Bound states: non-relativistic H-atom and its various corrections as a paradigm, vs. positronium

Tristan Hübsch

Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

FOREWORD

• Hadrons = bound states of quarks

Name	q	Mass* (MeV/c ²)	Q	I_3	В	S	С	B'	Т	Ŷ
Up	<i>u</i> :	1.5–3.3	$+^{2}/_{3}$	$+^{1}/_{2}$	¹ / ₃	0	0	0	0	$+\frac{1}{3}$
Down	<i>d</i> :	3.5-6.0	$-\frac{1}{3}$	$-\frac{1}{2}$	1/3	0	0	0	0	$+^{1}/_{3}$
Strange	<i>s</i> :	$105 \{ {+25 \atop -35}$	$-\frac{1}{3}$	0	1/3	-1	0	0	0	$-\frac{2}{3}$
Charm	<i>C</i> :	$1270\{{}^{+70}_{-110}$	$+^{2}/_{3}$	0	1/3	0	+1	0	0	$+\frac{4}{3}$
Bottom	<i>b</i> :	$4200\{{}^{+170}_{-70}$	$-\frac{1}{3}$	0	1/3	0	0	-1	0	$-\frac{2}{3}$
Тор	<i>t</i> :	$171300\{{}^{+1100}_{-1200}$	$+^{2}/_{3}$	0	1/3	0	0	0	+1	$+\frac{4}{3}$

* Inertial mass without the binding energy, which depends on the hadron

 $Q = I_3 + \frac{1}{2}(Baryon + Strange + Charm + B'eauty + Truth)$

=*Y*, so-called (strong) hypercharge [IS section 5.2.1]

FOREWORD... CONT'D

Hadrons = bound states of quarks

Binding strength

binding energy

PLAYBILL

- Bound States of Quarks
 - $(Q-\overline{Q}) \& (Q-\overline{q})$ bound states: non-relativistic
 - $(q \overline{q})$ bound states: <u>relativistic</u>
 - (qqq), ... (QQQ): very complicated
- Non-relativistic H-atom as a paradigm
 - The Coulomb interaction & Bohr's result
- Binding strength < 1 perturbative 1st order (relativistic and magnetic dipole) corrections
 - 2nd order corrections & hierarchy
 - Lamb shift
- Positronium <u>estimates</u> by correcting the H-atom
 - Field drag
 - Annihilation: virtual & real
 - OZI rule: phenomenological ... later, derived from QCD.

Fundamental Physics of Elementary Particles QUARK BOUND STATES

• Bound $(q\bar{q})$ states with *u*, *d* & *s* quarks, of spin-0:

Qualitatively,

just like

LHO

springs

strings

Jree Igriee

QUARK BOUND STATES

- Mesons: 2-particle bound states
 - Interaction may be modeled:
 - At distances < 10⁻¹⁵ m, vanishing force
 - Near $\approx 10^{-15}$ m, force grows w/distance
 - Just outside 10⁻¹⁵ m, force diverges
 - So that trying to extract a quark to a growing distance...
 - ...requires a growing amount of energy...
 - ... until that energy suffices to produce a $q\bar{q}$ -pair:

QUARK BOUND STATES

• Mesons

- Initial approximation: central potential
- When one of the quarks is much heavier than the other,
 - $(\Psi(r,\theta,\phi) = \sum_{n,\ell} R_n(r) Y_\ell^m(\theta,\phi))(\operatorname{spin},...)$
 - use $R_n(r)$ from the H-atom in this initial approximation
- When both quarks have similar (large) masses,
 - use the same-mass (positronium) modification of H-atom as an initial approximation

• Baryons

- 3-body = ((2-body)+1 body) bound states
 - Considerably more complicated...
 - ...leave for later.

Fundamental Physics of Elementary Particles H-ATOM, REMINDER

• The problem and its solution (Bohr/Schrödinger):

$$i\hbar \frac{\partial}{\partial t} \Psi(\vec{r}, t) = H\Psi(\vec{r}, t), \qquad H = \left[-\frac{\hbar^2}{2m_e} \vec{\nabla}^2 + V(r) \right],$$

$$\Psi_{n,\ell,m}(\vec{r}, t) = e^{-i\omega t} \frac{u_{n,\ell}(r)}{r} Y_\ell^m(\theta, \phi), \qquad \omega = E_{n,\ell,m}/\hbar$$

$$-\frac{\hbar^2}{2m_e} \frac{d^2 u_{n,\ell}}{dr^2} + \left[V(r) + \frac{\hbar^2}{2m_e} \frac{\ell(\ell+1)}{r^2} \right] u_{n,\ell} = E_{n,\ell} u_{n,\ell},$$

$$V(r) = -\frac{1}{4\pi\epsilon_0} \frac{e^2}{r} = -\frac{\alpha_e \hbar c}{r}, \quad \alpha_e := \frac{e^2}{4\pi\epsilon_0 \hbar c},$$

$$E_n = -\frac{1}{2} \alpha_e^2 mc^2 \frac{1}{n^2}, \qquad n = 1, 2, 3 \dots$$

Tuesday, November 1, 11

H-ATOM, REMINDER

• Degeneracy!

- $n = 1, 2, 3, 4, \dots$ (" $n \rightarrow \infty$ " = continuum/scattering limit), • $\ell = 0, 1, 2, \dots (n-1),$
- $|m| \leq \ell$ and $\Delta m \in \mathbb{Z}$ (and since $\ell \in \mathbb{Z}$, then also $m \in \mathbb{Z}$),
- $m_s = \pm 1/2$.

d

$$L_{n} \text{ does not} \quad \sum_{\ell=0}^{n-1} \sum_{m=-\ell}^{\ell} 2 = 2 \sum_{\substack{l=0 \ \text{rotations}}}^{n-1} (2\ell+1) = 2n^{2},$$

for $V(r) = -\frac{\varkappa}{r},$
$$L_{i} := \frac{1}{\hbar} (\vec{r} \times \vec{p})_{i} = -i \varepsilon_{ij}^{k} x^{j} \frac{\partial}{\partial x^{k}} \qquad \begin{array}{c} \text{Laplace-Runge-Lem} \\ \vec{A} := \vec{p} \times \vec{L} - m \varkappa \\ A_{j} = \frac{1}{\sqrt{2mH}} \left[\frac{\hbar}{2i} \varepsilon_{j}^{kl} \left(\frac{\partial}{\partial x^{k}} L_{l} + L_{l} \frac{\partial}{\partial x^{k}} \right) - \frac{m \varkappa}{\hbar} \hat{e}_{j} \right]$$

H-ATOM, REMINDER

- Because of the division by \sqrt{H} , the operators A_j are applicable only on eigenstates of H...
- ... but those form a complete set, so the operators A_j in fact, may be applied on *any* state.

[L_j, L_k] = iε_{jk}^lL_l, [L_j, A_k] = -iε_{jk}^lA_l, [A_j, A_k] = ±iε_{jk}^lL_l, for {^{E<0}, E>0;
For E < 0 (bound states), this is the \$\$0(4) algebra,
For E > 0 (scattering states), this is the \$\$0(1,3) algebra.
Symmetries count degenerate states. (In general, not always!) But, all of them, here!)
Lifting the degeneracy = breaking a symmetry.

H-ATOM, REMINDER

- Given the non-relativistic initial approximation ...
- ... check for corrections.
- Relativistic corrections:

These may well break some of the so(4) *symmetry & lift some of the degeneracy!*

$$T_{\rm rel} = m_e c^2 \left[\sqrt{1 + (\vec{p}/m_e c)^2} - 1 \right] = m_e c^2 \sum_{k=1}^{\infty} {\binom{1/_2}{k}} \left(\frac{\vec{p}^2}{m_e^2 c^2} \right)^k,$$

$$\approx \frac{\vec{p}^2}{2m_e} - \frac{(\vec{p}^2)^2}{8m_e^3 c^2} + \frac{(\vec{p}^2)^3}{16m_e^5 c^4} - \dots$$

$$\hbar^4 \rightarrow 2.2 \qquad \hbar^6$$

(- 2) 2

(- 2) 2

$$H'_{\text{rel}} := -\frac{n}{8m_e^3 c^2} (\vec{\nabla}^2)^2, \quad H''_{\text{rel}} := +\frac{n}{16m_e^5 c^4} (\vec{\nabla}^2)^3,$$

• Since

$$a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e\,e^2} = \frac{\hbar}{\alpha\,m_e\,c'}, \ \frac{\langle H''\rangle}{\langle H'\rangle} \sim \frac{\hbar^2}{2m_e^2\,c^2} \langle \vec{\nabla}^2 \rangle \sim \frac{\hbar^2}{2m_e^2\,c^2} \frac{1}{a_0^2} = \frac{1}{2}\,\alpha^2.$$

Fundamental Physics of Elementary Particles H-ATOM, REMINDER

• The 1st relativistic correction, to 1st order produces:

$$E_n^{(1,r_1)} = -\frac{1}{2m_e c^2} \Big[\langle V^2 \rangle - 2E_n^{(0)} \langle V \rangle + (E_n^{(0)})^2 \Big],$$

= $-\alpha_e^4 m_e c^2 \frac{1}{4n^4} \Big[\frac{2n}{(\ell + \frac{1}{2})} - \frac{3}{2} \Big].$
Compared with $E_n = -\frac{1}{2} \alpha_e^2 m c^2 \frac{1}{n^2},$

- ... the correction is indeed of $O(\alpha^4)$.
- It depends on ℓ , so it breaks the Laplace-Runge-Lenz symmetry and lifts some of the degeneracy.
- Higher corrections will refine this result.

H-ATOM, REMINDER

- Consider now the magnetic corrections.
- Both *e*⁻ and *p*⁺ have intrinsic magnetic dipole moments.
- They are charged, so their relative motion produces an (orbital) electric current and a magnetic field.
- These three magnetic fields interact pair-wise, and contribute to the energy:

$$\begin{aligned} H_{S_eO} &= -\vec{\mu}_e \cdot (\frac{1}{2}\vec{B}), \\ H_{S_pO} &= -\vec{\mu}_p \cdot \vec{B}, \end{aligned} \qquad \vec{\mu} = \frac{q}{2m}\vec{L} \implies \vec{\mu}_e =: \frac{(-e)}{2m_e}\vec{S}_e, \ etc. \\ H_{S_eS_p} &= -\frac{\mu_0}{4\pi} \Big[\Big(3(\vec{\mu}_e \cdot \hat{r})(\vec{\mu}_p \cdot \hat{r}) - \vec{\mu}_e \cdot \vec{\mu}_p \Big) \frac{1}{r^3} + \frac{8\pi}{3} \vec{\mu}_e \cdot \vec{\mu}_p \, \delta^3(\vec{r}) \Big]. \end{aligned}$$

• The dipole moments were attributed to spinning... ...but, there is no teensy spinning sphere.

H-ATOM, REMINDER

• For what it is worth, the observable magnetic dipole moment and the half-integral "spin" of an electron are related:

Fundamental Physics of Elementary Particles H-ATOM, REMINDER

• The S_eO correction, to 1st order produces:

 $\left\langle H_{S_eO} \right\rangle = \frac{e^2}{4\pi\epsilon_0} \frac{\hbar^2}{2m_e^2 c^2} \left\langle \frac{1}{r^3} \vec{L} \cdot \vec{S}_e \right\rangle \sim \frac{\alpha_e \hbar^3}{2m_e^2 c} \cdot \frac{1}{a_e^3} = \frac{\alpha_e^4 m_e c^2}{2}$ $E_n^{(1,SO)} = \alpha_e^4 m_e c^2 \frac{j(j+1) - \ell(\ell+1) - \frac{3}{4}}{4n^3\ell(\ell+\frac{1}{2})(\ell+1)}$ $\vec{J} := \vec{L} + \vec{S} \qquad \Rightarrow \qquad \vec{L} \cdot \vec{S} = \frac{1}{2} \left[J^2 - L^2 - S^2 \right]$... which is commensurate with the 1st relativistic correction, to the first order, and they add up: $E_n^{(1,r_1)} + E_n^{(1,SO)} = -\alpha_e^4 m_e c^2 \frac{1}{4n^4} \left[\frac{2n}{(j+\frac{1}{2})} - \frac{3}{2} \right], \qquad \left\{ \begin{array}{l} j = \ell + \frac{1}{2}, \\ j = \ell - \frac{1}{2}; \end{array} \right.$... resulting in the $O(\alpha^4)$ fine structure (splitting).

H-ATOM, REMINDER

• The next order corrections are:

$$E_{n}^{(1,r_{2})} = \langle \mathcal{H}_{rel}^{\prime\prime} \rangle \sim \frac{1}{m_{e}^{2}c^{4}} \left\langle \left(\frac{e^{2}}{4\pi\epsilon_{0}r}\right)^{3} \right\rangle \sim \frac{\alpha_{e}^{6}m_{e}c^{2}}{n^{3}};$$

$$E_{n}^{(2,r_{1})} = \sum_{n'\cdots\neq n\cdots} \frac{|\langle n',\cdots|\mathcal{H}_{rel}^{\prime}|n,\cdots\rangle|^{2}}{E_{n}^{(0)} - E_{m}^{(0)}} \stackrel{(m_{e})}{=} \langle \mathcal{A}_{e}^{2} \rangle \sim \frac{\alpha_{e}^{6}m_{e}c^{2}}{n^{4}};$$

$$E_{n}^{(1,S_{p}O)} = \langle \mathcal{H}_{S_{p}O} \rangle = \frac{g_{p}e^{2}}{4\pi\epsilon_{0}} \frac{\hbar^{2}}{m_{e}m_{p}c^{2}} \left\langle \frac{1}{r^{3}} \vec{L} \cdot \vec{S}_{p} \right\rangle \sim g_{p}\left(\frac{m_{e}}{m_{p}}\right) \frac{\alpha_{e}^{4}m_{e}c^{2}}{n^{3}};$$

$$E_{n}^{(1,S_{e}S_{p})} = \langle \mathcal{H}_{S_{e}S_{p}} \rangle \sim \frac{g_{p}e^{2}}{4\pi\epsilon_{0}} \frac{\hbar^{2}}{m_{e}m_{p}c^{2}} \left\langle \vec{S}_{e} \cdot \vec{S}_{p} \frac{1}{r^{3}} \right\rangle \sim g_{p}\left(\frac{m_{e}}{m_{p}}\right) \frac{\alpha_{e}^{4}m_{e}c^{2}}{n^{3}}.$$

$$E_{n}^{(1,r_{2})} : E_{n}^{(2,r_{1})} : E_{n}^{(1,S_{p}O)} : E_{n}^{(1,S_{e}S_{p})} \approx n\alpha_{e}^{2} : \alpha_{e}^{2} : g_{p}\left(\frac{m_{e}}{m_{p}}\right) : g_{p}\left(\frac{m_{e}}{m_{p}}\right)$$

Tuesday, November 1, 11

H-ATOM, REMINDER

• So the hyper-fine structure is given by:

$$E_n^{(1,S_eS_p)} + E_n^{(1,S_pO)} = \left(\frac{m_e}{m_p}\right) \alpha_e^4 m_e c^2 \frac{g_p}{2n^3} \frac{\pm 1}{(f + \frac{1}{2})(\ell + \frac{1}{2})}, \qquad \begin{cases} f = j + \frac{1}{2}, \\ f = j - \frac{1}{2}; \end{cases}$$

$$\vec{F} := \vec{J} + \vec{S}_p = \vec{L} + \vec{S}_e + \vec{S}_p$$

• Note:

$$\vec{z} := \vec{s}_e + \vec{s}_p$$

$$\frac{\pm 1}{(f + \frac{1}{2})(\ell + \frac{1}{2})} = \begin{cases} +\frac{4}{3}, & \{z = 1 \ (\text{triplet}), \\ -4; & \{z = 0 \ (\text{singlet}). \end{cases}$$

• After this there is the $O(\alpha^6)$ hyper-hyper-fine structure, and so on.

• But, that's not all.

H-ATOM, REMINDER

• Lamb shift: recall that

$$\vec{\mu}_e = 2(1 + \frac{\alpha_e}{2\pi} + \dots) \frac{(-e)}{2m_e} \vec{S}$$

• ... so that the $O(\alpha)$ correction in the magnetic dipole moment produces an $O(\alpha^5)$ correction to the S_eO term:

 $E_{n}^{\text{Lamb}} = \begin{cases} \alpha^{5}m_{e}c^{2}\frac{1}{4n^{3}}k(n,0) & \text{slowly varying functions} \\ \alpha^{5}m_{e}c^{2}\frac{1}{4n^{3}}\left[k(n,\ell)\pm\frac{1}{\pi(j+\frac{1}{2})(\ell+\frac{1}{2})}\right], \quad j=\ell\pm\frac{1}{2}, \quad \ell\neq 0. \end{cases}$ • Since $\alpha > (m_{e}/m_{p}) > \alpha^{2}$, the Lamb shift is ~5 times **bigger** than the hyperfine shift. $E_{n}^{(1,r_{2})}: E_{n}^{(2,r_{1})}: E_{n}^{(1,S_{p}O)}: E_{n}^{(1,S_{e}S_{p})}: E_{n}^{(QED)} \approx n\alpha_{e}^{2}: \alpha_{e}^{2}: g_{p}\left(\frac{m_{e}}{m_{p}}\right): g_{p}\left(\frac{m_{e}}{m_{p}}\right): \alpha_{e}, \approx (5.33 \times 10^{-5} \cdot n): (5.33 \times 10^{-5}): (1.52 \times 10^{-3}): (1.52 \times 10^{-3}): (7.30 \times 10^{-3}). \end{cases}$

POSITRONIUM, A LA H-ATOM

- Mesons, where the quark and the antiquark have similar masses, are well approximated by positronium.
- Now,

$$\frac{m_{e^+}m_{e^-}}{m_{e^+}+m_{e^-}} = \frac{1}{2}m_e$$
$$E_n(e^+, e^-) = \frac{1}{2}E_n(H) = -\alpha_e^2 m_e c^2 \frac{1}{4n^2}$$

• The wave-functions look identical, except that the Bohr radius $a_0 \rightarrow 2a_0$.

The 1st relativistic correction to the Hamiltonian (kinetic energy) doubles, as e⁻ and e⁺ both contribute...
...but ⟨(p²)²⟩ ∝ (m_ec)⁴ is reduced by (1/2)⁴.

• The relativistic energy correction acquires a ¹/₈ factor.

POSITRONIUM, A LA H-ATOM

- The magnetic corrections acquire factors that all stem from the facts that
- $m_e/m_p \to m_{e^-}/m_{e^+} = 1$, $g_e/g_p \to g_{e^-}/g_{e^+} = 1$, and • Thomas precession is symmetric between *e*⁻ and *e*⁺. • This variety of changed ratios makes, e.g., the "hyperfine" splitting as large as the "fine" splitting... but leaves the Lamb shift $\alpha \sim \gamma_{137}$ times smaller, • and the $O(\alpha^6)$ corrections smaller still. But there also exist two profoundly novel corrections to the energy, with no analogue in the H-atom.

Fundamental Physics of Elementary Particles POSITRONIUM NOVELTIES

• Field latency:

- As *e*⁺ is as light as *e*⁻, their orbiting each other is symmetric.
- As one moves in the Coulomb field created by the other...
 - ... that Coulomb field itself moves (with the other), and the changes in it propagate (lag) at the speed of light.

$$\begin{aligned} H_{\text{lat}} &= -\frac{e^2}{4\pi\epsilon_0} \frac{1}{2m_e^2 c^2} \frac{1}{r} \left(p^2 + (p \cdot \hat{r})^2 \right) \\ E_n^{(\text{lat})} &= \langle H_{\text{lat}} \rangle = \alpha_e^4 m_e c^2 \frac{1}{2n^3} \left[\frac{11}{32n} - \frac{2+\epsilon}{\ell + \frac{1}{2}} \right] \\ \dots \text{ where } \epsilon = \begin{cases} 0 & \text{for } j = \ell, & s = 0 \\ -\frac{3\ell + 4}{(\ell + 1)(2\ell + 3)} & \text{for } j = \ell + 1, \\ \frac{1}{\ell(\ell + 1)} & \text{for } j = \ell, \\ \frac{3\ell - 1}{\ell(2\ell - 1)} & \text{for } j = \ell - 1, \end{cases} \quad s = 1 \end{aligned}$$

POSITRONIUM NOVELTIES II

- Virtual annihilation:
- Unlike in the H-atom, the e⁻ and e⁺ in the positronium can annihilate and be re-created.
- For this, they must be in the same location, so $\propto |\Psi(0)|^2$, i.e., $\ell = 0$ only. (Why?)
- Since $spin(\gamma) = 1$, $spin(e^{-},e^{+}) = 1$ too, i.e., the positronium must be in its *triplet* state(s).

$$E_n^{(ann)} = \alpha_e^4 m_e c^2 \frac{1}{4n^3}, \qquad \ell = 0, \ s = 1.$$

... which is of the order of fine structure, but exclusive to "spin-triplet *S*-states."

POSITRONIUM NOVELTIES II

• Real annihilation:

... which agrees with experiments.

FUNALLY, SOMETHING ELSE...

• The "OZI rule" (Okubo-Zweig-Iizuka, 1960's):

Decays that require the annihilation of all initially present partons are delayed.

• Or, in terms of Feynman graphs,

Decays are delayed ... as compared to this.

Fundamental Physics of Elementary Particles QUARK BOUND STATES

- The general idea is to use the results from the H-atom and positronium, and adapt them by:
 - varying the masses of the constituent quarks
 - changing the fine structure constant, α ,
 - from the electromagnetic (~ γ_{137}) to the strong (~ γ_{10} -1)
 - adapting the spin orientations (triplet for positronium annihilation) as needed (to include *flavor* and *color*)
 - ... and this works remarkably well!
 - ... so people talked of "paper-writing algorithm,"
 - recycling (preferably obscure) papers on E&M recycling (preferation, section)
 into papers on strong interactions.
 b don't forget to change the Authors' names.

Thanks!

Tristan Hubsch

Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

http://homepage.mac.com/thubsch/

Tuesday, November 1, 11