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Hadrons = bound states of quarks

Name q Mass⇤
(MeV/c2) Q I3 B S C B0 T Y

Up u : 1.5–3.3 +2

/

3

+1

/

2

1

/

3

0 0 0 0 +1

/

3

Down d : 3.5–6.0 �1

/

3

�1

/

2

1

/

3

0 0 0 0 +1

/

3

Strange s : 105{+25

�35

�1

/

3

0

1

/

3

�1 0 0 0 �2

/

3

Charm c : 1 270{ +70

�110

+2

/

3

0

1

/

3

0 +1 0 0 +4

/

3

Bottom b : 4 200{+170

�70

�1

/

3

0

1

/

3

0 0 �1 0 �2

/

3

Top t : 171 300{+1 100

�1 200

+2

/

3

0

1

/

3

0 0 0 +1 +4

/

3

⇤ Inertial mass without the binding energy, which depends on the hadron

Q = I
3

+ 1

2

(Baryon + Strange + Charm + B0eauty + Truth| {z }
=Y, so-called (strong) hypercharge [+ section 5.2.1]

)
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Hadrons = bound states of quarks
Foreword… cont’d

Fundamental Physics of Elementary 
Particles

76 Chapter 0. Fundamental Physics: Elementary Particles and Processes

An analogous conservation of quark numbers, separately for the (u, d), (c, s) and (t, b)
pairs does not exist, because of the Cabibbo-Kobayashi-Maskawa mixing of so-called “lower”
quarks, d, s, b (0.56). The question of lepton mixing, that is neutrino mixing will be ad-
dressed in section 5.3.2; suffice it here to say that this possibility was proposed back in
1962 [252], although there was no strong experimental indication until recently that such
a mixing really happens [263, 264].

In this sense is the existence of the (approximate) conservation law of three separate
lepton numbers and the absence of a conservation law of three separate quark numbers a
phenomenological and not a fundamental law—and an open question + !

Baryon/Quark Number
The quark model redefined the baryon number simply as the triple of the quark number,
where antiquarks have negative quark number. In the Standard Model, that definition re-
mains, and also explains the absence of a meson conservation number: since mesons are
(q q) bound states, their quark number is zero. Since quarks cannot be extracted, it remains
a convention to count baryons, and quarks have 1

3

of the baryon number.
The baryon number conservation law is also strict—in that it holds in all processes.

However, just as the (separate) lepton number conservation laws, this too is a phenomeno-
logical and not a fundamental law.

0.4.3 Approximate Conservation Laws
Besides strict conservation laws, there also exist approximate conservation laws, that are
nevertheless useful precisely because of their approximate validity, whereby they help in
estimates and computations.

Flavor
Table (0.46a) shows that the differences between the consecutive quark masses grow with
these masses, as seen on the plot 0.1. In experiments done at the average energy of LQCD =

ln(m/LQCD)

u
2.4 MeV/c2

d

4.75 MeV/c2

s

105 MeV/c2

c

1.27 GeV/c2

b

4.2 GeV/c2

t

174.2 GeV/c2

Figure 0.1: Quark masses plotted on a logarithmic scale

200 MeV/c2 per process and with the experimental error at about 10%—so about 20 MeV/c2,
it is not possible to distinguish u- and d-quarks purely by their masses; within experimental
error, their masses are the same. On the other hand, there is enough energy to produce an

D
R

A
FT

—
co

nt
ac

td
ir

ec
tly

Tr
is

ta
n

H
üb
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Binding strengthbinding energyrest energy

Binding strength < 1
⇒ perturbative

Playbill
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Bound States of Quarks
(Q-Q) & (Q-q) bound states: non-relativistic
(q-q) bound states: relativistic
(qqq), … (QQQ): very complicated

Non-relativistic H-atom as a paradigm
!e Coulomb interaction & Bohr’s result
1st order (relativistic and magnetic dipole)  corrections
2nd order corrections & hierarchy
Lamb shi"

Positronium estimates by correcting the H-atom
Field drag
Annihilation: virtual & real

OZI rule

– –
–

☺
œ

: phenomenological …later, derived from QCD.☺

œ
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Quark bound states
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Bound (qq) states with u, d & s quarks, of spin-0:–

( d s* )( d s* )( d s* ) ( u s* )( u s* )( u s* )

( d u* )( d u* )
( u u* )
( d d* )
( s s* )

( u u* )
( d d* )
( s s* )

( u u* )
( d d* )
( s s* )

( u d* )( u d* )

( s u* )( s u* )( s u* ) ( s d* )( s d* )( s d* )Mesons!
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Quark bound states
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Mesons: 2-particle bound states
Interaction may be modeled:

At distances < 10–15 m, vanishing force
Near ≈ 10–15 m, force grows w/distance
Just outside 10–15 m, force diverges
So that trying to extract a quark to a growing distance…
…requires a growing amount of energy…
…until that energy suffices to produce a qq-pair:–

26 Chapter –1. The Nature of Observing Nature

However, this is not so with the restoring force of an elastic spring: that force grows
with the separation distance of the ends of the spring. In collision experiments that are
essentially the same as Rutherford’s, but where the probe has an energy > 100 MeV [+ ta-
ble –1.3, p. 24], significant discrepancies are noticed, which may be ascribed to so-called
strong nuclear interactions. At distances where the action of these forces may be measured,
the intensity of these forces grows with the distance, i.e., it decays with the exchanged
energy—precisely so that these forces may be represented (modeled) by a spring [+ chap-
ter 9]! By itself, this may not seem unusual, but some of its consequences definitely are.

When stretching a spring, one must invest work that increases the potential energy
of the stretched spring. At a certain point, determined by the spring elasticity, the spring
simply breaks. Analogously, two particles (so-called quarks) bound by the strong nuclear in-
teraction may be separated to ever larder distances—only by incessant investing ever more
energy. This could be doable arbitrarily long, and the two quarks could be separated arbi-
trarily far from each other, were it not for the fact that the invested work sooner or later
becomes sufficient to create a particle-antiparticle pair. Each one of these newly minted
particles then binds with one of the “old” ones, so that the attempt to separate two quarks to
distances bigger than ⇠ 10

�15 m fails: instead of having separated one quark from the other,
the quark we were trying to move becomes bound with the newly minted antiquark, and
the other old quark is joined by the newly minted quark replacing the old one. This quark-
antiquark pair forms a new system (so-called meson) that really can be separated arbitrarily
far, but the original quarks remain un-extracted [+ figure –1.5].

Figure –1.5: Inseparability of quarks and antiquarks by investing ever more energy

Thus, quarks (to most precise experimental verification and theoretical prediction)
cannot be extracted arbitrarily far from one another, and remain “captive”—either in the
original system, or in a newly minted system, joined with (anti)quarks created by investing
ever more energy.

However, while the distance between the quarks is less than about 10

�15 m, their bind-
ing energy is sufficiently small and they move effectively freely. Thus, the concept of “divis-
ibility” (as it is usually understood) indefinitely is not a synonym for the concept of “com-
positeness”, and those two concepts must be clearly distinguished:

1. In all experiments performed to date, the electron behaves as a point-like particle,
i.e., shows no structure.

2. The proton shows structure (three quarks) through the complexity of the angular
dependence in scattering, i.e., through deviations from Rutherford’s formula—and
does so when the collision energy surpasses a precisely defined threshold; however,
the quarks cannot be extracted arbitrarily far without creating new quark–antiquark
pairs [+ figure –1.5].

D
R

A
FT

—
co

nt
ac

td
ir

ec
tly

Tr
is

ta
n

H
üb
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26 Chapter –1. The Nature of Observing Nature
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original system, or in a newly minted system, joined with (anti)quarks created by investing
ever more energy.

However, while the distance between the quarks is less than about 10
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ing energy is sufficiently small and they move effectively freely. Thus, the concept of “divis-
ibility” (as it is usually understood) indefinitely is not a synonym for the concept of “com-
positeness”, and those two concepts must be clearly distinguished:

1. In all experiments performed to date, the electron behaves as a point-like particle,
i.e., shows no structure.

2. The proton shows structure (three quarks) through the complexity of the angular
dependence in scattering, i.e., through deviations from Rutherford’s formula—and
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dependence in scattering, i.e., through deviations from Rutherford’s formula—and
does so when the collision energy surpasses a precisely defined threshold; however,
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D
R

A
FT

—
co

nt
ac

td
ir

ec
tly

Tr
is

ta
n

H
üb
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Quark bound states
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Mesons
Initial approximation: central potential
When one of the quarks is much heavier than the other,

(Ψ(r,θ,𝜙) = Σn,ℓ Rn(r) Yℓ
m(θ,𝜙))(spin,…)

use Rn(r) from the H-atom in this initial approximation
When both quarks have similar (large) masses,

use the same-mass (positronium) modi'cation
of H-atom as an initial approximation

Baryons
3-body = ((2-body)+1 body) bound states

Considerably more complicated…
…leave for later. 
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H-atom, reminder
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!e problem and its solution (Bohr/Schrödinger):

ih̄
∂

∂t
Y(~r, t) = H Y(~r, t), H =

h
� h̄2

2me
~r2 + V(r)

i
,

� h̄2

2me

d

2un,`

dr2

+
h
V(r) +

h̄2

2me

`(`+1)
r2

i
un,` = En,` un,`,

Yn,`,m(~r, t) = e�iwt un,`(r)
r

Y m
` (q, f), w = En,`,m/h̄

V(r) = � 1

4pe

0

e2

r

2

r
= �ae h̄ c

r
,

ae :=
e2

4pe

0

h̄ c
,

En = �1

2

a

2

e mc2

1

n2

, n = 1, 2, 3 . . .s⇣ ⌘ ⇣
Tuesday, November 1, 11



rotations
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Degeneracy!
n = 1, 2, 3, 4, … (“n→∞” = continuum/sca)ering limit),
ℓ = 0, 1, 2, … (n–1),
|m|≤ ℓ and ∆m ∈ ℤ (and since ℓ ∈ ℤ, then also m ∈ ℤ),
ms = ±½.

H-atom, reminder

n�1

Ầ
=0

`

Â
m=�`

2 = 2

n�1

Ầ
=0

(2`+1) = 2 n2

,

where the factor 2 stems from two possible values of spin. Since the potential is central,

En does not
depend on m, ℓ:

Li :=
1

h̄
(~r⇥~p )i = �i #ij

k xj ∂

∂xk
~A := ~p ⇥~L � m{~r

r
.

I may be shown that the Cartesian components of the Laplace-Runge-Lentz vector commute
A j =

1p
2mH

h h̄
2i

# j
kl
⇣

∂

∂xk L l + L l
∂

∂xk

⌘
� m{

h̄
ˆej

i
for V(r) = �{

r
,

Laplace-Runge-Lenz

Tuesday, November 1, 11
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Because of the division by √H, the operators Aj are 
applicable only on eigenstates of H…
…but those form a complete set, so the operators Aj in 
fact, may be applied on any state.

For E < 0 (bound states), this is the so(4) algebra,
For E > 0 (sca#ering states), this is the so(1,3) algebra.
Symmetries count degenerate states.
Li$ing the degeneracy = breaking a symmetry.

H-atom, reminder

[L j, Lk] = i# jk
lL l , [L j, Ak] = �i# jk

lA l , [A j, Ak] = ±i# jk
lL l , for

�E<0,

E>0;

(In general, not always!)
(But, all of them, here!)
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Given the non-relativistic initial approximation…
…check for corrections.
Relativistic corrections:

Since

H-atom, reminder

Trel = mec2

⇥q
1 + (~p/mec)2 � 1

⇤
= mec2

•

Â
k=1

✓
1

/

2

k

◆⇣ ~p2

m2

e c2

⌘k
,

⇡ ~p2

2me
� (~p2)2

8m3

e c2

+
(~p2)3

16m5

e c4

� . . .

$ese may well break some of the so(4) symmetry & li% some of the degeneracy!

H0
rel := � h̄4

8m3

e c2

(~r2)2

,

and the first order perturbative correction of the energy is

H00
rel := +

h̄6

16m5

e c4

(~r2)3

,

and the first order perturbative correction of the energy is

a
0

=
4pe

0

h̄2

me e2

=
h̄

a mec
,

hH 00i
hH 0i ⇠ h̄2

2m2

e c2

h~r2i ⇠ h̄2

2m2

e c2

1

a 2

0

= 1

2

a2

.
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In computations, use

so that:

Use this also for arbitrary matrix elements, but will have 
to re-diagonalize the |n, ℓ, m, ms〉 basis…
…for the 2nd and higher order perturbations.

H-atom, reminder

h̄2

2me
~r2 = V(r)� H,

⌦

H 0
rel
↵

= � 1

2mec2

⌦⇥

V2 � H V � V H + H2

⇤↵

,

1

⌦⇥

⌦ ↵

�
2mec

⌦⇥

� �
⇤↵

⌦

H 00
rel
↵

= � 1

2m2

e c4

⌦⇥

V3 � V H V � V2 H + V H2

� H V2 + H2 V + H V H � H3

⇤↵

[H, V] = [ h̄2

2me
~r2 + V, V] = h̄2

2me
[~r2

,�{
r ],

= � h̄2{
2me

[~r2

,

1

r ] =
2p h̄2{

me
d(r)
!is is

nonzero
only for
ℓ = 0.
Why?
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!e 1st relativistic correction, to 1st order produces:

Compared with

…the correction is indeed of O(α4).
It depends on ℓ, so it breaks the Laplace-Runge-Lenz 
symmetry and li$s some of the degeneracy.
Higher corrections will re%ne this result.

H-atom, reminder

E(1,r
1

)
n = � 1

2mec2

h

hV2i � 2E(0)
n hVi+ (E(0)

n )2

i

,

= �a4

e mec2

1

4n4

h

2n
(`+ 1

2

)
� 3

2

i

.

2.1. Bound States 125

which is effectively a one-dimensional problem, with r 2 [0, •) and where the effective
potential is the sum of the “actual” potential and the “centrifugal barrier”, h̄2

2m
`(`+1)

r2

. For the
hydrogen atom, we have the Coulomb potential,

V(r) = � 1

4pe

0

e2

r
= �ae h̄ c

r
, ae :=

e2

4pe

0

h̄ c
, (2.8a)

for which the solutions are well known:

En = �1

2

a

2

e mc2

1

n2

, n = 1, 2, 3 . . . (2.8b)

Yn,`,m(~r, t) =

s⇣
2

n a
0

⌘
3 (n � `� 1)!

2n[(n+1)!]3
e�r/(na

0

)
⇣

2r
na

0

⌘`
L2`+1

n�`�1

⇣
2r

na
0

⌘
Ym
` (q, f) (2.8c)

where

Lq
k�q(x) := (�1)q d

q

dxq

h
ex d

k

dxk (e
�xxk)

i
are the Laguerre polynomials, (2.8d)

a
0

:=
4pe

0

h̄2

me2

= 0.529⇥10

�10 m is the Bohr radius. (2.8e)

Recall that the complex phase—and so also the sign—of the whole wave-functions, Yn,`,m(~r, t),
is not measurable [+ chapter 3], so different Authors may use different conventional signs
in these definitions (2.8c)–(2.8d) for convenience in some of the particular computations.

A discussion of this solution for the hydrogen atom may be found in every quantum
mechanics textbook, and it is well known that Bohr’s spectrum of the hydrogen atom (2.8b)
is degenerate: Since the energy depends only on the principal quantum number, n, states
with different (permitted) values of the quantum numbers `, m (and spin, s and ms) have
the same energy. Since [+ appendix A.3]

n = 1, 2, 3 . . . , ` = 0, 1, 2 . . . (n�1), |m| 6 `, m 2 Z, s = ± 1

2

, (2.9)

it follows that the number of states with the same energy equals

n�1

Ầ
=0

`

Â
m=�`

2 = 2

n�1

Ầ
=0

(2`+1) = 2 n2

, (2.10)

where the factor 2 stems from two possible values of spin. Since the potential is central, i.e.,
it depends only on the distance between the center of the Coulomb field and the electron
that moves in that field, the system manifestly has rotational symmetry. In 3-dimensional
space, rotation transformations form the SO(3) group. This symmetry would explain the
independent of the energy on the quantum number m (quantifying the direction of the
angular momentum) and spin, but not the independence of `, which quantifies the intensity
of the angular momentum2.

2 The continuous group of rotations is generated by operators of the dimensionless angular momentum (2.12):
each rotation may be represented as the result of the action of the operators R(~j) := exp{j

iLi}, which change
the direction of the atom. However, as rotations are symmetries, it follows that the result of a rotation is not
measurable, and the energy of the atom cannot depend on its direction. However, neither of these operators
changes `: R(~j)Ym

` = Âm cmYm
` . Therefore, the rotation symmetry does not explain the fact that states of the

hydrogen atom with different ` do have the same energy (2.8b).
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Consider now the magnetic corrections.
Both e– and p+ have intrinsic magnetic dipole moments.
!ey are charged, so their relative motion produces an 
(orbital) electric current and a magnetic %eld.
!ese three magnetic %elds interact pair-wise, and 
contribute to the energy:

!e dipole moments were a#ributed to spinning…

H-atom, reminder

128 Chapter 2. The Quark Model: Combinatorics and Groups

2.1.3 Magnetic Corrections
Besides their electric charges, the electron and the proton both also have an intrinsic (dipole)
magnetic field: ~µe and ~µp, respectively. Since the electron and the proton move one with
respect to the other, the motion of the electron produces a current that, by Biot-Savart’s
law, creates a magnetic field proportional to the angular momentum of the electron about
the proton, ~B µ ~L, and this magnetic field interacts with the intrinsic magnetic dipole of
the proton. Of course, it would be nonsense saying that this same magnetic field, caused
by the motion of the electron, also interacts with the intrinsic magnetic dipole field of the
electron: in its own coordinate system, the electron of course does not move and produces
no magnetic field.

However, in electron’s rest-frame it is the proton that moves, and produces a current
and a corresponding magnetic field ~B0, that interacts with the intrinsic magnetic dipole of
the electron. To relate ~B0 and ~B, one must transform the vector of this “rotating” magnetic
field from electron’s coordinate system into the proton’s. Since the electron’s coordinate
system rotates about the proton, one must iterate this transformation from moment to in-
finitesimally adjacent moment using successive Lorentz boosts. The resulting effect is called
Thomas precession and provide the relation ~B0 = 1

2

~B [212].
With two intrinsic magnetic dipoles ~µe,~µp and the “orbital” magnetic field ~B, there

then exist three additions to the hydrogen atom Hamiltonian:

HSeO = �~µe · ( 1

2

~B), HSpO = �~µp · ~B,

HSeSp = � µ

0

4p

h⇣
3(~µe·ˆr)(~µp·ˆr)�~µe·~µp

⌘
1

r3

+
8p

3

~µe·~µp d

3(~r )
i
.

(2.23)

Digression 2.1: One of the original motivations for the Abraham-Lorentz model of the electron
was also the attempt to explain—with classical physics—the origin of the electron’s intrinsic
dipole moment. In this model, the electron was supposed to be a teeny electrically charged
sphere. If that sphere rotated, the charge distribution on the sphere would also rotate and so
produce a circular current, which would in turn, by Biot-Savart’s law produce a magnetic field.
This is the source of the idea that the electron rotates about its own axis, has spin ( = intrinsic
angular momentum), and that its intrinsic magnetic dipole moment is a consequence of this
rotating and proportional to this spin. For a classical rotating electric charge q for which the
charge and mass (m) distribution coincide, the magnetic dipole is proportional to the angular
momentum:

~µ =
q

2m
~L, (2.24a)

and µe := e/2me is called the Bohr magneton (for the electron).
In fact, this identification is completely backwards: it is the electron’s magnetic mo-

ment that may be measured and so has a real physical meaning; the rotation of the elec-
tron about its own axis—spin—is a fictitious quantity, defined through the relation (2.24a) in
terms of the intrinsic magnetic moment. This backwards explanation stems from G.E. Uhlen-
beck and S.A. Goudsmit, who measured the magnetic dipole moment of the electron in 1925,
then concluded that this magnetic moment stems from a rotation of the electron about its own
axis [364]; all along, they assumed the electron to be represented as an electrically charged
sphere, following the Abraham-Lorentz model [+ digression 1.11, p. 119].

Besides, the operators that generate rotations close the SU(2) algebra, that has two classes
of representations: tensors and spinors [+ digression A.2, p. 446]. It is easy to show that 360

�-
rotations around any axis maps tensor functions into themselves, but spinors into their negative
multiple. Because of this property, physically observable quantities cannot be spinors. Since
all real functions over the phase space are observables in classical physics, it follows that there
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2.1.3 Magnetic Corrections
Besides their electric charges, the electron and the proton both also have an intrinsic (dipole)
magnetic field: ~µe and ~µp, respectively. Since the electron and the proton move one with
respect to the other, the motion of the electron produces a current that, by Biot-Savart’s
law, creates a magnetic field proportional to the angular momentum of the electron about
the proton, ~B µ ~L, and this magnetic field interacts with the intrinsic magnetic dipole of
the proton. Of course, it would be nonsense saying that this same magnetic field, caused
by the motion of the electron, also interacts with the intrinsic magnetic dipole field of the
electron: in its own coordinate system, the electron of course does not move and produces
no magnetic field.

However, in electron’s rest-frame it is the proton that moves, and produces a current
and a corresponding magnetic field ~B0, that interacts with the intrinsic magnetic dipole of
the electron. To relate ~B0 and ~B, one must transform the vector of this “rotating” magnetic
field from electron’s coordinate system into the proton’s. Since the electron’s coordinate
system rotates about the proton, one must iterate this transformation from moment to in-
finitesimally adjacent moment using successive Lorentz boosts. The resulting effect is called
Thomas precession and provide the relation ~B0 = 1

2

~B [212].
With two intrinsic magnetic dipoles ~µe,~µp and the “orbital” magnetic field ~B, there

then exist three additions to the hydrogen atom Hamiltonian:

HSeO = �~µe · ( 1

2

~B), HSpO = �~µp · ~B,

HSeSp = � µ

0

4p

h⇣
3(~µe·ˆr)(~µp·ˆr)�~µe·~µp

⌘
1

r3

+
8p

3

~µe·~µp d

3(~r )
i
.

(2.23)

Digression 2.1: One of the original motivations for the Abraham-Lorentz model of the electron
was also the attempt to explain—with classical physics—the origin of the electron’s intrinsic
dipole moment. In this model, the electron was supposed to be a teeny electrically charged
sphere. If that sphere rotated, the charge distribution on the sphere would also rotate and so
produce a circular current, which would in turn, by Biot-Savart’s law produce a magnetic field.
This is the source of the idea that the electron rotates about its own axis, has spin ( = intrinsic
angular momentum), and that its intrinsic magnetic dipole moment is a consequence of this
rotating and proportional to this spin. For a classical rotating electric charge q for which the
charge and mass (m) distribution coincide, the magnetic dipole is proportional to the angular
momentum:

~µ =
q

2m
~L, (2.24a)

and µe := e/2me is called the Bohr magneton (for the electron).
In fact, this identification is completely backwards: it is the electron’s magnetic mo-

ment that may be measured and so has a real physical meaning; the rotation of the elec-
tron about its own axis—spin—is a fictitious quantity, defined through the relation (2.24a) in
terms of the intrinsic magnetic moment. This backwards explanation stems from G.E. Uhlen-
beck and S.A. Goudsmit, who measured the magnetic dipole moment of the electron in 1925,
then concluded that this magnetic moment stems from a rotation of the electron about its own
axis [364]; all along, they assumed the electron to be represented as an electrically charged
sphere, following the Abraham-Lorentz model [+ digression 1.11, p. 119].

Besides, the operators that generate rotations close the SU(2) algebra, that has two classes
of representations: tensors and spinors [+ digression A.2, p. 446]. It is easy to show that 360

�-
rotations around any axis maps tensor functions into themselves, but spinors into their negative
multiple. Because of this property, physically observable quantities cannot be spinors. Since
all real functions over the phase space are observables in classical physics, it follows that there
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128 Chapter 2. The Quark Model: Combinatorics and Groups

2.1.3 Magnetic Corrections
Besides their electric charges, the electron and the proton both also have an intrinsic (dipole)
magnetic field: ~µe and ~µp, respectively. Since the electron and the proton move one with
respect to the other, the motion of the electron produces a current that, by Biot-Savart’s
law, creates a magnetic field proportional to the angular momentum of the electron about
the proton, ~B µ ~L, and this magnetic field interacts with the intrinsic magnetic dipole of
the proton. Of course, it would be nonsense saying that this same magnetic field, caused
by the motion of the electron, also interacts with the intrinsic magnetic dipole field of the
electron: in its own coordinate system, the electron of course does not move and produces
no magnetic field.

However, in electron’s rest-frame it is the proton that moves, and produces a current
and a corresponding magnetic field ~B0, that interacts with the intrinsic magnetic dipole of
the electron. To relate ~B0 and ~B, one must transform the vector of this “rotating” magnetic
field from electron’s coordinate system into the proton’s. Since the electron’s coordinate
system rotates about the proton, one must iterate this transformation from moment to in-
finitesimally adjacent moment using successive Lorentz boosts. The resulting effect is called
Thomas precession and provide the relation ~B0 = 1

2

~B [212].
With two intrinsic magnetic dipoles ~µe,~µp and the “orbital” magnetic field ~B, there

then exist three additions to the hydrogen atom Hamiltonian:

HSeO = �~µe · ( 1

2

~B), HSpO = �~µp · ~B,

HSeSp = � µ

0

4p

h⇣
3(~µe·ˆr)(~µp·ˆr)�~µe·~µp

⌘
1

r3

+
8p

3

~µe·~µp d

3(~r )
i
.

(2.23)

Digression 2.1: One of the original motivations for the Abraham-Lorentz model of the electron
was also the attempt to explain—with classical physics—the origin of the electron’s intrinsic
dipole moment. In this model, the electron was supposed to be a teeny electrically charged
sphere. If that sphere rotated, the charge distribution on the sphere would also rotate and so
produce a circular current, which would in turn, by Biot-Savart’s law produce a magnetic field.
This is the source of the idea that the electron rotates about its own axis, has spin ( = intrinsic
angular momentum), and that its intrinsic magnetic dipole moment is a consequence of this
rotating and proportional to this spin. For a classical rotating electric charge q for which the
charge and mass (m) distribution coincide, the magnetic dipole is proportional to the angular
momentum:

~µ =
q

2m
~L, (2.24a)

and µe := e/2me is called the Bohr magneton (for the electron).
In fact, this identification is completely backwards: it is the electron’s magnetic mo-

ment that may be measured and so has a real physical meaning; the rotation of the elec-
tron about its own axis—spin—is a fictitious quantity, defined through the relation (2.24a) in
terms of the intrinsic magnetic moment. This backwards explanation stems from G.E. Uhlen-
beck and S.A. Goudsmit, who measured the magnetic dipole moment of the electron in 1925,
then concluded that this magnetic moment stems from a rotation of the electron about its own
axis [364]; all along, they assumed the electron to be represented as an electrically charged
sphere, following the Abraham-Lorentz model [+ digression 1.11, p. 119].

Besides, the operators that generate rotations close the SU(2) algebra, that has two classes
of representations: tensors and spinors [+ digression A.2, p. 446]. It is easy to show that 360

�-
rotations around any axis maps tensor functions into themselves, but spinors into their negative
multiple. Because of this property, physically observable quantities cannot be spinors. Since
all real functions over the phase space are observables in classical physics, it follows that there
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h

H
0

+ lH 0
i⇣ •

Â
k=0

lk |n; ki
⌘

=
⇣ •

Â
k0=0

lk0 E(k0)
n

⌘⇣ •

Â
k00=0

lk00 |n; k00i
⌘

(0.0.36)

Yn,`,m(~r, t) = e�iwt un,`(r)
r

Y m
` (q, f), w = En,`,m/h̄ (0.0.37)

a
0

=
4pe

0

h̄2

me e2

=
h̄

a mec
,

hH 00i
hH 0i ⇠ h̄2

2m2

e c2

h~r2i ⇠ h̄2

2m2

e c2

1

a 2

0

= 1

2

a2

.

⌦

H 0
rel
↵

= � 1

2mec2

⌦⇥

V2 � H V � V H + H2

⇤↵

,

⌦

H 00
rel
↵

= � 1

2m2

e c4

⌦⇥

V3 � V H V � V2 H + V H2

� H V2 + H2 V + H V H � H3

⇤↵

[H, V] = [ h̄2

2me
~r2 + V, V] = h̄2

2me
[~r2

,�{
r ],

= � h̄2{
2me

[~r2

,

1

r ] =
2p h̄2{

me
d(r)

E(1,r
1

)
n = � 1

2mec2

h

hV2i � 2E(0)
n hVi+ (E(0)

n )2

i

,

= �a4

e mec2

1

4n4

h

2n
(`+ 1

2

)
� 3

2

i

. (0.0.38) e:RelH1

~µ =
q

2m
~L ) ~µe =:

(�e)
2me

~Se, etc. (0.0.39) e:gyrCl
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7
h

H
0

+ lH 0
i⇣ •

Â
k=0

lk |n; ki
⌘

=
⇣ •

Â
k0=0

lk0 E(k0)
n

⌘⇣ •

Â
k00=0

lk00 |n; k00i
⌘

(0.0.36)

Yn,`,m(~r, t) = e�iwt un,`(r)
r

Y m
` (q, f), w = En,`,m/h̄ (0.0.37)

a
0

=
4pe

0

h̄2

me e2

=
h̄

a mec
,

hH 00i
hH 0i ⇠ h̄2

2m2

e c2

h~r2i ⇠ h̄2

2m2

e c2

1

a 2

0

= 1

2

a2

.

⌦

H 0
rel
↵

= � 1

2mec2

⌦⇥

V2 � H V � V H + H2

⇤↵

,

⌦

H 00
rel
↵

= � 1

2m2

e c4

⌦⇥

V3 � V H V � V2 H + V H2

� H V2 + H2 V + H V H � H3

⇤↵

[H, V] = [ h̄2

2me
~r2 + V, V] = h̄2

2me
[~r2

,�{
r ],

= � h̄2{
2me

[~r2

,

1

r ] =
2p h̄2{

me
d(r)

E(1,r
1

)
n = � 1

2mec2

h

hV2i � 2E(0)
n hVi+ (E(0)

n )2

i

,

= �a4

e mec2

1

4n4

h

2n
(`+ 1

2

)
� 3

2

i

. (0.0.38) e:RelH1

~µ =
q

2m
~L ) ~µe =:

(�e)
2me

~Se, etc. (0.0.39) e:gyrCl
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…but, there is no teensy spinning sphere.
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For what it is worth, the observable magnetic dipole 
moment and the half-integral “spin” of an electron are 
related:

H-atom, reminder

~µe = 2

�

1 +
ae

2p
+ . . .

� (�e)
2me

~S

~µe = �geµB~Se, µB :=
e

2me
, ge = 2.002 319 304 361 7(15) ⇡ 2;

e
�

2me

~µp = +gpµN~Sp, µN :=
e

2mp
, gp = 2.7928,

HSeO = �
⇣ ge(�e)

2me
h̄~Se

⌘
·
⇣

1

2

e
4pe

0

mer3

h̄~L
⌘
⇡ e2

4pe

0

h̄2

2m2

e c2

1

r3

~L · ~Se,

HSpO =
gp e2

4pe

0

h̄2

mempc2

1

r3

~L · ~Sp,

HSeSp ⇡
gp e2

4pe

0

h̄2

mempc2

h⇣
3(~Se · ˆr)(~Sp · ˆr)� ~Se · ~Sp

⌘
1

r3

+
8p

3

~Se·~Sp d

3(~r )
i
,

~ ⅟₂,₀₀₀
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!e SeO correction, to 1st order produces:

…which is commensurate with the 1st relativistic 
correction, to the %rst order, and they add up:

…resulting in the O(α4) %ne structure (spli#ing).

H-atom, reminder

hHSeOi =
e2

4pe

0

h̄2

2m2

e c2

⌧
1

r3

~L · ~Se

�
⇠ ae h̄3

2m2

e c
· 1

a 3

0

=
a

4

e mec2

2

.

E(1,SO)
n = a

4

e mec2

j(j+1)� `(`+1)� 3

4

4n3`(`+ 1

2

)(`+1)

~J := ~L + ~S ) ~L · ~S = 1

2

⇥
J 2 � L2 � S2

⇤

= E(1,r
1

)
n + E(1,SO)

n = �a

4

e mec2

1

4n4

h
2n

(j + 1

2

)
� 3

2

i
,

⇢ j = `+ 1

/

2

,

j = `� 1

/

2

;
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!e next order corrections are:
H-atom, reminder

E(1,r
2

)
n = hH 00

reli ⇠
1

m2

e c4

⌧

⇣ e2

4pe
0

r

⌘

3

�

⇠ a6

e mec2

n3

;

E(2,r
1

)
n = Â

n0··· 6=n···

|hn0
, · · ·|H 0

rel|n, · · ·i|2

E(0)
n � E(0)

m
⇠ a6

e mec2

n4

;

E(1,SpO)
n = hHSpOi =

gp e2

4pe
0

h̄2

mempc2

⌧

1

r3

~L · ~Sp

�

⇠ gp

⇣me
mp

⌘a4

e mec2

n3

;

E(1,SeSp)
n = hHSeSpi ⇠

gp e2

4pe
0

h̄2

mempc2

⌧

~Se · ~Sp
1

r3

�

⇠ gp

⇣me
mp

⌘a4

e mec2

n3

.

8

E (
1

,r
2

)n = hH 00
reli ⇠ 1

m2

e c4

⌧

⇣

e2

4pe
0

r

⌘

3

�

⇠ a6

e me c2

n3

;

E (
2

,r
1

)n = Â
n 0··· 6=n···

|hn 0
, · · ·|H 0

rel |n, · · ·i|2

E (
0)

n � E (
0)

m
⇠ a6

e me c2

n4

;

E (
1

,SpO)n = hHSpOi = gp e2

4pe
0

h̄2

memp c2

⌧

1

r3

~L · ~Sp

�

⇠ gp
⇣me
mp

⌘

a4

e me c2

n3

;

E (
1

,SeSp )n = hHSeSp i ⇠ gp e2

4pe
0

h̄2

memp c2

⌧

~Se · ~Sp
1

r3

�

⇠ gp
⇣me
mp

⌘

a4

e me c2

n3

.

It is not hard to see that
⇣me
mp

⌘

> a 2
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2
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)
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e : a
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⌘
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⌘
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So the hyper-%ne structure is given by:

Note:

A$er this there is the O(α6) hyper-hyper-%ne structure, 
and so on.
But, that’s not all.

H-atom, reminder

= E(1,SeSp)
n + E(1,SpO)

n =
⇣ me

mp

⌘
a

4

e mec2

gp

2n3

±1

( f + 1

2

)(`+ 1

2

)
,

⇢ f = j + 1

/

2

,

f = j � 1

/

2

;and similarly provide for the so-called hyperfine structure of the hydrogen atom spectrum.
-spin: ~F := ~J + ~Sp = ~L + ~Se + ~Sp, as a vector sum of all three

the so-called triplet and singlet states: Denote ~Z := ~Se + ~Sp, so that the eigenvalue of

±1

( f + 1

2

)(`+ 1

2

)
=

⇢
+ 4

3

,

�4;

⇢ z = 1 (triplet),

z = 0 (singlet).
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Lamb shi$: recall that

…so that the O(α) correction in the magnetic dipole 
moment produces an O(α5) correction to the SeO term:

Since α > (me/mp) > α2, the Lamb shi is ~5 times 
bigger than the hyper"ne shi.

H-atom, reminder

~µe = 2

�

1 +
ae

2p
+ . . .

� (�e)
2me

~S

⇣ ⌘

ELamb
n =

( a5mec2

1

4n3

k(n, 0) ` = 0;

a5mec2

1

4n3

h

k(n, `)± 1

p(j+ 1

2

)(`+ 1

2

)

i

, j = `± 1

2

, ` 6= 0.

slowly varying functions

E(1,r
2

)
n : E(2,r

1

)
n : E(1,SpO)

n : E(1,SeSp)
n : E(QED)

n ⇡ na

2

e : a

2

e : gp

⇣ me
mp

⌘
: gp

⇣ me
mp

⌘
: ae,

⇡ (5.33⇥10

�5·n) : (5.33⇥10

�5) : (1.52⇥10

�3) : (1.52⇥10

�3) : (7.30⇥10

�3).
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Mesons, where the quark and the antiquark have similar 
masses, are well approximated by positronium.
Now,

!e wave-functions look identical, except that the Bohr 
radius a0 → 2a0 .
!e 1st relativistic correction to the Hamiltonian 
(kinetic energy) doubles, as e– and e+ both contribute…
…but
!e relativistic energy correction acquires a ⅛ factor.

Positronium, a la H-atom

132 Chapter 2. The Quark Model: Combinatorics and Groups

This contribution to the energies is called the Lamb shift. Comparing
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n : E(QED)

n ⇡ na
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e : a

2

e : gp

⇣ me
mp

⌘
: gp
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mp

⌘
: ae, (2.41)

⇡ (5.33⇥10

�5·n) : (5.33⇥10

�5) : (1.52⇥10

�3) : (1.52⇥10

�3) : (7.30⇥10

�3). (2.42)

Thus, in fact, the Lamb shift is almost five times larger than the hyperfine splitting.

2.1.5 Positronium
The analysis of the hydrogen atom in sections 2.1.1–2.1.4 is easy to adapt to many two-
particle bound states, where the proton or the electron (of both) are replaced by other par-
ticles. Such systems are collectively called exotic atoms. Among the many possibilities are:
the muonic hydrogen (p+µ

�), pionic hydrogen (p+p

�), muonium (µ+e�), etc., consider
the positronium, (e+e�). Together with the hydrogen atom, this gives a good foundation
for understanding “quarkonium”, i.e., mesons: the positronium is a adequate template for
mesons composed of a quark and an antiquark of roughly the same mass, while the hydrogen
atom is a adequate template for mesons where the masses of the quark and the antiquark
significantly differ.

Since me+ = me� , the reduced mass is me+me�
me++me�

= 1

2

me. By the simple me 7! 1

2

me
substitution, we obtain the Bohr-like formula:

En(e+, e�) = 1

2

En(H) = �a

2

e mec2

1

4n2

. (2.43)

The wave-functions look identical to those for the hydrogen (2.8c), except that Bohr’s radius
is doubled: a(poz)

0

= 2a(H)

0

.
The first relativistic correction to the Hamiltonian is larger by a factor of 2, since both

the electron and the positron contribute equally. However, h(~p2)2i µ (mec)4, which is then
diminished by a factor of ( 1

2

)4 because of the smaller reduced mass. In total, the relativistic
correction for positronium is an eighth of the corresponding correction for the hydrogen
atom.

A significant difference from the contributions that provided the hyperfine structure
to the spectrum of the hydrogen atom: The ratio me�

me+
= 1, the values ge+ = ge� , and

the Thomas precession is now symmetric. The contributions analogous to (2.37) are now
of the same order of magnitude as the fine structure contributions (2.31). The Lamb shift
remains suppressed by a factor of ae as compared with the contributions analogous to (2.31)
and (2.37).

There exist, however, also two entirely novel effects, with no analogues in the hydro-
gen atom:

Field Drag: In positronium, the center of the Coulomb field that acts on the electron moves
with the positron, and vice versa. Since the changes in the Coulomb field propagate with
the finite speed of light, this effect of “tarrying” must be taken into account. This “tarrying”
field may be computed in classical electrodynamics, and its contribution to the Hamiltonian
is [42]:

Hdrag = � e2

4pe

0

1

2m2

e c2

1

r
�

p 2 + (p · ˆr)2

�
(2.44)
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Thus, in fact, the Lamb shift is almost five times larger than the hyperfine splitting.

2.1.5 Positronium
The analysis of the hydrogen atom in sections 2.1.1–2.1.4 is easy to adapt to many two-
particle bound states, where the proton or the electron (of both) are replaced by other par-
ticles. Such systems are collectively called exotic atoms. Among the many possibilities are:
the muonic hydrogen (p+µ

�), pionic hydrogen (p+p

�), muonium (µ+e�), etc., consider
the positronium, (e+e�). Together with the hydrogen atom, this gives a good foundation
for understanding “quarkonium”, i.e., mesons: the positronium is a adequate template for
mesons composed of a quark and an antiquark of roughly the same mass, while the hydrogen
atom is a adequate template for mesons where the masses of the quark and the antiquark
significantly differ.

Since me+ = me� , the reduced mass is me+me�
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substitution, we obtain the Bohr-like formula:
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The wave-functions look identical to those for the hydrogen (2.8c), except that Bohr’s radius
is doubled: a(poz)

0

= 2a(H)

0

.
The first relativistic correction to the Hamiltonian is larger by a factor of 2, since both

the electron and the positron contribute equally. However, h(~p2)2i µ (mec)4, which is then
diminished by a factor of ( 1

2

)4 because of the smaller reduced mass. In total, the relativistic
correction for positronium is an eighth of the corresponding correction for the hydrogen
atom.

A significant difference from the contributions that provided the hyperfine structure
to the spectrum of the hydrogen atom: The ratio me�

me+
= 1, the values ge+ = ge� , and

the Thomas precession is now symmetric. The contributions analogous to (2.37) are now
of the same order of magnitude as the fine structure contributions (2.31). The Lamb shift
remains suppressed by a factor of ae as compared with the contributions analogous to (2.31)
and (2.37).

There exist, however, also two entirely novel effects, with no analogues in the hydro-
gen atom:

Field Drag: In positronium, the center of the Coulomb field that acts on the electron moves
with the positron, and vice versa. Since the changes in the Coulomb field propagate with
the finite speed of light, this effect of “tarrying” must be taken into account. This “tarrying”
field may be computed in classical electrodynamics, and its contribution to the Hamiltonian
is [42]:
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This contribution to the energies is called the Lamb shift. Comparing
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Thus, in fact, the Lamb shift is almost five times larger than the hyperfine splitting.

2.1.5 Positronium
The analysis of the hydrogen atom in sections 2.1.1–2.1.4 is easy to adapt to many two-
particle bound states, where the proton or the electron (of both) are replaced by other par-
ticles. Such systems are collectively called exotic atoms. Among the many possibilities are:
the muonic hydrogen (p+µ

�), pionic hydrogen (p+p

�), muonium (µ+e�), etc., consider
the positronium, (e+e�). Together with the hydrogen atom, this gives a good foundation
for understanding “quarkonium”, i.e., mesons: the positronium is a adequate template for
mesons composed of a quark and an antiquark of roughly the same mass, while the hydrogen
atom is a adequate template for mesons where the masses of the quark and the antiquark
significantly differ.

Since me+ = me� , the reduced mass is me+me�
me++me�

= 1

2

me. By the simple me 7! 1
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me
substitution, we obtain the Bohr-like formula:

En(e+, e�) = 1
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En(H) = �a
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The wave-functions look identical to those for the hydrogen (2.8c), except that Bohr’s radius
is doubled: a(poz)

0

= 2a(H)

0

.
The first relativistic correction to the Hamiltonian is larger by a factor of 2, since both

the electron and the positron contribute equally. However, h(~p2)2i µ (mec)4, which is then
diminished by a factor of ( 1

2

)4 because of the smaller reduced mass. In total, the relativistic
correction for positronium is an eighth of the corresponding correction for the hydrogen
atom.

A significant difference from the contributions that provided the hyperfine structure
to the spectrum of the hydrogen atom: The ratio me�

me+
= 1, the values ge+ = ge� , and

the Thomas precession is now symmetric. The contributions analogous to (2.37) are now
of the same order of magnitude as the fine structure contributions (2.31). The Lamb shift
remains suppressed by a factor of ae as compared with the contributions analogous to (2.31)
and (2.37).

There exist, however, also two entirely novel effects, with no analogues in the hydro-
gen atom:

Field Drag: In positronium, the center of the Coulomb field that acts on the electron moves
with the positron, and vice versa. Since the changes in the Coulomb field propagate with
the finite speed of light, this effect of “tarrying” must be taken into account. This “tarrying”
field may be computed in classical electrodynamics, and its contribution to the Hamiltonian
is [42]:
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!e magnetic corrections acquire factors that all stem 
from the facts that

me/mp → me–/me+ = 1,  ge/gp → ge–/ge+ = 1,  and
!omas precession is symmetric between e– and e+.

!is variety of changed ratios makes, e.g., the 
“hyper%ne” spli#ing as large as the “%ne” spli#ing…

but leaves the Lamb shi$ α ~⅟₁₃₇ times smaller,
and the O(α6) corrections smaller still.
But there also exist two profoundly novel corrections to 
the energy, with no analogue in the H-atom.

Positronium, a la H-atom
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Field latency:
As e+ is as light as e–, their orbiting each other is symmetric.
As one moves in the Coulomb 'eld created by the other…
…that Coulomb 'eld itself moves (with the other), and 
the changes in it propagate (lag) at the speed of light.

Positronium Novelties

Hlat = � e2

4pe

0

1

2m2

e c2

1

r
�

p 2 + (p · ˆr)2

�
E(lat)

n = hHlati = a

4

e mec2

1

2n3

h
11

32n
� 2 + e

`+ 1

/

2

i

e =

8>>>>>><>>>>>>:

0 for j = `, s = 0

� 3`+4

(`+1)(2`+3) for j = `+ 1,

1

`(`+1) for j = `,

9>=>; s = 1

3`�1

`(2`�1) for j = `� 1,

…where
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Virtual annihilation:
Unlike in the H-atom, the e– and e+ in the positronium 
can annihilate and be re-created.
For this, they must be in the same location, so ∝|Ψ(0)|2, 
i.e., ℓ = 0 only. (Why?)
Since spin(γ) = 1, spin(e–,e+) = 1 too, i.e., the 
positronium must be in its triplet state(s).

… which is of the order of %ne structure, but exclusive 
to “spin-triplet S-states.”

Positronium Novelties II

2.1. Bound States 133

which gives the first order perturbative contribution

E(lat)
n = hHlati = a

4

e mec2

1

2n3

h
11

32n
� 2 + e

`+ 1

/

2

i
(2.45a)

where e is a function of the electron and the positron spins:

e =

8>>>>>><>>>>>>:

0 for j = `, s = 0

� 3`+4

(`+1)(2`+3) for j = `+ 1,

1

`(`+1) for j = `,

9>=>; s = 1

3`�1

`(2`�1) for j = `� 1,

(2.45b)

All spins contribute equally in positronium, so it seems reasonable to define define ~S :=
~Se� + ~Se+ where ~S 2 has eigenvalues s(s+1) with s = 0, 1. Then we define ~J := ~L + ~S,
where ~L 2 and ~J 2 have eigenvalues `(`+1) and j(j+1).

Virtual Annihilation: In positronium, the electron and the positron may temporarily annihi-
late into a virtual photon which then, before the time alotted by Heisenberg indeterminacy
relations, decays into an electron and a positron. Since the electron and the positron must
be at the same location for this process, the contribution of the virtual annihilation must be
proportional to |Y(0)|2, and so can happen only when ` = 0. Then, since the photon has
spin 1, positronium also must have spin 1, i.e., it must be in the triplet state with s = 1 and
parallel spins. The contribution to the energy of positronium is [176]:

E(ann)
n = a

4

e mec2

1

4n3

, ` = 0, s = 1. (2.46)

Note that both new contributions (2.45) and (2.46) are of the same order of magni-
tude as the analogues of the fine and hyperfine structure contributions. The Lamb shift, as
well as the analogues of the corrections (2.32)–(2.33) are then consistently negligible in
comparison with the analogues of (2.31), (2.37), (2.40) and (2.45). The Lamb shift was
shown to be of order O(a5

e ), and so contributes less than 1 % of the listed contributions, that
are all O(a4

e ).

Real Annihilation: Positronium is an unstable bound state, as the comprising parts may also
really annihilate and produce two or more photons. Just as in the previous discussion,
since the electron and the positron must be at the same place to annihilate each other, the
decay rate must be proportional to |Y(~0, t)|2. For a two-photon decay we have the Feynman
diagram

time

e+

e�

e�positronium

g

g

Strictly speaking, only one of
the right-hand side vertices is
an annihilation; herein we pick
the lower one; the computation
shows the result to be indepen-
dent of this choice.

(2.47)
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Real annihilation:

…which agrees with experiments.

time

e+

e�

e�positronium

g

gD
R

A
FT

—
co

nt
ac

td
ir

ec
tly

Tr
is

ta
n

H

Positronium Novelties II

G = s v |Y(~0, t)|2 h i

s =
Z

d

2W
⇣ h̄c

8p

⌘

2 |M|2
(Ee� + Ee+)2

�

�

�

~p f

~pi

�

�

�

= 4p
a2

e h̄2

m2

e cv
.

t =
1

G
=

2 h̄ n3

a5

e mec2

= (1.24494⇥10

�10 s)⇥ n3

,
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!e “OZI rule” (Okubo-Zweig-Iizuka, 1960’s):

Or, in terms of Feynman graphs,

Finally, Something Else…

Decays that require the annihilation of
all initially present partons are delayed.

Decays are delayed…as compared to this.
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!e general idea is to use the results from the H-atom 
and positronium, and adapt them by:

varying the masses of the constituent quarks
changing the 'ne structure constant, α,
from the electromagnetic (~ ⅟₁₃₇) to the strong (~ ⅟₁₀–1)
adapting the spin orientations (triplet for positronium 
annihilation) as needed (to include  "avor and color)

…and this works remarkably well!
…so people talked of “paper-writing algorithm,”

recycling (preferably obscure) papers on E&M
into papers on strong interactions.

Quark Bound States

& don’t forget to change the Authors’ names.
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