(Fundamental) Physics of Elementary Particles

Bound states: non-relativistic H -atom and its various

 corrections as a paradigm, vs. positroniumTristan Hübsch

Depaitment of Physics and Astronomy
Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

Fundamental Physics of Elementary Particles

FロREWロRD

- Hadrons = bound states of quarks

Name	q	Mass* (MeV/c²)	Q	I_{3}	B	S	C	B^{\prime}	T	\boldsymbol{r}
Up	u	1.5-3.3	+2/3	+1/2	1/3	0	0	0	0	+1/3
Down	d	3.5-6.0	$-1 / 3$	$-1 / 2$	1/3	0	0	0	0	+1/3
Strange	s	$105\left\{{ }_{-35}^{+25}\right.$	$-1 / 3$	0	1/3	-1	0	0	0	$-2 / 3$
Charm	c	$1270\left\{{ }_{-110}^{+70}\right.$	$+2 / 3$	0	1/3	0	+1	0	0	$+4 / 3$
Bottom	b	$4200\left\{{ }_{-70}^{+170}\right.$	$-1 / 3$	0	1/3	0	0	-1	0	-2/3
Top	t	$171300\left\{{ }_{-1200}^{+1100}\right.$	$+2 / 3$	0	1/3	0	0	0	+1	+4/3

*Inertial mass without the binding energy, which depends on the hadron

$$
\begin{aligned}
& Q=I_{3}+\frac{1}{2}(\underbrace{\text { Baryon }+ \text { Strange }+ \text { Charm }+ \text { B'eauty }^{\text {B Truth }}}) \\
& =Y \text {, so-called (strong) hypercharge [[} \mathrm{F} \text {) section 5.2.1] }
\end{aligned}
$$

Fundamental Physics of Elementary articles

FロREWロRD．．．CロNT＇D
－Hadrons＝bound states of quarks

Fundamental Physics of Elementary Particles

PLAYBILL

- Bound States of Quarks
- $(Q-\bar{Q}) \&(Q-\bar{q})$ bound states: non-relativistic
- $(q-\bar{q})$ bound states: relativistic
- (qqq), ... (QQQ): very complicated
- Non-relativistic H-atom as a paradigm
- The Coulomb interaction \& Bohr's result
- 1st order (relativistic and magnetic dipole) corrections
- 2nd order corrections \& hierarchy
- Lamb shift

Positronium estimates by correcting the H -atom

- Field drag
- Annihilation: virtual \& real
- OZI rule: phenomenological ... later, derived from QCD.

Fundamental Physics of Elementary Particles

QUARK BUUND STATES

- Bound $(q \bar{q})$ states with $u, d \& s$ quarks, of spin- 0 :

Fundamental Physics of Elementary Particles

QUARK BIUND STATES

- Mesons: 2-particle bound states
- Interaction may be modeled:
- At distances $<10^{-15} \mathrm{~m}$, vanishing force
- Near $\approx 10^{-15} \mathrm{~m}$, force grows $\mathrm{w} /$ distance
- Just outside $10^{-15} \mathrm{~m}$, force diverges
- So that trying to extract a quark to a growing distance...
- ...requires a growing amount of energy...
- ... until that energy suffices to produce a $q \bar{q}$-pair:

Fundamental Physics of Elementary Particles

QUARK bIUND STATES

- Mesons
- Initial approximation: central potential
- When one of the quarks is much heavier than the other,
- $\left(\Psi(r, \theta, \phi)=\Sigma_{n, \ell} R_{n}(r) Y_{\ell}^{m}(\theta, \phi)\right)($ spin,$\ldots)$
- use $R_{n}(r)$ from the H -atom in this initial approximation
- When both quarks have similar (large) masses,
- use the same-mass (positronium) modification of H -atom as an initial approximation
Baryons
- 3-body = ((2-body)+1 body) bound states
- Considerably more complicated ...
- ...leave for later.

Fundamental Physics of Elementary Particles

H-ATGM, REMINDER

- The problem and its solution (Bohr/Schrödinger):

$$
\begin{gathered}
i \hbar \frac{\partial}{\partial t} \Psi(\vec{r}, t)=H \Psi(\vec{r}, t), \quad H=\left[-\frac{\hbar^{2}}{2 m_{e}} \vec{\nabla}^{2}+V(r)\right], \\
\Psi_{n, \ell, m}(\vec{r}, t)=e^{-i \omega t} \frac{u_{n, \ell}(r)}{r} Y_{\ell}^{m}(\theta, \phi), \quad \omega=E_{n, \ell, m} / \hbar \\
-\frac{\hbar^{2}}{2 m_{e}} \frac{\mathrm{~d}^{2} u_{n, \ell}}{\mathrm{~d} r^{2}}+\left[V(r)+\frac{\hbar^{2}}{2 m_{e}} \frac{\ell(\ell+1)}{r^{2}}\right] u_{n, \ell}=E_{n, \ell} u_{n, \ell} \\
V(r)=-\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r}=-\frac{\alpha_{e} \hbar c}{r}, \quad \alpha_{e}:=\frac{e^{2}}{4 \pi \epsilon_{0} \hbar c}, \\
E_{n}=-\frac{1}{2} \alpha_{e}^{2} m c^{2} \frac{1}{n^{2}}, \quad n=1,2,3 \ldots
\end{gathered}
$$

Fundamental Physics of Elementary Particles

H-ATIM, REMINDER

- Degeneracy!
- $n=1,2,3,4, \ldots$ (" $n \rightarrow \infty$ " = continuum/scattering limit),
- $\ell=0,1,2, \ldots(n-1)$,
- $|m| \leq \ell$ and $\Delta m \in \mathbb{Z}$ (and since $\ell \in \mathbb{Z}$, then also $m \in \mathbb{Z}$),
- $m_{s}= \pm 1 / 2$.
E_{n} does not depend on m, ℓ :

$$
\sum_{\ell=0}^{n-1} \sum_{m=-\ell}^{\ell} 2=2 \sum_{\ell=0}^{n-1}(2 \ell+1)=2 n^{2}
$$

for $V(r)=-\frac{\varkappa}{r}$,

$$
\begin{aligned}
L_{i} & :=\frac{1}{\hbar}(\vec{r} \times \vec{p})_{i}=-i \varepsilon_{i j}^{k} x^{j} \frac{\partial}{\partial x^{k}} \quad \text { Laplace-Runge-Lenz } \overrightarrow{\vec{r}} \\
A_{j} & =\frac{1}{\sqrt{2 m(H}}\left[\frac{\hbar}{2 i} \varepsilon_{j}^{k l}\left(\frac{\partial}{\partial x^{k}} L_{l}+L_{l} \frac{\partial}{\partial x^{k}}\right)-\frac{m \varkappa}{\hbar} \hat{\mathrm{e}}_{j}\right]
\end{aligned}
$$

Fundamental Physics of Elementary Particles

h-Atam, REMINDER

- Because of the division by $\sqrt{ } H$, the operators A_{j} are applicable only on eigenstates of H...
- ... but those form a complete set, so the operators A_{j} in fact, may be applied on any state.
$\left[L_{j}, L_{k}\right]=i \varepsilon_{j k}{ }^{l} L_{l},\left[L_{j}, A_{k}\right]=-i \varepsilon_{j k}{ }^{l} A_{l}, \quad\left[A_{j}, A_{k}\right]= \pm i \varepsilon_{j k}{ }^{l} L_{l}$, for $\left\{\begin{array}{l}E<0, \\ E>0 ;\end{array}\right.$
For $E<0$ (bound states), this is the $\mathfrak{s o}(4)$ algebra,
For $E>0$ (scattering states), this is the $\mathfrak{s o}(1,3)$ algebra.
- Symmetries count degenerate states.

- Lifting the degeneracy = breaking a symmetry.

Fundamental Physics of Elementary Particles

H-ATOM, REMINDER

- Given the non-relativistic initial approximation ...
- ...check for corrections. These may well break some of the so (4)
- Relativistic corrections: symmetry \& lift some of the degeneracy!

$$
\begin{aligned}
T_{\mathrm{rel}} & =m_{e} c^{2}\left[\sqrt{1+\left(\vec{p} / m_{e} c\right)^{2}}-1\right]=m_{e} c^{2} \sum_{k=1}^{\infty}\binom{1 / 2}{k}\left(\frac{\vec{p}^{2}}{m_{e}^{2} c^{2}}\right)^{k}, \\
& \approx \frac{\vec{p}^{2}}{2 m_{e}}-\frac{\left(\vec{p}^{2}\right)^{2}}{8 m_{e}^{3} c^{2}}+\frac{\left(\vec{p}^{2}\right)^{3}}{16 m_{e}^{5} c^{4}}-\ldots \\
H_{\mathrm{rel}}^{\prime} & :=-\frac{\hbar^{4}}{8 m_{e}^{3} c^{2}}\left(\vec{\nabla}^{2}\right)^{2}, \quad H_{\mathrm{rel}}^{\prime \prime}:=+\frac{\hbar^{6}}{16 m_{e}^{5} c^{4}}\left(\vec{\nabla}^{2}\right)^{3},
\end{aligned}
$$

Since

$$
a_{0}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} e^{2}}=\frac{\hbar}{\alpha m_{e} c}, \frac{\left\langle H^{\prime \prime}\right\rangle}{\left\langle H^{\prime}\right\rangle} \sim \frac{\hbar^{2}}{2 m_{e}^{2} c^{2}}\left\langle\vec{\nabla}^{2}\right\rangle \sim \frac{\hbar^{2}}{2 m_{e}^{2} c^{2}} \frac{1}{a_{0}^{2}}=\frac{1}{2} \alpha^{2} .
$$

Fundamental Physics of Elementary Particles

H-ATOM, REMINDER

$$
[H, V]=\left[\frac{\hbar^{2}}{2 m_{e}} \vec{\nabla}^{2}+V, V\right]=\frac{\hbar^{2}}{2 m_{e}}\left[\vec{\nabla}^{2},-\frac{\varkappa}{r}\right]
$$

- In computations, use

$$
\frac{\hbar^{2}}{2 m_{e}} \vec{\nabla}^{2}=V(r)-H,
$$

- so that:

$$
\begin{aligned}
\left\langle H_{\mathrm{rel}}^{\prime}\right\rangle= & -\frac{1}{2 m_{e} c^{2}}\left\langle\left[V^{2}-H V-V H+H^{2}\right]\right\rangle, \\
\left\langle H_{\mathrm{rel}}^{\prime \prime}\right\rangle= & -\frac{1}{2 m_{e}^{2} c^{4}}\left\langle\left[V^{3}-V H V-V^{2} H+V H^{2}\right.\right. \\
& \left.\left.\quad-H V^{2}+H^{2} V+H V H-H^{3}\right]\right\rangle
\end{aligned}
$$

- Use this also for arbitrary matrix elements, but will have to re-diagonalize the $\left|n, \ell, m, m_{s}\right\rangle$ basis...
for the $2^{\text {nd }}$ and higher order perturbations.

Fundamental Physics of Elementary Particles

H-ATIM, REMINDER

- The 1st relativistic correction, to 1st order produces:

$$
\begin{aligned}
& E_{n}^{\left(1, r_{1}\right)}=-\frac{1}{2 m_{e} c^{2}}\left[\left\langle V^{2}\right\rangle-2 E_{n}^{(0)}\langle V\rangle+\left(E_{n}^{(0)}\right)^{2}\right], \\
& \begin{array}{l}
=-\alpha_{e}^{4} m_{e} c^{2} \frac{1}{4 n^{4}}\left[\frac{2 n}{\left(\ell+\frac{1}{2}\right)}-\frac{3}{2}\right] \\
\text { d with } E_{n}=-\frac{1}{2} \alpha_{e}^{2} m c^{2} \frac{1}{n^{2}},
\end{array}
\end{aligned}
$$

...the correction is indeed of $O\left(\alpha^{4}\right)$.
It depends on ℓ, so it breaks the Laplace-Runge-Lenz symmetry and lifts some of the degeneracy.

- Higher corrections will refine this result.

Fundamental Physics of Elementary Particles

h-ATOM, REMINDER

- Consider now the magnetic corrections.
- Both e^{-}and p^{+}have intrinsic magnetic dipole moments.
- They are charged, so their relative motion produces an (orbital) electric current and a magnetic field.
- These three magnetic fields interact pair-wise, and contribute to the energy:

$$
\begin{aligned}
& H_{S_{e} O}=-\vec{\mu}_{e} \cdot\left(\frac{1}{2} \vec{B}\right), \quad \vec{\mu}=\frac{q}{2 m} \vec{L} \Rightarrow \vec{\mu}_{e}=: \frac{(-e)}{2 m_{e}} \vec{S}_{e}, \text { etc. } \\
& H_{S_{p} O}=-\vec{\mu}_{p} \cdot \vec{B}, \\
& H_{S_{e} S_{p}}=-\frac{\mu_{0}}{4 \pi}\left[\left(3\left(\vec{\mu}_{e} \cdot \hat{r}\right)\left(\vec{\mu}_{p} \cdot \hat{r}\right)-\vec{\mu}_{e} \cdot \vec{\mu}_{p}\right) \frac{1}{r^{3}}+\frac{8 \pi}{3} \vec{\mu}_{e} \cdot \vec{\mu}_{p} \delta^{3}(\vec{r})\right] .
\end{aligned}
$$

- The dipole moments were attributed to spinning...
...but, there is no teensy spinning sphere.

Fundamental Physics of Elementary Particles

H-ATIM, REMINDER

- For what it is worth, the observable magnetic dipole moment and the half-integral "spin" of an electron are related:

$$
\vec{\mu}_{e}=2\left(1+\frac{\alpha_{e}}{2 \pi}+\ldots\right) \frac{(-e)}{2 m_{e}} \vec{S}
$$

$$
\vec{\mu}_{e}=-g_{e} \mu_{B} \vec{S}_{e}, \quad \mu_{B}:=\frac{\vec{e}}{2 m_{e}}, \quad g_{e}=2.0023193043617(15) \approx 2 ;
$$

$$
\vec{\mu}_{p}=+g_{p} \mu_{N} \vec{S}_{p}, \quad \mu_{N}:=\frac{e}{2 m_{p}}, \quad g_{p}=2.7928,
$$

$$
H_{s_{e} O}=-\left(\frac{g_{e}(-e)}{2 m_{e}} \hbar \vec{S}_{e}\right) \cdot\left(\frac{1}{2} \frac{e}{4 \pi \epsilon_{0} m_{e} r^{3}} \hbar \vec{L}\right) \approx \frac{e^{2}}{4 \pi \epsilon_{e}} \frac{\hbar^{2}}{\left(m_{e}^{2}\right)^{2}} \frac{1}{r^{3}} \vec{L} \cdot \vec{S}_{e},
$$

$$
H_{S_{p} O}=\frac{g_{p} e^{2}}{4 \pi \epsilon_{0}} \frac{\hbar^{2}}{m_{e} m_{p}{ }^{2}} \frac{1}{p_{3}^{3}} \tau \cdot \delta_{p, 1}
$$

$H_{S_{e} s_{p}} \approx \frac{g_{p} e^{2}}{4 \pi \epsilon_{0}} \frac{\hbar^{2}}{\left(m_{e} m_{p}\right)^{2}}\left[\left(3\left(\vec{S}_{e} \cdot \hat{r}\right)\left(\vec{S}_{p} \cdot \hat{r}\right)-\vec{S}_{e} \cdot \vec{s}_{p}\right) \frac{1}{r^{3}}+\frac{8 \pi}{3} \vec{S}_{e} \cdot \vec{S}_{p} \delta^{3}(\vec{r})\right]$

Fundamental Physics of Elementary Particles

H-ATOM, REMINDER

- The $S_{e} O$ correction, to 1 st order produces:

$$
\begin{aligned}
\left\langle H_{S_{e} O}\right\rangle & =\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{\hbar^{2}}{2 m_{e}^{2} c^{2}}\left\langle\frac{1}{r^{3}} \vec{L} \cdot \vec{s}_{e}\right\rangle \sim \frac{\alpha_{e} \hbar^{3}}{2 m_{e}^{2} c} \cdot \frac{1}{a_{0}^{3}}=\frac{\alpha_{e}^{4} m_{e} c^{2}}{2} \\
E_{n}^{(1, S O)} & =\alpha_{e}^{4} m_{e} c^{2} \frac{j(j+1)-\ell(\ell+1)-\frac{3}{4}}{4 n^{3} \ell\left(\ell+\frac{1}{2}\right)(\ell+1)} \\
\vec{J} & =\vec{L}+\vec{s} \quad \Rightarrow \quad \vec{L} \cdot \vec{s}=\frac{1}{2}\left[J^{2}-L^{2}-s^{2}\right]
\end{aligned}
$$

... which is commensurate with the 1st relativistic correction, to the first order, and they add up:

$$
E_{n}^{\left(1, r_{1}\right)}+E_{n}^{(1, S O)}=-\alpha_{e}^{4} m_{e} c^{2} \frac{1}{4 n^{4}}\left[\frac{2 n}{\left(j+\frac{1}{2}\right)}-\frac{3}{2}\right], \quad\left\{\begin{array}{l}
j=\ell+1 / 2, \\
j=\ell-1 / 2 ;
\end{array}\right.
$$

- ... resulting in the $O\left(\alpha^{4}\right)$ fine structure (splitting).

Fundamental Physics of Elementary Particles

H-ATIM, REMINDER

- The next order corrections are:

$$
\begin{aligned}
& E_{n}^{\left(1, r_{2}\right)}=\left\langle H_{\mathrm{rel}}^{\prime \prime}\right\rangle \sim \frac{1}{m_{e}^{2} c^{4}}\left\langle\left(\frac{e^{2}}{4 \pi \epsilon_{0} r}\right)^{3}\right\rangle \sim \frac{\alpha_{e}^{6} m_{e} c^{2}}{n^{3}} ; \\
& \left.\left.E_{n}^{\left(2, r_{1}\right)}=\sum_{n^{\prime} \ldots \neq n \cdots} \frac{\left.\left|\left\langle n^{\prime}, \cdots\right| H_{\mathrm{rel}}^{\prime}\right| n, \cdots\right\rangle\left.\right|^{2}}{E_{n}^{(0)}-E_{m}^{(0)}} \frac{m}{e}_{m_{p}}^{0}\right)>\alpha_{e}^{2}\right\rangle \sim \frac{\alpha_{e}^{6} m_{e} c^{2}}{n^{4}} ; \\
& E_{n}^{\left(1, s_{p} 0\right)}=\left\langle H_{S_{p} O}\right\rangle=\frac{g_{p} e^{2}}{4 \pi \epsilon_{0}} \frac{\hbar^{2}}{m_{e} m_{p} c^{2}}\left\langle\frac{1}{r^{3}} \vec{L} \cdot \vec{S}_{p}\right\rangle \sim g_{p}\left(\frac{m_{e}}{m_{p}} \frac{\alpha_{e}^{4} m_{e} c^{2}}{n^{3}} ;\right. \\
& E_{n}^{\left(1, s_{e} s_{p}\right)}=\left\langle H_{\left.S_{e} s_{p}\right\rangle}\right\rangle \frac{g_{p} e^{2}}{4 \pi \epsilon_{0}} \frac{\hbar^{2}}{m_{e} m_{p} c^{2}}\left\langle\vec{S}_{e} \cdot \vec{S}_{p} \frac{1}{r^{3}}\right\rangle \sim g_{p}\left(\frac{m_{e}}{m_{p}} \frac{\alpha_{e}^{4} m_{e} c^{2}}{n^{3}} .\right. \\
& E_{n}^{\left(1, r_{2}\right)}: E_{n}^{\left(2, r_{1}\right)}: E_{n}^{\left(1, S_{p} 0\right)}: E_{n}^{\left(1, s_{e} s_{p}\right)} \approx n \alpha_{e}^{2}: \alpha_{e}^{2}: g_{p}\left(\frac{m_{e}}{m_{p}}\right): g_{p}\left(\frac{m_{e}}{m_{p}}\right)
\end{aligned}
$$

Fundamental Physics of Elementary Particles

H-ATIM, REMINDER

- So the hyper-fine structure is given by:

$$
\begin{aligned}
& E_{n}^{\left(1, s_{e} s_{p}\right)}+E_{n}^{\left(1, s_{p} 0\right)}=\left(\frac{m_{e}}{m_{p}}\right) \alpha_{e}^{4} m_{e} c^{2} \frac{g_{p}}{2 n^{3}} \frac{ \pm 1}{\left(f+\frac{1}{2}\right)\left(\ell+\frac{1}{2}\right)^{\prime}}, \quad\left\{\begin{array}{l}
f=j+1 / 2, \\
f
\end{array}=j-1 / 2 ;\right. \\
& \vec{F}:=\vec{J}+\vec{S}_{p}=\vec{L}+\vec{S}_{e}+\vec{S}_{p}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{z}:=\vec{S}_{e}+\vec{S}_{p} \\
& \quad \frac{ \pm 1}{\left(f+\frac{1}{2}\right)\left(\ell+\frac{1}{2}\right)}=\left\{\begin{array} { l }
{ + \frac { 4 } { 3 } , } \\
{ - 4 ; }
\end{array} \quad \left\{\begin{array}{l}
z=1 \text { (triplet), } \\
z=0 \text { (singlet). }
\end{array}\right.\right.
\end{aligned}
$$

After this there is the $O\left(\alpha^{6}\right)$ hyper-hyper-fine structure, and so on.

- But, that's not all.

Fundamental Physics of Elementary Particles

H-ATOM, REMINDER

- Lamb shift: recall that

$$
\vec{\mu}_{e}=2\left(1+\frac{\alpha_{e}}{2 \pi}+\ldots\right) \frac{(-e)}{2 m_{e}} \vec{S}
$$

. so that the $O(\alpha)$ correction in the magnetic dipole moment produces an $O\left(\alpha^{5}\right)$ correction to the $S_{e} O$ term:

$$
E_{n}^{\mathrm{Lamb}}= \begin{cases}\alpha^{5} m_{e} c^{2} \frac{1}{4 n^{3}} k(n, 0) \longleftarrow \text { slowly varying functions } & \ell=0 ; \\ \alpha^{5} m_{e} c^{2} \frac{1}{4 n^{3}}\left[k(n, \ell) \pm \frac{1}{\pi\left(j+\frac{1}{2}\right)\left(\ell+\frac{1}{2}\right)}\right], \quad j=\ell \pm \frac{1}{2}, & \ell \neq 0 .\end{cases}
$$

- Since $\alpha>\left(m_{e} / m_{p}\right)>\alpha^{2}$, the Lamb shift is ~ 5 times bigger than the hyperfine shift.

$$
\begin{aligned}
& E_{n}^{\left(1, r_{2}\right)}: E_{n}^{\left(2, r_{1}\right)}: E_{n}^{\left(1, S_{p} O\right)}: E_{n}^{\left(1, S_{e} S_{p}\right)}: E_{n}^{(Q E D)} \approx n \alpha_{e}^{2}: \alpha_{e}^{2}: g_{p}\left(\frac{m_{e}}{m_{p}}\right): g_{p}\left(\frac{m_{e}}{m_{p}}\right): \alpha_{e} \\
& \approx\left(5.33 \times 10^{-5} \cdot n\right):\left(5.33 \times 10^{-5}\right):\left(1.52 \times 10^{-3}\right):\left(1.52 \times 10^{-3}\right):\left(7.30 \times 10^{-3}\right)
\end{aligned}
$$

Fundamental Physics of Elementary Particles

pasitranium, A LA H-Atam

- Mesons, where the quark and the antiquark have similar masses, are well approximated by positronium.
- Now,

$$
\begin{gathered}
\frac{m_{e}+m_{e^{-}}}{m_{e^{+}+}+m_{e^{-}}}=\frac{1}{2} m_{e} \\
E_{n}\left(e^{+}, e^{-}\right)=\frac{1}{2} E_{n}(H)=-\alpha_{e}^{2} m_{e} c^{2} \frac{1}{4 n^{2}}
\end{gathered}
$$

The wave-functions look identical, except that the Bohr radius $a_{0} \rightarrow 2 a_{0}$.
The 1st relativistic correction to the Hamiltonian (kinetic energy) doubles, as e^{-}and e^{+}both contribute...

- ...but $\left\langle\left(\vec{p}^{2}\right)^{2}\right\rangle \propto\left(m_{e} c\right)^{4}$ is reduced by $(1 / 2)^{4}$.
- The relativistic energy correction acquires a $1 / 8$ factor.

Fundamental Physics of Elementary Particles

PロSITRロNIUM，A LA H－ATロM

－The magnetic corrections acquire factors that all stem from the facts that
－$m_{e} / m_{p} \rightarrow m_{e^{-}} / m_{e^{+}}=1, g_{e} / g_{p} \rightarrow g_{e^{-}} / g_{e^{+}}=1$ ，and
－Thomas precession is symmetric between e^{-}and e^{+}．
－This variety of changed ratios makes，e．g．，the ＂hyperfine＂splitting as large as the＂fine＂splitting．．．
but leaves the Lamb shift $\alpha \sim 1 / 137$ times smaller，
and the $O\left(\alpha^{6}\right)$ corrections smaller still．
－But there also exist two profoundly novel corrections to the energy，with no analogue in the H －atom．

Fundamental Physics of Elementary Particles

PロSITRロNIUM NロVELTIES

－Field latency：
－As e^{+}is as light as e^{-}，their orbiting each other is symmetric．
－As one moves in the Coulomb field created by the other．．．
－．．．that Coulomb field itself moves（with the other），and the changes in it propagate（lag）at the speed of light．

$$
\begin{aligned}
& H_{\text {lat }}=-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{2 m_{e}^{2} c^{2}} \frac{1}{r}\left(p^{2}+(p \cdot \hat{r})^{2}\right) \\
& E_{n}^{(\text {lat })}=\left\langle H_{\text {lat }}\right\rangle=\alpha_{e}^{4} m_{e} c^{2} \frac{1}{2 n^{3}}\left[\frac{11}{32 n}-\frac{2+\epsilon}{\ell+1 / 2}\right] \\
& \ldots \text { where } \quad \epsilon=\left\{\begin{array}{ll}
0 & \text { for } j=\ell, \\
-\frac{3 \ell+4}{\ell+1(2 \ell+3)} & \text { for } j=\ell+1, \\
\frac{1}{\ell(\ell+1)} & \text { for } j=\ell, \\
\frac{3-1}{\ell(2 \ell-1)} & \text { for } j=\ell-1,
\end{array}\right\} s=0
\end{aligned}
$$

Fundamental Physics of Elementary Particles

Pasitranium Navelties il

- Virtual annihilation:
- Unlike in the H -atom, the e^{-}and e^{+}in the positronium can annihilate and be re-created.
- For this, they must be in the same location, so $\propto|\Psi(0)|^{2}$, i.e., $\ell=0$ only. (Why?)
$\operatorname{Since} \operatorname{spin}(\gamma)=1, \operatorname{spin}\left(e^{-}, e^{+}\right)=1$ too, i.e., the positronium must be in its triplet state(s).

$$
E_{n}^{(a n n)}=\alpha_{e}^{4} m_{e} c^{2} \frac{1}{4 n^{3}}, \quad \ell=0, s=1 .
$$

- ... which is of the order of fine structure, but exclusive to "spin-triplet S-states."

Fundamental Physics of Elementary Particles

Pasitranium Navelties II

- Real annihilation:

$$
\begin{aligned}
& \Gamma=\sigma v|\Psi(\overrightarrow{0}, t)|^{2} \\
& \sigma=\int \mathrm{d}^{2} \Omega\left(\frac{\hbar c}{8 \pi}\right)^{2} \frac{|\mathfrak{M}|^{2}}{\left(E_{e^{-}}+E_{e^{+}}\right)^{2}}\left|\frac{\vec{p}_{f}}{\vec{p}_{i}}\right|=4 \pi \frac{\alpha_{e}^{2} \hbar^{2}}{m_{e}^{2} c v} . \\
& \tau=\frac{1}{\Gamma}=\frac{2 \hbar n^{3}}{\alpha_{e}^{5} m_{e} c^{2}}=\left(1.24494 \times 10^{-10} \mathrm{~s}\right) \times n^{3},
\end{aligned}
$$

- ... which agrees with experiments.

Fundamental Physics of Elementary Particles

Finally, Samething Else...

- The "OZI rule" (Okubo-Zweig-Iizuka, 1960’s):

Decays that require the annihilation of all initially present partons are delayed.

Or, in terms of Feynman graphs,

Decays are delayed ... as compared to this.

Fundamental Physics of Elementary Particles

QUARK BロபND STATES

- The general idea is to use the results from the H -atom and positronium, and adapt them by:
- varying the masses of the constituent quarks
- changing the fine structure constant, α, from the electromagnetic $(\sim 1 / 137)$ to the strong $\left(\sim 1 / 10^{-1}\right)$
- adapting the spin orientations (triplet for positronium annihilation) as needed (to include flavor and color)
... and this works remarkably well!
... so people talked of "paper-writing algorithm,"
- recycling (preferably obscure) papers on E\&M
- into papers on strong interactions. ${ }^{\text {br don't forget to change }}$ the

Thanks!

Tristan Hubsch

Department of Physics and Astronomy Howard University, Washington DC

Prirodno-Matematički Fakultet Univerzitet u Novom Sadu
http://homepage.mac.com/thubsch/

