^{\prime}\left|\Psi^{\prime}\right\rangle=-\left\langle\Psi^{\prime}\right| \vec{p}_{e} \cdot \vec{S}\left|\Psi^{\prime}\right\rangle .
$$

- In turn, if $[H, P]=0$, i.e., $P$ is a symmetry, then
either $P|\Psi\rangle=\left|\Psi^{\prime}\right\rangle=c|\Psi\rangle$, so $P\langle\Psi|=\left\langle\Psi^{\prime}\right|=c^{*}\langle\Psi|$, so

$$
\langle\Psi| \vec{p}_{e} \cdot \vec{s}|\Psi\rangle=0, \quad \text { NOT what Wu saw, }
$$

or $P|\Psi\rangle=\left|\Psi^{\prime}\right\rangle \neq c|\Psi\rangle$, so that $\left|\Psi^{\prime}\right\rangle$ and $|\Psi\rangle$ are degenerate, $\ldots$ which does not agree with otherwise good nuclear models.
It follows that $[H, P] \neq 0$, i.e., $P$ is not a symmetry.

- Once uncovered, $P$-violation was confirmed elsewhere too.
- Right-handed neutrinos differ from the left-handed ones
- No more than $10^{-10}$ observed neutrinos may be right-handed.


## Finite Symmetries

## PARITY

- For example,

$$
\pi^{-} \rightarrow \mu^{-}+\bar{v}_{\mu}
$$

- In the pion's rest-frame, the muon and the antineutrino
- move in opposite directions, and
- have $(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)$ spins.

While the antineutrinos are largely unobservable, $\ldots$ at most $10^{-10}$ muons may emerge left-handed.
Thus at most $10^{-10}$ of the antineutrinos are left-handed, $\ldots$ and at most $10^{-10}$ of the neutrinos are right-handed.

2- This implies maximal parity-violation in weak interactions.

## Finite Symmetries

## CHARGE CロNJUGATIロN

- An anti-linear operation:

$$
C\left(c_{1}\left|\Psi_{1}\right\rangle+c_{2}\left|\Psi_{2}\right\rangle\right)=c_{1}^{*} C\left(\left|\Psi_{1}\right\rangle\right)+c_{2}^{*} C\left(\left|\Psi_{2}\right\rangle\right)
$$

- This forces the operation also to be anti-unitary (unitary preceded by complex conjugation).
- It is identifiable with complex/Hermitian/Dirac conjugation. Eigenstates must have no electric charge if C is a symmetry of electromagnetism.
Eigenstates must have no color "charge" if C is a symmetry of chromodynamics (strong interactions).
- If $C$ is a symmetry of the "free" Hamiltonian, $[H, C]=0$ which is true if $H$ is Hermitian, then $|\Psi\rangle$ and $C(|\Psi\rangle)$ are degenerate.
- Indeed, e.g., $e^{-}$and $e^{+}$have the same mass.


## Finite Symmetries

## CHARGE CONJUGATIロN

- A bound state of a particle and its antiparticle
- ... is an eigenstate of $C$, with the eigenvalue $(-1)^{\ell+s}$,
- $\ell$ is the orbital angular momentum, $s$ the composite spin.
- In the electromagnetic decay of the pion,

$$
\pi^{0} \rightarrow \gamma+\gamma
$$

...there can only be an even number of photons.
But, $C$ is violated by weak interactions:

$$
C\left(\pi^{-} \rightarrow \mu_{R}^{-}+\bar{v}_{\mu}\right)=\pi^{+} \rightarrow \mu_{R}^{+}+v_{\mu}
$$

- ... does not occur... more than at most $10^{-10}$ part of the time.
- C is thus also maximally violated by weak interactions.


## Finite Symmetries

TIME REVERSAL

- Also an anti-linear and anti-unitary operation.
- Direct verification of T-violation is hard ...
- No physically meaningful eigenstates.
- In processes, $T$-violation could be checked by checking the "principle of detailed balance":
Compare

$$
\Lambda^{0} \rightarrow p^{+}+\pi^{-} \quad \text { s. } \quad p^{+}+\pi^{-} \rightarrow \Lambda^{0}
$$

But, the latter (fusion) is swamped by other results, due to strong and electromagnetic interactions.
The only (solely weak interaction) direct tests of $T$-violation then involve neutrinos... and those are extreeemely hard.

## Finite Symmetries

- The successive application of the $C,-P$ - and $T$-operations is a symmetry of all local Lorentz-invariant theories.
- A simple-looking argument begins with

$$
\begin{aligned}
\operatorname{CPT}\left(e^{ \pm i(\vec{k} \cdot \vec{r}-\omega t)}\right) & =C P\left(e^{ \pm i(\vec{k} \cdot \vec{r}+\omega t)}\right)=C\left(e^{ \pm i(\vec{k} \cdot(-\vec{r})+\omega t)}\right)=\left(e^{\mp i(\vec{k} \cdot(-\vec{r})+\omega t)}\right) \\
& =e^{ \pm i(\vec{k} \cdot \vec{r}-\omega t)}
\end{aligned}
$$

$\ldots$.. and then uses that plane-waves form a complete set of Lorentz-invariant functions.
Thus, all spacetime-dependent Lorentz-invariant observables may be expressed in terms of plane-waves, and so must also be CPT-invariant.

- The difficulty lies in proving no loss of generality.


## Finite Symmetries

## CP-VIGLATION

- Direct T-violation is very hard, but CP-violation is not that hard.
- J. Cronin and V. Fitch (1964) surprised everyone with their experimental proof of CP-violation...
...related to a 10-year old observation by M. Gell-Mann and A. Pais: $K^{0}$ cannot be its anti-particle:

$$
\pi_{(0)}^{-}+p_{(0)}^{+} \rightarrow \Lambda_{(-1)}^{0}+K_{(+1)}^{0}, \quad \text { and } \quad \pi_{(0)}^{+}+p_{(0)}^{+} \rightarrow p_{(0)}^{+}+\bar{K}_{(-1)}^{0}+K_{(+1)}^{+} .
$$

Kaons are also pseudo-scalars:

$$
C P\left|K^{0}\right\rangle=-C\left|K^{0}\right\rangle=-\left|\bar{K}^{0}\right\rangle, \quad C P\left|\bar{K}^{0}\right\rangle=-C\left|\bar{K}^{0}\right\rangle=-\left|K^{0}\right\rangle,
$$

so CP-eigenstates are:

$$
\left|K_{+}^{0}\right\rangle:=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right), \quad \text { and } \quad\left|K_{-}^{0}\right\rangle:=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right)
$$

## Finite Symmetries

## CP-VIGLATION

- Since

$$
C P\left|K_{ \pm}^{0}\right\rangle=( \pm 1)\left|K_{ \pm}^{0}\right\rangle
$$

$K^{0}+$ decays into two pions, $K^{0}{ }_{-}$into three.

$$
\begin{gathered}
\left(\Gamma_{K_{+}^{0}} \propto \sqrt{1-\left(2 m_{\pi^{0}} / m_{K^{0}}\right)^{2}}\right)>\left(\Gamma_{K_{-}^{0}} \propto \sqrt{1-\left(3 m_{\pi^{0}} / m_{K^{0}}\right)^{2}}\right) \\
\tau_{K_{+}^{0}}<\tau_{K_{-}^{0}}
\end{gathered}
$$

Indeed,

$$
\tau_{K_{+}^{0}}=0.8958 \times 10^{-10} \mathrm{~s}, \quad \text { while } \quad \tau_{K_{-}^{0}}=5.114 \times 10^{-8} \mathrm{~s} .
$$

- So, $K^{0}$ - lives some 570 times longer than $K^{0}{ }_{+}$.


## Finite Symmetries

## CP-VIロLATIロN

- Created in pairs by strong interactions, their 50-50\% distribution soon changes:

$$
\frac{N\left(K_{+}^{0}\right)}{N\left(K_{-}^{0}\right)}=\frac{e^{-t / \tau^{+}}}{e^{-t / \tau^{-}}}=\exp \left\{-\frac{t}{\tau^{+}}+\frac{t}{\tau^{-}}\right\} \approx \exp \left\{-569 \frac{t}{\tau^{-}}\right\}
$$

$\ldots$ is $\sim 1.47 \times 10^{-5}$ after even just 1 ns .
Cronin \& Fitch found 2-pion decays even after long times, ... proving that the distinct CP-eigenstates transmogrify one into another.
Also,



## Isospin

## Sப(Z) FロRMALISM

- W. Heisenberg (1932): differences between $p^{+}$and $n^{0}$ are irrelevant to the strong interactions.
- $p^{+}$and $n^{0}$ are akin to "spin-up" and "spin-down" nucleons.
- E. Wigner (1937) called this isospin:

$$
\vec{I}: \quad\left[I_{j}, I_{k}\right]=i \varepsilon_{j k}^{m} I_{m}
$$

$\left|I, I_{3}\right\rangle: I^{2}\left|I, I_{3}\right\rangle=I(I+1)\left|I, I_{3}\right\rangle, \quad I_{3}\left|I, I_{3}\right\rangle=I_{3}\left|I, I_{3}\right\rangle, \quad I=\max \left(\left|I_{3}\right|\right)$,

$$
I_{ \pm}\left|I, I_{3}\right\rangle=\sqrt{I(I+1)-I_{3}\left(I_{3} \pm 1\right)}\left|I, I_{3} \pm 1\right\rangle, \quad \triangle I_{3} \in \mathbb{Z}
$$

Like angular momentum, isospin can only be integral or halfintegral...

- ... and may well be even added to angular momentum.

$$
\left|p^{+}\right\rangle=\left|\frac{1}{2},+\frac{1}{2}\right\rangle, \quad\left|n^{0}\right\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle .
$$

## Isospin

## APPLICATIロNS

- Once a few other hardons' isospin states are identified,

$$
\left|\pi^{+}\right\rangle=|1,+1\rangle, \quad\left|\pi^{0}\right\rangle=|1,0\rangle, \quad\left|\pi^{-}\right\rangle=|1,-1\rangle,
$$

$\left|\Delta^{++}\right\rangle=\left|\frac{3}{2},+\frac{3}{2}\right\rangle, \quad\left|\Delta^{+}\right\rangle=\left|\frac{3}{2},+\frac{1}{2}\right\rangle, \quad\left|\Delta^{0}\right\rangle=\left|\frac{3}{2},-\frac{1}{2}\right\rangle, \quad\left|\Delta^{-}\right\rangle=\left|\frac{3}{2},-\frac{3}{2}\right\rangle$,

- we can compute!

$$
\begin{aligned}
& a: p^{+}+p^{+} \rightarrow d+\pi^{+}, \quad \leftrightarrow \quad\left|\frac{1}{2},+\frac{1}{2}\right\rangle\left|\frac{1}{2},+\frac{1}{2}\right\rangle \rightarrow|0,0\rangle|1,+1\rangle=|1,+1\rangle, \\
& b: \quad p^{+}+n^{0} \rightarrow d+\pi^{0}, \quad \leftrightarrow\left|\frac{1}{2},+\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle \rightarrow|0,0\rangle|1,0\rangle=|1,0\rangle, \\
& c: \quad n^{0}+n^{0} \rightarrow d+\pi^{0}, \quad \leftrightarrow\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle \rightarrow|0,0\rangle|1,-1\rangle=|1,-1\rangle \text {. } \\
& \mathfrak{M}_{a} \propto\left\langle d, \pi^{+} \mid p^{+}, p^{+}\right\rangle=\langle 1,+1|\left|\frac{1}{2},+\frac{1}{2}\right\rangle\left|\frac{1}{2},+\frac{1}{2}\right\rangle=1, \\
& \mathfrak{M}_{b} \propto\left\langle d, \pi^{0} \mid p^{+}, n^{0}\right\rangle=\langle 1,0|\left|\frac{1}{2},+\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle, \\
& =\langle 1,0|\left(\frac{1}{\sqrt{2}}(|1,0\rangle+|0,0\rangle)\right)=\frac{1}{\sqrt{2}}, \\
& \mathfrak{M}_{c} \propto\left\langle d, \pi^{-} \mid n^{0}, n^{0}\right\rangle=\left\langle 1_{15},-1\right|\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle=1 .
\end{aligned}
$$

## Isospin

## APPLICATIロNS

- Within the quark-model,

$$
|u\rangle=\left|\frac{1}{2},+\frac{1}{2}\right\rangle, \quad|d\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle
$$

proceed as before, with:

$$
\begin{aligned}
\left|\pi^{+}\right\rangle & =|1,+1\rangle \\
\left|\pi^{0}\right\rangle & =|1,0\rangle=|u\rangle \otimes|\bar{d}\rangle, \\
\left|\pi^{-}\right\rangle & =|1,-1\rangle=|d\rangle \otimes|\bar{u}\rangle, \\
\left|\eta^{0}\right\rangle & \approx|0,0\rangle=\frac{1}{\sqrt{2}}|u\rangle \otimes|\bar{u}\rangle+\frac{1}{\sqrt{2}}|d\rangle \otimes|\bar{d}\rangle, \\
\left|\Delta^{++}\right\rangle & =|u\rangle \otimes|u\rangle \otimes|u\rangle=\left|\frac{1}{\sqrt{2}},+\frac{3}{2}\right\rangle, \\
\left|\Delta^{+}\right\rangle & =|u\rangle \otimes|\bar{d}\rangle . \\
\left|\Delta^{0}\right\rangle & =|u\rangle \otimes|d\rangle \otimes|d\rangle=\left|\frac{3}{2},+\frac{1}{2}\right\rangle, \quad\left|p^{+}\right\rangle=\left|\frac{1}{2},+\frac{1}{2}\right\rangle, \\
\left|\Delta^{-}\right\rangle & =|d\rangle \otimes|d\rangle \otimes|d\rangle=\left|\frac{3}{2},-\frac{3}{2}\right\rangle .
\end{aligned}
$$

## Isospin

## APPLICATIロNS

- Six elastic collisions:
(a) $\pi^{+}+p^{+} \rightarrow \pi^{+}+p^{+}$,
(b) $\pi^{0}+p^{+} \rightarrow \pi^{0}+p^{+}$,
(c) $\pi^{-}+p^{+} \rightarrow \pi^{-}+p^{+}$,
(d) $\pi^{+}+n^{0} \rightarrow \pi^{+}+n^{0}$,
(e) $\pi^{0}+n^{0} \rightarrow \pi^{0}+n^{0}$,
(f) $\pi^{-}+n^{0} \rightarrow \pi^{-}+n^{0}$,

Four inelastic collisions:

$$
\begin{array}{ll}
(g) \pi^{+}+n^{0} \rightarrow \pi^{0}+p^{+}, & \\
\text {(h) } \pi^{0}+p^{+} \rightarrow \pi^{+}+n^{0} \\
(i) \pi^{0}+n^{0} \rightarrow \pi^{-}+p^{+}, & \\
\text {(j) } \pi^{-}+p^{+} \rightarrow \pi^{0}+n^{0} .
\end{array}
$$

Since $I(\pi)=1$ and $I\left(p^{+}, n^{0}\right)=1 / 2$, their sum determines the two possible "reduced matrix elements" (Wigner-Eckardt Thm.!)

$$
\mathfrak{M}_{3 / 2} \text { and } \mathfrak{M}_{1 / 2}
$$

## Isospin

## APPLICATIロNS

- So,

$$
\begin{aligned}
\pi^{+}+p^{+}: & & |1,1\rangle\left|\frac{1}{2},+\frac{1}{2}\right\rangle & =\left|\frac{3}{2},+\frac{3}{2}\right\rangle, \\
\pi^{0}+p^{+}: & & |1,0\rangle\left|\frac{1}{2},+\frac{1}{2}\right\rangle & =\sqrt{\frac{2}{3}}\left|\frac{3}{2},+\frac{1}{2}\right\rangle-\frac{1}{\sqrt{3}}\left|\frac{1}{2},+\frac{1}{2}\right\rangle, \\
\pi^{-}+p^{+}: & & |1,-1\rangle\left|\frac{1}{2},+\frac{1}{2}\right\rangle & =\frac{1}{\sqrt{3}}\left|\frac{3}{2},-\frac{1}{2}\right\rangle-\sqrt{\frac{2}{3}}\left|\frac{1}{2},-\frac{1}{2}\right\rangle, \\
\pi^{+}+n^{0}: & & |1,1\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle & =\frac{1}{\sqrt{3}}\left|\frac{3}{2},+\frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}\left|\frac{1}{2},+\frac{1}{2}\right\rangle, \\
\pi^{0}+n^{0}: & & |1,0\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle & =\sqrt{\frac{2}{3}}\left|\frac{3}{2},-\frac{1}{2}\right\rangle+\frac{1}{\sqrt{3}}\left|\frac{1}{2},-\frac{1}{2}\right\rangle, \\
\pi^{-}+n^{0}: & & 1,-1\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle & =\left|\frac{3}{2},-\frac{3}{2}\right\rangle .
\end{aligned}
$$

then, e.g.,
(a) $\pi^{+}+p^{+} \rightarrow \pi^{+}+p^{+} \quad \leftrightarrow \quad \mathfrak{M}_{a}=\left\langle\frac{3}{2},+\frac{3}{2} \| \frac{3}{2},+\frac{3}{2}\right\rangle \times \mathfrak{M}_{3 / 2}=\mathfrak{M}_{3 / 2}$,
(c) $\pi^{-}+p^{+} \rightarrow \pi^{-}+p^{+}$

$$
\begin{aligned}
\mapsto \quad \mathfrak{M}_{c} & =\left(\frac{1}{\sqrt{3}}\left\langle\frac{3}{2},-\frac{1}{2} ; \mathfrak{f}_{3}\right|-\sqrt{\frac{2}{3}}\left\langle\frac{1}{2},-\frac{1}{2} ; \mathfrak{f}_{1}\right|\right)\left(\frac{1}{\sqrt{3}}\left|\frac{3}{2},-\frac{1}{2} ; \mathfrak{f}_{3}\right\rangle-\sqrt{\frac{2}{3}}\left|\frac{1}{2},-\frac{1}{2} ; \mathfrak{f}_{1}\right\rangle\right), \\
& =\frac{1}{3}\left\langle\frac{3}{2},-\frac{1}{2} ; \mathfrak{f}_{3}\right|\left|\frac{3}{2},-\frac{1}{2} ; \mathfrak{f}_{3}\right\rangle+\frac{2}{3}\left\langle\frac{1}{2},-\frac{1}{2} ; \mathfrak{f}_{1}\right|\left|\frac{1}{2},-\frac{1}{2} ; \mathfrak{f}_{1}\right\rangle=\frac{1}{3} \mathfrak{M}_{3 / 2}+\frac{2}{3} \mathfrak{M}_{1 / 2},
\end{aligned}
$$

## Generalization of Isospin

## FLAVロR Sப(3)

- Pauli matrices: a basis of traceless Hermitian $2 \times 2$ matrices
- span the $\mathfrak{s u}(2)$ algebra, generate the $\mathrm{SU}(2)$ group
- For the $\mathfrak{s u}(3)$ algebra, we need traceless Hermitian $3 \times 3$ matrices

$$
\begin{array}{lll}
\mathfrak{s u}(2) \boldsymbol{\lambda}_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], & \boldsymbol{\lambda}_{2}=\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right], & \boldsymbol{\lambda}_{3}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right],
\end{array} \boldsymbol{\lambda}_{4}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad .
$$

Gell-Mann's matrices.

$$
\begin{gathered}
{\left[Q_{a}, Q_{b}\right]=i f_{a b}^{c} Q_{c} .} \\
f_{123}=1, \quad f_{458}=f_{678}=\frac{\sqrt{3}}{2} \\
f_{147}=-f_{156}=f_{246}=f_{257}=f_{345}=-f_{367}=\frac{1}{2}, \\
\operatorname{Tr}\left(\boldsymbol{\lambda}^{a} \boldsymbol{\lambda}_{19}^{b}=2 \delta^{a b} .\right.
\end{gathered}
$$

## Generalization of Isospin

## FLAVロR Sப(3)

- The $S U_{f}(3)$ triplet: $t^{a}=(u, d, s)$, then we have
$1 \simeq t$
$3 \simeq t^{\alpha}$
$3^{*} \simeq t_{\alpha}=\frac{1}{2} \varepsilon_{\alpha \beta \gamma}{ }^{[\beta \gamma]}$
$\alpha, \beta, \gamma, \ldots=1,2,3$,
$6 \simeq t^{(\alpha \beta)}, \quad 6^{*} \simeq t_{(\alpha \beta)}$
$8 \simeq t^{\alpha}{ }_{\beta}, t^{\alpha}{ }_{\alpha} \equiv 0$
$\mathbf{1 0} \simeq t^{(\alpha \beta \gamma)}$,
... and so on.
2 -quark states are then given by $3 \otimes 3=\mathbf{6}_{S} \oplus 3^{*}{ }_{A}$ :

$$
t^{\alpha} s^{\beta}=t^{\left(\alpha_{s} \beta\right)}+t^{\left[\alpha_{s} \beta\right]}, \quad\left\{\begin{aligned}
t^{\left(\alpha_{s} \beta\right)} & :=\frac{1}{2}\left(t^{\alpha} s^{\beta}+t^{\beta} s^{\alpha}\right), \\
\left.t^{[\alpha}{ }_{s} \beta\right] & :=\frac{1}{2}\left(t^{\alpha}{ }_{s} \beta-t^{\beta} s^{\alpha}\right) ;
\end{aligned}\right.
$$

and 3 -quark states by $\mathbf{6} \otimes 3=10 \oplus 8$ :

$$
\begin{aligned}
& \left.t^{(\alpha \beta)}{ }_{s}{ }^{\gamma}=t^{\left(\alpha \beta{ }_{S} \gamma\right)}+\frac{4}{3} t^{(\alpha[b)}{ }_{S} \gamma\right], \\
& \left.t^{(\alpha \beta}{ }_{s} \gamma\right):=\frac{1}{3}\left(t^{(\alpha \beta)} s^{\gamma}+t^{(\beta \gamma)} s^{\alpha}+t^{(\gamma \alpha)} s^{\beta}\right), \\
& \left.t^{(\alpha[\beta)}{ }_{s} \gamma\right]:=\frac{1}{4}\left(\left(t^{(\alpha \beta)}{ }_{S}{ }^{\gamma}-t^{(\alpha \gamma)}{ }_{S} \beta\right)+\left(t^{(\beta \alpha)_{S} \gamma}-t^{(\beta \gamma)}{ }_{s^{\alpha}}\right)\right), \\
& =\frac{1}{4}\left(2 t^{(\alpha \beta)}{ }_{20} \gamma-t^{(\alpha \gamma)}{ }_{S} \beta-t^{(\beta \gamma)} s^{\alpha}\right)
\end{aligned}
$$

## Generalization of Isospin

## FLAVロR Sப(3)

- Note, the "funny" 8 is annihilated by antisymmetrization:

$$
\left.t^{(\alpha[\beta)}{ }_{S} \gamma\right] \varepsilon_{\alpha \beta \gamma} \equiv 0
$$

- Also, antiquark-quark states form $\mathbf{3}^{*} \otimes \mathbf{3}=\mathbf{8} \oplus \mathbf{1}$ :

$$
t_{\alpha} s^{\beta}=\left(t_{\alpha} s^{\beta}-\frac{1}{3} \delta_{\alpha}^{\beta}\left(t_{\gamma} s^{\gamma}\right)\right)+\frac{1}{3} \delta_{\alpha}^{\beta}\left(t_{\gamma} s^{\gamma}\right)
$$

The two 8's are related:

$$
\begin{aligned}
& \frac{4}{3} t^{(\alpha[\beta)}{ }_{s}{ }^{\gamma]} \varepsilon_{\beta \gamma \delta}=t^{(\alpha \beta)}{ }_{s}{ }^{\gamma} \varepsilon_{\beta \gamma \delta}=:\left(t^{(\cdot)} s^{\cdot}\right)^{\alpha}{ }_{\delta} \quad: \quad \delta_{\alpha}{ }^{\delta}\left(t^{(\cdot)} s^{\cdot}\right)^{\alpha}{ }_{\delta} \equiv 0 \\
& \left.\left(t^{(\cdot)} s^{*}\right)^{\alpha}{ }_{\delta} \varepsilon^{\beta \gamma \delta}=t^{(\alpha \beta)}{ }_{S}{ }^{\gamma}-t^{(\alpha \gamma)}{ }_{S}{ }^{\beta}, \quad \frac{2}{3}\left(t^{(\cdot \cdot)}{ }_{S}\right)^{(\alpha}{ }_{\delta} \varepsilon^{\beta) \gamma \delta}=\frac{4}{3} t^{(\alpha[\beta)}{ }_{S} \gamma\right]
\end{aligned}
$$

- Finally, $3 \otimes 3 \otimes 3=\left(6 \mathrm{~S}_{\mathrm{S}} \oplus 3_{\mathrm{A}}\right) \otimes 3=(10_{\mathrm{S}} \oplus \underbrace{8}) \oplus\left(8 \mathbf{1}_{\mathrm{A}}\right)$. mixed symmetry


## Generalization of Isospin

## FLAVロR SU(3)

- There are really four linearly independent choices:

|  |  | $\alpha \beta \gamma$ | $\alpha \gamma \beta$ | $\gamma \alpha \beta$ | $\gamma \beta \alpha$ | $\beta \gamma \alpha$ | $\beta \alpha \gamma$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0}:$ | $t^{(\alpha \beta \gamma)}$ | +1 | +1 | +1 | +1 | +1 | +1 |
| $\mathbf{8}:$ | $t^{(\alpha[\beta) \gamma]}$ | +2 | -1 | -1 | -1 | -1 | +2 |
| $\mathbf{8}:$ | $t^{[\alpha(\beta] \gamma)}$ | +2 | +1 | -1 | +1 | -1 | -2 |
| $\mathbf{1}:$ | $t^{[\alpha \beta \gamma]}$ | +1 | -1 | +1 | -1 | +1 | -1 |

proving that

$$
\begin{aligned}
& \underbrace{t^{\alpha \beta \gamma}}=t^{(\alpha \beta \gamma)}+t^{(\alpha[\beta) \gamma]}+t^{[\alpha(\beta] \gamma)}+t^{[\alpha \beta \gamma]} \\
& \begin{array}{llllll}
\text { no symmetry } & \mathbf{1 0}_{\mathrm{S}} & 8 & 8 & \mathbf{1}_{\mathrm{A}}
\end{array} \\
& \square \otimes \square \otimes \square=(\square \oplus \square) \otimes \square=\binom{\square \square \oplus \square}{\mathbf{1 0}_{\mathrm{S}}} \oplus\left(\begin{array}{c}
\square
\end{array} \underset{\mathbf{8}}{\square} \underset{\mathbf{1}_{\mathrm{A}}}{\square}\right)
\end{aligned}
$$

## Quark Bound States

## LIGHT MESロN MASSES

- Charmonium (and later bottomonium) are well modeled by
- ... and non-relativistic "equal mass modified" H-atom model.
- Turn to light mesons.
- Only $(u, d)$ at first \& isospin $\operatorname{SU}(2)$.

$$
\begin{gathered}
\left\{t^{1}, t^{2}\right\}=\{u, d\}, \Rightarrow\left\{t_{1}, t_{2}\right\}=\{\bar{u}, \bar{d}\} . \\
t_{1}=\varepsilon_{12} t^{2}=t^{2} \Rightarrow|\bar{u}\rangle=|d\rangle, \\
t_{2}=\varepsilon_{21} t^{1}=-t^{1} \Rightarrow|\bar{d}\rangle=-|u\rangle . \\
\{|\bar{u}\rangle,|\bar{d}\rangle\} \otimes\{|u\rangle,|d\rangle\}=\left\{\left|\frac{1}{2},-\frac{1}{2}\right\rangle,-\left|\frac{1}{2}, \frac{1}{2}\right\rangle\right\} \otimes\left\{\left|\frac{1}{2},+\frac{1}{2}\right\rangle,\left|\frac{1}{2},-\frac{1}{2}\right\rangle\right\}, \\
=\{|1, \pm 1\rangle,|1,0\rangle\} \oplus\{|0,0\rangle\}=\left\{\left|\pi^{ \pm}\right\rangle,\left|\pi^{0}\right\rangle\right\} \oplus\{|\eta\rangle\},
\end{gathered}
$$

## Quark Bound States

## LIGHT MESロN MASSES

- In particular,

$$
\begin{aligned}
& |1,+1\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle \quad=-|\bar{d}\rangle|u\rangle, \\
& |1,0\rangle=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2},+\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle+\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2},+\frac{1}{2}\right\rangle\right)=\frac{1}{\sqrt{2}}(-|\bar{d}\rangle|d\rangle+|\bar{u}\rangle|u\rangle) \text {, } \\
& |1,-1\rangle=\left|\frac{1}{2},+\frac{1}{2}\right\rangle\left|\frac{1}{2},+\frac{1}{2}\right\rangle \\
& =|\bar{u}\rangle|d\rangle \text {, } \\
& |0,0\rangle=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2},+\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2},+\frac{1}{2}\right\rangle\right)=\frac{1}{\sqrt{2}}(-|\bar{d}\rangle|d\rangle-|\bar{u}\rangle|u\rangle) \text {, } \\
& \int\left|\pi^{+}\right\rangle=-|\bar{d} u\rangle, \\
& \left|\pi^{0}\right\rangle=\frac{1}{\sqrt{2}}(|\bar{u} u\rangle-|\bar{d} d\rangle) \text {, and }|\eta\rangle=-\frac{1}{\sqrt{2}}(|\bar{u} u\rangle+|\bar{d} d\rangle) \text {. } \\
& \left|\pi^{-}\right\rangle=|\bar{u} d\rangle,
\end{aligned}
$$

- There is no symmetry between a quark and an antiquark.
- In fact, however, the $\eta$-particle also contains a strange-antistrange component.


## Quark Bound States

## LIGHT MESロN MASSES

- Mesons with $u, d$ and $s$ :
$\pi^{+}=(\bar{d} u), \quad \pi^{-}=(\bar{u} d), \quad \pi^{0}=\frac{1}{\sqrt{2}}(\bar{u} u-\bar{d} d), \quad \eta=\frac{1}{\sqrt{6}}(\bar{u} u+\bar{d} d-2 \bar{s} s)$,
$K^{+}=(\bar{s} u), \quad K^{0}=(\bar{s} d), \quad \bar{K}^{0}-=(\bar{d} s), \quad K^{-}=(\bar{u} s), \quad \eta^{\prime}=\frac{1}{\sqrt{3}}(\bar{u} u+\bar{d} d+\bar{s} s)$.
- Recall:

$$
\begin{aligned}
& \boldsymbol{\lambda}_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \boldsymbol{\lambda}_{2}=\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \boldsymbol{\lambda}_{3}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \boldsymbol{\lambda}_{4}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \\
& \boldsymbol{\lambda}_{5}=\left[\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right], \quad \boldsymbol{\lambda}_{6}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \boldsymbol{\lambda}_{7}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right], \quad \boldsymbol{\lambda}_{8}=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right]
\end{aligned}
$$

In turn, however, amongst the " $P$-state" $(\ell=1)$ mesons

$$
\begin{aligned}
\omega \neq \frac{1}{\sqrt{6}}(\bar{u} u+\bar{d} d-2 \bar{s}), & \text { but } & \omega \approx \frac{1}{\sqrt{2}}(\bar{u} u+\bar{d} d) \\
\phi \neq \frac{1}{\sqrt{3}}(\bar{u} u+\bar{d} d+\bar{s}), & \text { but } & \phi \approx(\bar{s} s)
\end{aligned}
$$

## Quark Bound States

## LIGHT MESロN MASSES

- Since pseudo-scalar (S-state) and vector (P-state) mesons differ only in the relative orientation of spins,
- ... the spin-spin coupling should provide the dominant "correction" to the meson masses:

$$
M(\text { meson }) \approx m_{q}+m_{\bar{q}}+\frac{A}{m_{q} m_{\bar{q}}}\left\langle S_{q} \cdot S_{\bar{q}}\right\rangle
$$

... where A is fitted from experimental data, and

$$
\vec{S}_{q} \cdot \vec{S}_{\bar{q}}=\left\{\begin{aligned}
\frac{1}{4} \hbar^{2}, & \text { for } S=1 \text { (vector mesons) } \\
-\frac{3}{4} \hbar^{2}, & \text { for } S=0 \text { (pseudo-scalar mesons). }
\end{aligned}\right.
$$

Meson Comp. Exp. Meson Comp. Exp.

| $\pi$ | 140 | 138 |  | $\rho$ | 780 | 776 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| $K$ | 485 | 496 |  | $\omega$ | 780 | 783 |
| $\eta$ | 559 | 549 |  | $K^{*}$ | 896 | 892 |
| $\eta^{\prime}$ | 303 | 958 |  | $\phi$ | 1032 | 1020 |
|  |  |  |  |  |  |  |

## Quark Bound States

## LIGHT BARYIN MASSES

- Being 3-quark states, baryon classification is harder.
- For $S$-states (both orbital angular momenta $=0$ ), the baryon spin stems from quark spins, added.
- Use the basis
$\left|\frac{1}{2},+\frac{1}{2}\right\rangle_{[12]}=\frac{1}{\sqrt{2}}(|\uparrow \downarrow \uparrow\rangle-|\downarrow \uparrow \uparrow\rangle), \quad\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{[12]}=\frac{1}{\sqrt{2}}(|\uparrow \downarrow \downarrow\rangle-|\downarrow \uparrow \downarrow\rangle) ;$
$\left|\frac{1}{2},+\frac{1}{2}\right\rangle_{[23]}=\frac{1}{\sqrt{2}}(|\uparrow \uparrow \downarrow\rangle-|\uparrow \downarrow \uparrow\rangle), \quad\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{[23]}=\frac{1}{\sqrt{2}}(|\downarrow \uparrow \downarrow\rangle-|\downarrow \downarrow \uparrow\rangle)$,
and note that

$$
\left|\frac{1}{2},+\frac{1}{2}\right\rangle_{[13]}=\frac{1}{\sqrt{2}}(|\uparrow \uparrow \downarrow\rangle-|\downarrow \uparrow \uparrow\rangle)=\left|\frac{1}{2},+\frac{1}{2}\right\rangle_{[12]}+\left|\frac{1}{2},+\frac{1}{2}\right\rangle_{[23]},
$$

and then factorize

$$
\Psi(\text { baryon })=\Psi(\vec{r}, t) \chi(\text { spin }) \chi(\text { "flavor" }) \chi(\text { color })
$$

## Quark Bound States

## LIGHT BARYロN MASSES

- The totally symmetric spin states are easy:

$$
\begin{array}{ll}
\left|\frac{3}{2},+\frac{3}{2}\right\rangle=|\uparrow \uparrow \uparrow\rangle, & \left|\frac{3}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(|\uparrow \uparrow \downarrow\rangle+|\uparrow \downarrow \uparrow\rangle+|\downarrow \uparrow \uparrow\rangle), \\
\left|\frac{3}{2},-\frac{3}{2}\right\rangle=|\downarrow \downarrow \downarrow\rangle, & \left|\frac{3}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(|\uparrow \downarrow \downarrow\rangle+|\downarrow \uparrow \downarrow\rangle+|\downarrow \downarrow \uparrow\rangle,
\end{array}
$$

- The mixed states are tricky:
$\chi_{[12]}$ (spin) $\chi_{[12]}$ ("flavor") $+\chi_{[13]}($ spin $) \chi_{[13]}$ ("flavor") $+\chi_{[23]}$ (spin) $\chi_{[23]}$ ("flavor")
So then, either

$$
\begin{gathered}
\Psi(\text { baryon })=\Psi(\vec{r}, t) \chi(\operatorname{spin}) \chi(\text { "flavor" }) \chi(\text { color }) . \\
\mathrm{S} \quad \mathrm{~S} \quad \mathrm{~S}=\mathbf{1 0} \quad \mathrm{A}
\end{gathered}
$$

Or

$$
\Psi(\text { baryon })=\Psi(\vec{r}, t) \chi(\text { spin }) \chi(\text { "flavor" }) \chi(\text { color }) .
$$

## Quark Bound States

## LIGHT BARYロN MASSES

- Again, the distinction between the bayon 10-plet and 8-plet stem from differences in spin-orientations, so:

$$
M(\text { baryon }) \approx m_{1}+m_{2}+m_{3}+A^{\prime} \sum_{i \neq j} \frac{1}{m_{i} m_{j}}\left\langle s_{i} \cdot S_{j}\right\rangle,
$$

- Since $m_{u} \approx m_{d}<m_{s}$,

$$
\begin{gathered}
M(\Delta) \approx 3 m_{u}+\frac{3 A^{\prime} \hbar^{2}}{4 m_{u}^{2}}, \quad \text { and } \quad M\left(\Omega^{-}\right) \approx 3 m_{s}+\frac{3 A^{\prime} \hbar^{2}}{4 m_{s}^{2}} \\
M\left(\Sigma^{*}\right) \approx 2 m_{u}+m_{s}+\frac{A^{\prime} \hbar^{2}}{4}\left(\frac{1}{m_{u}^{2}}+\frac{2}{m_{u} m_{s}}\right), \\
M\left(\Xi^{*}\right) \approx m_{u}+2 m_{s}+\frac{A^{\prime} \hbar^{2}}{4}\left(\frac{2}{m_{u} m_{s}}+\frac{1}{m_{s}^{2}}\right) .
\end{gathered}
$$

works well for the $\mathbf{1 0}$-plet.

## Quark Bound States

## LIGHT BARYIN MASSES

- Use also

$$
\begin{aligned}
& \vec{S}_{1} \cdot \vec{S}_{2}+\vec{S}_{1} \cdot \vec{S}_{3}+\vec{S}_{2} \cdot \vec{S}_{3}=\frac{1}{2}\left(\left(\vec{S}_{1}+\vec{S}_{2}+\vec{S}_{3}\right)^{2}-S_{1}^{2}-S_{2}^{2}-S_{3}^{2}\right), \\
& \left\langle\vec{S}_{1} \cdot \vec{S}_{2}+\vec{S}_{1} \cdot \vec{S}_{3}+\vec{S}_{2} \cdot \vec{S}_{3}\right\rangle=\left\{\begin{aligned}
\frac{3}{4} \hbar^{2} & \text { for spin-3/2 10-plet, } \\
-\frac{3}{4} \hbar^{2} & \text { for spin-1/2 8-plet. }
\end{aligned}\right.
\end{aligned}
$$

and obtain:

$$
\begin{aligned}
M\left(p^{+}, n^{0}\right) & \approx 3 m_{u}-\frac{3 A^{\prime} \hbar^{2}}{4 m_{u}^{2}} \\
M(\Lambda) & \approx 2 m_{u}+m_{s}-\frac{3 A^{\prime} \hbar^{2}}{4 m_{u}^{2}} \\
M(\Sigma) & \approx 2 m_{u}+m_{s}+\frac{A^{\prime} \hbar^{2}}{4}\left(\frac{1}{m_{u}^{2}}-\frac{4}{m_{u} m_{s}}\right), \\
M(\Xi) & \approx 2 m_{u}+m_{s}+\frac{A^{\prime} \hbar^{2}}{4}\left(\frac{1}{m_{s}^{2}}-\frac{4}{m_{u} m_{s}}\right) .
\end{aligned}
$$

## Quark Bound States

## LIGHT BARYロN MASSES

- Thus, finally:

Baryon Comp. Exp.

| $p^{+}, n^{0}$ | 939 | 939 |
| :---: | ---: | ---: |
| $\Lambda$ | 1116 | 1114 |
| $\Sigma$ | 1179 | 1193 |
| $\Xi$ | 1327 | 1318 |

Baryon Comp. Exp.

| $\Delta$ | 1239 | 1232 |
| :---: | :---: | :---: |
| $\Sigma^{*}$ | 1381 | 1384 |
| $\Xi^{*}$ | 1529 | 1533 |
| $\Omega$ | 1682 | 1672 |

Pretty good...
... and not just for complicated 3-body bound states!!

## Quark Bound States

## Light Baryan Magnetic Maments

- Straightforwardly, to first order,

$$
\begin{aligned}
& \vec{\mu} \text { (baryon) }=\vec{\mu}_{(1)}+\vec{\mu}_{(2)}+\vec{\mu}_{(3)} . \\
& \qquad\left\langle\mu_{3}\right\rangle=\left\langle\frac{q}{m c} s_{3}\right\rangle= \pm \frac{q \hbar}{2 m c}, \quad\left\{\begin{array}{l}
\mu_{u}:=\left\langle\mu_{(u), 3}\right\rangle= \pm \frac{e \hbar}{3 m_{u} c} \\
\mu_{d}:=\left\langle\mu_{(d), 3}\right\rangle=\mp \frac{e \hbar}{6 m_{d} c} \\
\mu_{s}:=\left\langle\mu_{(s), 3}\right\rangle=\mp \frac{e \hbar}{6 m_{s-c}}
\end{array}\right. \text {, } \\
& \text { and then }
\end{aligned}
$$

$$
\left.\left.\left\langle\mu_{3}(\text { baryon })\right\rangle=\frac{2}{\hbar} \sum_{i=1}^{3}\langle\text { baryon }| \mu_{i} S_{(i), 3} \right\rvert\, \text { baryon }\right\rangle .
$$

- Must use the wave-functions for the baryons ...
- ... the simpler ones for the $\mathbf{1 0}$-plet,
- ...the more complicated for the 8 -plet.


## Quark Bound States

## LIGHT BARYロN MAGNETIC MロMENTS

- This produces:

| Baryon | $\left\langle\mu_{3}\right\rangle$ | Comp. | Exp. |
| :---: | :---: | ---: | :---: |
| $p^{+}$ | $\frac{1}{3}\left(4 \mu_{u}-\mu_{d}\right)$ | 2.79 | 2.793 |
| $n^{0}$ | $\frac{1}{3}\left(4 \mu_{d}-\mu_{u}\right)$ | -1.86 | -1.913 |
| $\Xi^{0}$ | $\frac{1}{3}\left(4 \mu_{s}-\mu_{u}\right)$ | -1.40 | -1.253 |
| $\Xi^{-}$ | $\frac{1}{3}\left(4 \mu_{u}-\mu_{s}\right)$ | -0.47 | -0.69 |
| $\Lambda^{0}$ | $\mu_{s}$ | -0.58 | -0.61 |
| $\Sigma^{+}$ | $\frac{1}{3}\left(4 \mu_{u}-\mu_{s}\right)$ | 2.68 | 2.33 |
| $\Sigma^{0}$ | $\frac{1}{3}\left(2 \mu_{u}+\mu_{d}-\mu_{s}\right)$ | 0.82 |  |
| $\Sigma^{-}$ | $\frac{1}{3}\left(4 \mu_{d}-\mu_{s}\right)$ | -1.05 | -1.41 |

## Thanks!

## Tristan Hubsch

Department of Physics and Astronomy Howard University, Washington DC

Prirodno-Matematički Fakultet Univerzitet u Novom Sadu
http://homepage.mac.com/thubsch/

