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Quantum Mechanics: Warm-Up Calisthenics

Perturbation Picturebook
Consider a quantum-mechanical system where the 
Hamiltonian differs from a well-known one by H´.
We want to #nd solutions to:

…where λ is a bookkeeping parameter.
Given that we do know:

…we expand as a power-series in λ.

3

1.3. Feynman’s Diagrams and Calculus 103

In classical physics, it makes perfect sense to ask: “In a concrete e� + e� ! e� + e� scat-
tering, which of the processes, a or b or c or d or e. . . happened?” In quantum physics,
this question makes no sense: As a matter of principle, not one of the processes shown in
the expansion on the right-hand side of the equality in (1.82) can possibly be singled out
as the “actual” process. All the possibilities that satisfy the “boundary conditions”—the data
that are reliably established outside the region obscured by Heisenberg’s indeterminacy re-
lations—contribute, as (virtual) sub-processes of the e� + e� ! e� + e� scattering.

Besides intuitively depicting by graphs the interactive processes between particles, the
Feynman diagrams are also a precise instrument for computing probabilities as well as other
measurable parameters of the considered process. The establishing of this precise 1–1 cor-
respondence between:

1. the fundamental theory that designs the considered process, usually in terms of a
specified Lagrangian,

2. individual Feynman diagram elements as the graphical representation of individual
terms from the specified Lagrangian,

3. the rules of linking these graphical elements into a complete diagram, as a graph-
ical representation of the computation with the individual terms from the specified
Lagrangian,

4. the rules of listing all possible Feynman diagrams that need to be included in a com-
putation,

5. the final mathematical expression (usually, in terms of an algebraic sum of various
multiple integrals over various 4-momenta) the final result of which is the desired
physical quantity,

and, finally, the computation (or, more often, an estimate) of the value of this mathematical
expression is the goal of every application of Feynman diagrams. Herein, we will skip the
second and third step in this listing; that would be the task of a field theory course. Herein,
we consider some examples [+ chapter 3–5] from the Standard Model, to illustrate the
application of the fourth and fifth step.

A complete discussion of all aspects of this task is beyond the scope of an introductory
text such as this. Ref. [221] designs the early history of Feynman diagrams and the reasons
for the variety of “styles” and conventions in their application; see, e.g., Ref. [44, 338, 372]
as well as the texts [47, 46, 34, 188, 222, 156, 108, 305, 306, 373, 182, 278, 176, 32,
401, 171, 174, 172, 173]. However, since the Feynman diagram technique is quite wide-
spread—and even in topics well outside elementary particle physics [+ e.g., Ref. [255]
in multi-particle physics]—we first turn to non-relativistic quantum mechanics, where the
well-known perturbative computations are also representable graphically.

1.3.2 Quantum-Mechanical Digression
As a “warm-up,” recall the perturbative computations in non-relativistic quantum mechanic:
the relations (–1.11)–(–1.13) are very often listed and derived in almost all textbooks. Most
textbooks also give the basic idea behind the derivation of such oft-used results, but the
derivation itself and the results are hardly ever given for corrections of higher order. How-
ever, adapting the derivation [259, p. 685–695], we have:

H |ni = En |ni, where H := H
0

+ l H0 (1.83)
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104 Chapter 1. Physics in Spacetime

is the “true” Hamiltonian, given as a sum of a “known” Hamiltonian H
0

and a “perturbation”
H0, and where l serves to consistently count the order of perturbation. Suppose that for the
“known” system (designd by the Hamiltonian H

0

) the complete system of orthonormalized
solutions is known:

H
0

|n; 0i = E(0)
n |n; 0i,

⇢
hn; 0|n0

; 0i = dn,n0 ,

Ân |n; 0ihn; 0| = 1,

(1.84)

and the solutions of (1.83) are sought in the analytic form

En =
•

Â
k=0

l

k E(k)
n , |ni =

•

Â
k=0

l

k |n; ki, (1.85)

with the normalisations

hm; k|n; ki = dmn, 8m, n, and hn; k|n; `i = dk`, 8k, `. (1.86)

The treatment of the general situation with (partial) continuous and/or degenerate spec-
trum is only technically more complicated14, and so will not be discussed here. Introduce
the definition:

bPa

n := Â
m 6=n

|m; 0ihm; 0|
(E(0)

n �E(0)
m )

a

, so bPa

n bPb

n = bPa+b

n , (1.87)

so that the superscript in bPa

n really behaves as an exponent. With this notation, the standard
recursive formulae for the kth correction to the state and energy are:

|n; ki = bP1

n H0|n; k�1i �
k�1

Â
i=1

E(i)
n bP1

n |n; k � ii, k > 0, (1.88a)

E(k)
n = hn; 0

��H0��n; k�1i. (1.88b)

The first several iterations of these recursive formulae are:

E(1)
n = hn; 0|H0|n; 0i, (1.89a)

|n; 1i = bP1

n H0|n; 0i, (1.89b)

E(2)
n = hn; 0

��H0 bP1

n H0��n; 0i (1.89c)

|n; 2i = bP1

n(H0 � E(1)
n )|n; 1i,

= bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i,
=

⇥ bP1

n H0 bP1

n � bP2

n H0|n; 0ihn; 0|
⇤
H0|n; 0i, (1.89d)

E(3)
n = hn; 0

��H0��n; 2i
= hn; 0|H0⇥ bP1

n H0 bP1

n � bP2

n H0|n; 0ihn; 0|
⇤
H0|n; 0i

14 The basis of states |n; ki must be re-defined so as to eliminate the meaningless terms such as hm;k|H0 |n;ki
E(0)

m �E(0)
n

⇠ 1

0

for

m 6= n—which is always possible, by (at least a partial) diagonalization of the perturbation matrix hm; k|H 0|n; ki.
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Quantum Mechanics: Warm-Up Calisthenics

Perturbation Picturebook
We demand that order-by-order, the bases are 
orthonormalized (always doable, by Gram–Schmidt!)

but also that the “same” kets from different orders of 
perturbation are orthogonal:

Why? For consistency of the normalization!

4
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|n;k+1〉
|n;k〉+λ|n;k+1〉

〈n;k|n;k〉+2 Re(λ〈n;k|n;k+1〉)
+|λ|2〈n;k+1|n;k+1〉
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Quantum Mechanics: Warm-Up Calisthenics

Perturbation Picturebook
Now introduce specially weighted projectors:

!ey project back to the well-known, initial basis,
away !om |n;0〉, and curiously normalized.
Note the no-degeneracy assumption!
With this notation (≈Cohen-Tannoudji, Diu, Laloë),

…from where one obtains “order-by-order equations”:
5
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m 6= n—which is always possible, by (at least a partial) diagonalization of the perturbation matrix hm; k|H 0|n; ki.

D
R

A
FT

—
co

nt
ac

td
ir

ec
tly

Tr
is

ta
n

H
üb
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is the “true” Hamiltonian, given as a sum of a “known” Hamiltonian H
0

and a “perturbation”
H0, and where l serves to consistently count the order of perturbation. Suppose that for the
“known” system (designd by the Hamiltonian H

0

) the complete system of orthonormalized
solutions is known:

H
0

|n; 0i = E(0)
n |n; 0i,

⇢
hn; 0|n0

; 0i = dn,n0 ,

Ân |n; 0ihn; 0| = 1,

(1.84)

and the solutions of (1.83) are sought in the analytic form

En =
•

Â
k=0

l

k E(k)
n , |ni =

•

Â
k=0

l

k |n; ki, (1.85)

with the normalisations

hm; k|n; ki = dmn, 8m, n, and hn; k|n; `i = dk`, 8k, `. (1.86)

The treatment of the general situation with (partial) continuous and/or degenerate spec-
trum is only technically more complicated14, and so will not be discussed here. Introduce
the definition:

bPa

n := Â
m 6=n

|m; 0ihm; 0|
(E(0)

n �E(0)
m )

a

, so bPa

n bPb

n = bPa+b

n , (1.87)

so that the superscript in bPa

n really behaves as an exponent. With this notation, the standard
recursive formulae for the kth correction to the state and energy are:

|n; ki = bP1

n H0|n; k�1i �
k�1

Â
i=1

E(i)
n bP1

n |n; k � ii, k > 0, (1.88a)

E(k)
n = hn; 0

��H0��n; k�1i. (1.88b)

The first several iterations of these recursive formulae are:

E(1)
n = hn; 0|H0|n; 0i, (1.89a)

|n; 1i = bP1

n H0|n; 0i, (1.89b)

E(2)
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n H0 bP1

n � bP2
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H0|n; 0i

14 The basis of states |n; ki must be re-defined so as to eliminate the meaningless terms such as hm;k|H0 |n;ki
E(0)

m �E(0)
n

⇠ 1

0

for

m 6= n—which is always possible, by (at least a partial) diagonalization of the perturbation matrix hm; k|H 0|n; ki.
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…a subtraction!

Quantum Mechanics: Warm-Up Calisthenics

Perturbation Picturebook
!e “order-by-order” equations:

!e #rst few of these are easy:

6

104 Chapter 1. Physics in Spacetime

is the “true” Hamiltonian, given as a sum of a “known” Hamiltonian H
0

and a “perturbation”
H0, and where l serves to consistently count the order of perturbation. Suppose that for the
“known” system (designd by the Hamiltonian H

0

) the complete system of orthonormalized
solutions is known:

H
0

|n; 0i = E(0)
n |n; 0i,

⇢
hn; 0|n0

; 0i = dn,n0 ,

Ân |n; 0ihn; 0| = 1,

(1.84)

and the solutions of (1.83) are sought in the analytic form

En =
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k=0
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k E(k)
n , |ni =

•
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k=0
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k |n; ki, (1.85)

with the normalisations

hm; k|n; ki = dmn, 8m, n, and hn; k|n; `i = dk`, 8k, `. (1.86)

The treatment of the general situation with (partial) continuous and/or degenerate spec-
trum is only technically more complicated14, and so will not be discussed here. Introduce
the definition:

bPa

n := Â
m 6=n

|m; 0ihm; 0|
(E(0)

n �E(0)
m )

a

, so bPa

n bPb

n = bPa+b

n , (1.87)

so that the superscript in bPa

n really behaves as an exponent. With this notation, the standard
recursive formulae for the kth correction to the state and energy are:

|n; ki = bP1

n H0|n; k�1i �
k�1

Â
i=1

E(i)
n bP1

n |n; k � ii, k > 0, (1.88a)

E(k)
n = hn; 0

��H0��n; k�1i. (1.88b)

The first several iterations of these recursive formulae are:

E(1)
n = hn; 0|H0|n; 0i, (1.89a)

|n; 1i = bP1

n H0|n; 0i, (1.89b)
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n = hn; 0
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n H0��n; 0i (1.89c)
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n(H0 � E(1)
n )|n; 1i,
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=
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n H0|n; 0ihn; 0|
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H0|n; 0i, (1.89d)

E(3)
n = hn; 0

��H0��n; 2i
= hn; 0|H0⇥ bP1

n H0 bP1

n � bP2

n H0|n; 0ihn; 0|
⇤
H0|n; 0i

14 The basis of states |n; ki must be re-defined so as to eliminate the meaningless terms such as hm;k|H0 |n;ki
E(0)

m �E(0)
n

⇠ 1

0

for

m 6= n—which is always possible, by (at least a partial) diagonalization of the perturbation matrix hm; k|H 0|n; ki.
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is the “true” Hamiltonian, given as a sum of a “known” Hamiltonian H
0

and a “perturbation”
H0, and where l serves to consistently count the order of perturbation. Suppose that for the
“known” system (designd by the Hamiltonian H

0

) the complete system of orthonormalized
solutions is known:

H
0

|n; 0i = E(0)
n |n; 0i,

⇢
hn; 0|n0

; 0i = dn,n0 ,

Ân |n; 0ihn; 0| = 1,

(1.84)

and the solutions of (1.83) are sought in the analytic form

En =
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Â
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k E(k)
n , |ni =
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k |n; ki, (1.85)

with the normalisations

hm; k|n; ki = dmn, 8m, n, and hn; k|n; `i = dk`, 8k, `. (1.86)

The treatment of the general situation with (partial) continuous and/or degenerate spec-
trum is only technically more complicated14, and so will not be discussed here. Introduce
the definition:

bPa

n := Â
m 6=n

|m; 0ihm; 0|
(E(0)

n �E(0)
m )

a

, so bPa

n bPb

n = bPa+b

n , (1.87)

so that the superscript in bPa

n really behaves as an exponent. With this notation, the standard
recursive formulae for the kth correction to the state and energy are:

|n; ki = bP1

n H0|n; k�1i �
k�1

Â
i=1

E(i)
n bP1

n |n; k � ii, k > 0, (1.88a)

E(k)
n = hn; 0

��H0��n; k�1i. (1.88b)

The first several iterations of these recursive formulae are:

E(1)
n = hn; 0|H0|n; 0i, (1.89a)

|n; 1i = bP1

n H0|n; 0i, (1.89b)

E(2)
n = hn; 0

��H0 bP1

n H0��n; 0i (1.89c)

|n; 2i = bP1

n(H0 � E(1)
n )|n; 1i,

= bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i,
=

⇥ bP1

n H0 bP1

n � bP2

n H0|n; 0ihn; 0|
⇤
H0|n; 0i, (1.89d)

E(3)
n = hn; 0

��H0��n; 2i
= hn; 0|H0⇥ bP1

n H0 bP1

n � bP2

n H0|n; 0ihn; 0|
⇤
H0|n; 0i

14 The basis of states |n; ki must be re-defined so as to eliminate the meaningless terms such as hm;k|H0 |n;ki
E(0)

m �E(0)
n

⇠ 1

0

for

m 6= n—which is always possible, by (at least a partial) diagonalization of the perturbation matrix hm; k|H 0|n; ki.
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is the “true” Hamiltonian, given as a sum of a “known” Hamiltonian H
0

and a “perturbation”
H0, and where l serves to consistently count the order of perturbation. Suppose that for the
“known” system (designd by the Hamiltonian H

0

) the complete system of orthonormalized
solutions is known:

H
0

|n; 0i = E(0)
n |n; 0i,

⇢
hn; 0|n0

; 0i = dn,n0 ,

Ân |n; 0ihn; 0| = 1,

(1.84)

and the solutions of (1.83) are sought in the analytic form

En =
•

Â
k=0

l

k E(k)
n , |ni =

•

Â
k=0

l

k |n; ki, (1.85)

with the normalisations

hm; k|n; ki = dmn, 8m, n, and hn; k|n; `i = dk`, 8k, `. (1.86)

The treatment of the general situation with (partial) continuous and/or degenerate spec-
trum is only technically more complicated14, and so will not be discussed here. Introduce
the definition:

bPa

n := Â
m 6=n

|m; 0ihm; 0|
(E(0)

n �E(0)
m )

a

, so bPa

n bPb

n = bPa+b

n , (1.87)

so that the superscript in bPa

n really behaves as an exponent. With this notation, the standard
recursive formulae for the kth correction to the state and energy are:

|n; ki = bP1

n H0|n; k�1i �
k�1

Â
i=1

E(i)
n bP1

n |n; k � ii, k > 0, (1.88a)

E(k)
n = hn; 0

��H0��n; k�1i. (1.88b)

The first several iterations of these recursive formulae are:

E(1)
n = hn; 0|H0|n; 0i, (1.89a)

|n; 1i = bP1

n H0|n; 0i, (1.89b)

E(2)
n = hn; 0

��H0 bP1

n H0��n; 0i (1.89c)

|n; 2i = bP1

n(H0 � E(1)
n )|n; 1i,

= bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i,
=

⇥ bP1

n H0 bP1

n � bP2

n H0|n; 0ihn; 0|
⇤
H0|n; 0i, (1.89d)

E(3)
n = hn; 0

��H0��n; 2i
= hn; 0|H0⇥ bP1

n H0 bP1

n � bP2

n H0|n; 0ihn; 0|
⇤
H0|n; 0i

14 The basis of states |n; ki must be re-defined so as to eliminate the meaningless terms such as hm;k|H0 |n;ki
E(0)

m �E(0)
n

⇠ 1

0

for

m 6= n—which is always possible, by (at least a partial) diagonalization of the perturbation matrix hm; k|H 0|n; ki.
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is the “true” Hamiltonian, given as a sum of a “known” Hamiltonian H
0

and a “perturbation”
H0, and where l serves to consistently count the order of perturbation. Suppose that for the
“known” system (designd by the Hamiltonian H

0

) the complete system of orthonormalized
solutions is known:

H
0

|n; 0i = E(0)
n |n; 0i,

⇢
hn; 0|n0

; 0i = dn,n0 ,

Ân |n; 0ihn; 0| = 1,

(1.84)

and the solutions of (1.83) are sought in the analytic form

En =
•

Â
k=0

l

k E(k)
n , |ni =

•

Â
k=0

l

k |n; ki, (1.85)

with the normalisations

hm; k|n; ki = dmn, 8m, n, and hn; k|n; `i = dk`, 8k, `. (1.86)

The treatment of the general situation with (partial) continuous and/or degenerate spec-
trum is only technically more complicated14, and so will not be discussed here. Introduce
the definition:

bPa

n := Â
m 6=n

|m; 0ihm; 0|
(E(0)

n �E(0)
m )

a

, so bPa

n bPb

n = bPa+b

n , (1.87)

so that the superscript in bPa

n really behaves as an exponent. With this notation, the standard
recursive formulae for the kth correction to the state and energy are:

|n; ki = bP1

n H0|n; k�1i �
k�1

Â
i=1

E(i)
n bP1

n |n; k � ii, k > 0, (1.88a)

E(k)
n = hn; 0

��H0��n; k�1i. (1.88b)

The first several iterations of these recursive formulae are:

E(1)
n = hn; 0|H0|n; 0i, (1.89a)

|n; 1i = bP1

n H0|n; 0i, (1.89b)

E(2)
n = hn; 0

��H0 bP1

n H0��n; 0i (1.89c)

|n; 2i = bP1

n(H0 � E(1)
n )|n; 1i,

= bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i,
=

⇥ bP1

n H0 bP1

n � bP2

n H0|n; 0ihn; 0|
⇤
H0|n; 0i, (1.89d)

E(3)
n = hn; 0

��H0��n; 2i
= hn; 0|H0⇥ bP1

n H0 bP1

n � bP2

n H0|n; 0ihn; 0|
⇤
H0|n; 0i

14 The basis of states |n; ki must be re-defined so as to eliminate the meaningless terms such as hm;k|H0 |n;ki
E(0)

m �E(0)
n

⇠ 1

0

for

m 6= n—which is always possible, by (at least a partial) diagonalization of the perturbation matrix hm; k|H 0|n; ki.
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is the “true” Hamiltonian, given as a sum of a “known” Hamiltonian H
0

and a “perturbation”
H0, and where l serves to consistently count the order of perturbation. Suppose that for the
“known” system (designd by the Hamiltonian H

0

) the complete system of orthonormalized
solutions is known:

H
0

|n; 0i = E(0)
n |n; 0i,

⇢
hn; 0|n0

; 0i = dn,n0 ,

Ân |n; 0ihn; 0| = 1,

(1.84)

and the solutions of (1.83) are sought in the analytic form

En =
•

Â
k=0

l

k E(k)
n , |ni =

•
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k=0

l

k |n; ki, (1.85)

with the normalisations

hm; k|n; ki = dmn, 8m, n, and hn; k|n; `i = dk`, 8k, `. (1.86)

The treatment of the general situation with (partial) continuous and/or degenerate spec-
trum is only technically more complicated14, and so will not be discussed here. Introduce
the definition:

bPa

n := Â
m 6=n

|m; 0ihm; 0|
(E(0)

n �E(0)
m )

a

, so bPa

n bPb

n = bPa+b

n , (1.87)

so that the superscript in bPa

n really behaves as an exponent. With this notation, the standard
recursive formulae for the kth correction to the state and energy are:

|n; ki = bP1

n H0|n; k�1i �
k�1

Â
i=1

E(i)
n bP1

n |n; k � ii, k > 0, (1.88a)

E(k)
n = hn; 0

��H0��n; k�1i. (1.88b)

The first several iterations of these recursive formulae are:

E(1)
n = hn; 0|H0|n; 0i, (1.89a)

|n; 1i = bP1

n H0|n; 0i, (1.89b)

E(2)
n = hn; 0

��H0 bP1

n H0��n; 0i (1.89c)

|n; 2i = bP1

n(H0 � E(1)
n )|n; 1i,

= bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i,
=

⇥ bP1

n H0 bP1

n � bP2

n H0|n; 0ihn; 0|
⇤
H0|n; 0i, (1.89d)

E(3)
n = hn; 0

��H0��n; 2i
= hn; 0|H0⇥ bP1

n H0 bP1

n � bP2

n H0|n; 0ihn; 0|
⇤
H0|n; 0i

14 The basis of states |n; ki must be re-defined so as to eliminate the meaningless terms such as hm;k|H0 |n;ki
E(0)

m �E(0)
n

⇠ 1

0

for

m 6= n—which is always possible, by (at least a partial) diagonalization of the perturbation matrix hm; k|H 0|n; ki.
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is the “true” Hamiltonian, given as a sum of a “known” Hamiltonian H
0

and a “perturbation”
H0, and where l serves to consistently count the order of perturbation. Suppose that for the
“known” system (designd by the Hamiltonian H

0

) the complete system of orthonormalized
solutions is known:

H
0

|n; 0i = E(0)
n |n; 0i,

⇢
hn; 0|n0

; 0i = dn,n0 ,

Ân |n; 0ihn; 0| = 1,

(1.84)

and the solutions of (1.83) are sought in the analytic form

En =
•

Â
k=0
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k E(k)
n , |ni =

•
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k=0

l

k |n; ki, (1.85)

with the normalisations

hm; k|n; ki = dmn, 8m, n, and hn; k|n; `i = dk`, 8k, `. (1.86)

The treatment of the general situation with (partial) continuous and/or degenerate spec-
trum is only technically more complicated14, and so will not be discussed here. Introduce
the definition:

bPa

n := Â
m 6=n

|m; 0ihm; 0|
(E(0)

n �E(0)
m )

a

, so bPa

n bPb

n = bPa+b

n , (1.87)

so that the superscript in bPa

n really behaves as an exponent. With this notation, the standard
recursive formulae for the kth correction to the state and energy are:

|n; ki = bP1

n H0|n; k�1i �
k�1

Â
i=1

E(i)
n bP1

n |n; k � ii, k > 0, (1.88a)

E(k)
n = hn; 0
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The first several iterations of these recursive formulae are:
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n = hn; 0|H0|n; 0i, (1.89a)

|n; 1i = bP1

n H0|n; 0i, (1.89b)

E(2)
n = hn; 0

��H0 bP1

n H0��n; 0i (1.89c)

|n; 2i = bP1

n(H0 � E(1)
n )|n; 1i,

= bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i,
=

⇥ bP1

n H0 bP1

n � bP2

n H0|n; 0ihn; 0|
⇤
H0|n; 0i, (1.89d)

E(3)
n = hn; 0

��H0��n; 2i
= hn; 0|H0⇥ bP1

n H0 bP1

n � bP2

n H0|n; 0ihn; 0|
⇤
H0|n; 0i

14 The basis of states |n; ki must be re-defined so as to eliminate the meaningless terms such as hm;k|H0 |n;ki
E(0)

m �E(0)
n

⇠ 1

0

for

m 6= n—which is always possible, by (at least a partial) diagonalization of the perturbation matrix hm; k|H 0|n; ki.
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Quantum Mechanics: Warm-Up Calisthenics

Perturbation Picturebook
Soon enough, the complications grow:

…so the energy correction also requires subtractions…

…and the subtractions multiply combinatorially.
!e combinatorial growth gives a clue:
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is the “true” Hamiltonian, given as a sum of a “known” Hamiltonian H
0

and a “perturbation”
H0, and where l serves to consistently count the order of perturbation. Suppose that for the
“known” system (designd by the Hamiltonian H

0

) the complete system of orthonormalized
solutions is known:

H
0

|n; 0i = E(0)
n |n; 0i,

⇢
hn; 0|n0

; 0i = dn,n0 ,

Ân |n; 0ihn; 0| = 1,

(1.84)

and the solutions of (1.83) are sought in the analytic form

En =
•

Â
k=0

l

k E(k)
n , |ni =

•

Â
k=0

l

k |n; ki, (1.85)

with the normalisations

hm; k|n; ki = dmn, 8m, n, and hn; k|n; `i = dk`, 8k, `. (1.86)

The treatment of the general situation with (partial) continuous and/or degenerate spec-
trum is only technically more complicated14, and so will not be discussed here. Introduce
the definition:

bPa

n := Â
m 6=n

|m; 0ihm; 0|
(E(0)

n �E(0)
m )

a

, so bPa

n bPb

n = bPa+b

n , (1.87)

so that the superscript in bPa

n really behaves as an exponent. With this notation, the standard
recursive formulae for the kth correction to the state and energy are:

|n; ki = bP1

n H0|n; k�1i �
k�1

Â
i=1

E(i)
n bP1

n |n; k � ii, k > 0, (1.88a)

E(k)
n = hn; 0

��H0��n; k�1i. (1.88b)

The first several iterations of these recursive formulae are:

E(1)
n = hn; 0|H0|n; 0i, (1.89a)

|n; 1i = bP1

n H0|n; 0i, (1.89b)

E(2)
n = hn; 0

��H0 bP1

n H0��n; 0i (1.89c)

|n; 2i = bP1

n(H0 � E(1)
n )|n; 1i,

= bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i,
=

⇥ bP1

n H0 bP1

n � bP2

n H0|n; 0ihn; 0|
⇤
H0|n; 0i, (1.89d)

E(3)
n = hn; 0

��H0��n; 2i
= hn; 0|H0⇥ bP1

n H0 bP1

n � bP2

n H0|n; 0ihn; 0|
⇤
H0|n; 0i

14 The basis of states |n; ki must be re-defined so as to eliminate the meaningless terms such as hm;k|H0 |n;ki
E(0)

m �E(0)
n

⇠ 1

0

for

m 6= n—which is always possible, by (at least a partial) diagonalization of the perturbation matrix hm; k|H 0|n; ki.
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üb

sc
h,

th
ub

sc
h@

ho
w

ar
d.

ed
u,

w
ith

an
y

co
m

m
en

ts
/

su
gg

es
tio

ns
/

co
rr

ec
tio

ns
;t

ha
nk

yo
u!

—
D

R
A

FT

1.3. Feynman’s Diagrams and Calculus 105

= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)

|n; 3i = bP1

n
�
(H0 � E(1)

n )|n; 2i � E(2)
n |n; 1i

�
,

= bP1

n H0|n; 2i � bP1

n |n; 2ihn; 0

��H0��n; 0i � bP1

n |n; 1ihn; 0

��H0 bP1

n H0��n; 0i,
= bP1

n H0 bP1

n H0 bP1

n H0|n; 0i � bP1

n H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
� bP2

n H0 bP1

n H0|n; 0ihn; 0|H0|n; 0i � bP2

n H0|n; 0ihn; 0

��H0 bP1

n H0��n; 0i
� bP3

n H0|n; 0ihn; 0|H0|n; 0i2

, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3i = bP1

n H0 bP1

n H0 bP1

n H0|n; 0i
� bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i

� bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i (1.90)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:

bPa

n |n; 0i = Â
m 6=n

|m; 0ihm; 0|
(E(0)

n � E(0)
m )a

|n; 0i = Â
m 6=n

1

(E(0)
n � E(0)

m )a

|m; 0i hm; 0|n; 0i| {z }
=0 (* m 6=n)

. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)

|n; 3i = bP1

n
�
(H0 � E(1)

n )|n; 2i � E(2)
n |n; 1i

�
,

= bP1

n H0|n; 2i � bP1

n |n; 2ihn; 0

��H0��n; 0i � bP1

n |n; 1ihn; 0

��H0 bP1

n H0��n; 0i,
= bP1

n H0 bP1

n H0 bP1

n H0|n; 0i � bP1

n H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
� bP2

n H0 bP1

n H0|n; 0ihn; 0|H0|n; 0i � bP2

n H0|n; 0ihn; 0

��H0 bP1

n H0��n; 0i
� bP3

n H0|n; 0ihn; 0|H0|n; 0i2

, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3i = bP1

n H0 bP1

n H0 bP1

n H0|n; 0i
� bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i

� bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i (1.90)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:

bPa

n |n; 0i = Â
m 6=n

|m; 0ihm; 0|
(E(0)

n � E(0)
m )a

|n; 0i = Â
m 6=n

1

(E(0)
n � E(0)

m )a

|m; 0i hm; 0|n; 0i| {z }
=0 (* m 6=n)

. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)

|n; 3i = bP1

n
�
(H0 � E(1)

n )|n; 2i � E(2)
n |n; 1i

�
,

= bP1

n H0|n; 2i � bP1

n |n; 2ihn; 0

��H0��n; 0i � bP1

n |n; 1ihn; 0

��H0 bP1

n H0��n; 0i,
= bP1

n H0 bP1

n H0 bP1

n H0|n; 0i � bP1

n H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
� bP2

n H0 bP1

n H0|n; 0ihn; 0|H0|n; 0i � bP2

n H0|n; 0ihn; 0

��H0 bP1

n H0��n; 0i
� bP3

n H0|n; 0ihn; 0|H0|n; 0i2

, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3i = bP1

n H0 bP1

n H0 bP1

n H0|n; 0i
� bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i

� bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i (1.90)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:

bPa

n |n; 0i = Â
m 6=n

|m; 0ihm; 0|
(E(0)

n � E(0)
m )a

|n; 0i = Â
m 6=n

1

(E(0)
n � E(0)

m )a

|m; 0i hm; 0|n; 0i| {z }
=0 (* m 6=n)

. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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Quantum Mechanics: Warm-Up Calisthenics

Perturbation Picturebook
Before we introduce any diagrams, however, consider:
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= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)

|n; 3i = bP1

n
�
(H0 � E(1)

n )|n; 2i � E(2)
n |n; 1i

�
,

= bP1

n H0|n; 2i � bP1

n |n; 2ihn; 0

��H0��n; 0i � bP1

n |n; 1ihn; 0

��H0 bP1

n H0��n; 0i,
= bP1

n H0 bP1

n H0 bP1

n H0|n; 0i � bP1

n H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
� bP2

n H0 bP1

n H0|n; 0ihn; 0|H0|n; 0i � bP2

n H0|n; 0ihn; 0

��H0 bP1

n H0��n; 0i
� bP3

n H0|n; 0ihn; 0|H0|n; 0i2

, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3i = bP1

n H0 bP1

n H0 bP1

n H0|n; 0i
� bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i

� bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i (1.90)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:

bPa

n |n; 0i = Â
m 6=n

|m; 0ihm; 0|
(E(0)

n � E(0)
m )a

|n; 0i = Â
m 6=n

1

(E(0)
n � E(0)

m )a

|m; 0i hm; 0|n; 0i| {z }
=0 (* m 6=n)

. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)
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, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:
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where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,
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n H0 bP1
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*

(1.91a)bP1
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*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
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owing to the fact that the normalization (1.86) guarantees:
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Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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= hn; 0|H0 bP1
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and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:
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where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,
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The right-most “excisions” in (1.90) vanish:
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owing to the fact that the normalization (1.86) guarantees:
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Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
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= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)
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, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:
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where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1
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n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:
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n [H
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n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1
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n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:
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m 6=n

|m; 0ihm; 0|
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m 6=n

1

(E(0)
n � E(0)

m )a
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. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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= hn; 0|H0 bP1
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, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:
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where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1
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0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1
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n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1
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n H0 bP1

n [H
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n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)
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n H0]|n; 0i = bP1
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n |n; 0i| {z }
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owing to the fact that the normalization (1.86) guarantees:
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. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:
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where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1
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n H0 bP1

n H0|n; 0i = bP1

n bP1
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n H0|n; 0i hn; 0|H0|n; 0i,•
*
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n bP1
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*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1
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n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1
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n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)
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n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:
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. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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üb

sc
h,

th
ub

sc
h@

ho
w

ar
d.

ed
u,

w
ith

an
y

co
m

m
en

ts
/

su
gg

es
tio

ns
/

co
rr

ec
tio

ns
;t

ha
nk

yo
u!

—
D

R
A

FT

1.3. Feynman’s Diagrams and Calculus 105
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and so on. The particular ordering in these expressions uncovers a simple algorithm for
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n H0 bP1

n H0 bP1

n H0|n; 0i
� bP1
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0] bP1

n H0 bP1
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n [H
0 bP1

n H0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i (1.90)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:

bPa

n |n; 0i = Â
m 6=n

|m; 0ihm; 0|
(E(0)

n � E(0)
m )a

|n; 0i = Â
m 6=n

1

(E(0)
n � E(0)

m )a

|m; 0i hm; 0|n; 0i| {z }
=0 (* m 6=n)

. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)

|n; 3i = bP1

n
�
(H0 � E(1)

n )|n; 2i � E(2)
n |n; 1i

�
,

= bP1

n H0|n; 2i � bP1

n |n; 2ihn; 0

��H0��n; 0i � bP1
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��H0 bP1
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��H0 bP1
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� bP3

n H0|n; 0ihn; 0|H0|n; 0i2

, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3i = bP1

n H0 bP1

n H0 bP1

n H0|n; 0i
� bP1

n [H
0] bP1

n H0 bP1
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� bP1
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n [H
0] bP1
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0 bP1

n H0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i (1.90)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1
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0 bP1

n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:

bPa

n |n; 0i = Â
m 6=n

|m; 0ihm; 0|
(E(0)

n � E(0)
m )a

|n; 0i = Â
m 6=n

1

(E(0)
n � E(0)
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|m; 0i hm; 0|n; 0i| {z }
=0 (* m 6=n)

. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)

|n; 3i = bP1

n
�
(H0 � E(1)

n )|n; 2i � E(2)
n |n; 1i

�
,

= bP1

n H0|n; 2i � bP1

n |n; 2ihn; 0

��H0��n; 0i � bP1

n |n; 1ihn; 0

��H0 bP1

n H0��n; 0i,
= bP1

n H0 bP1

n H0 bP1

n H0|n; 0i � bP1

n H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
� bP2

n H0 bP1

n H0|n; 0ihn; 0|H0|n; 0i � bP2

n H0|n; 0ihn; 0

��H0 bP1

n H0��n; 0i
� bP3

n H0|n; 0ihn; 0|H0|n; 0i2

, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3i = bP1

n H0 bP1

n H0 bP1

n H0|n; 0i
� bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i

� bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i (1.90)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:

bPa

n |n; 0i = Â
m 6=n

|m; 0ihm; 0|
(E(0)

n � E(0)
m )a

|n; 0i = Â
m 6=n

1

(E(0)
n � E(0)

m )a

|m; 0i hm; 0|n; 0i| {z }
=0 (* m 6=n)

. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)

|n; 3i = bP1

n
�
(H0 � E(1)

n )|n; 2i � E(2)
n |n; 1i

�
,

= bP1

n H0|n; 2i � bP1

n |n; 2ihn; 0

��H0��n; 0i � bP1

n |n; 1ihn; 0

��H0 bP1

n H0��n; 0i,
= bP1

n H0 bP1

n H0 bP1

n H0|n; 0i � bP1

n H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
� bP2

n H0 bP1

n H0|n; 0ihn; 0|H0|n; 0i � bP2

n H0|n; 0ihn; 0

��H0 bP1

n H0��n; 0i
� bP3

n H0|n; 0ihn; 0|H0|n; 0i2

, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3i = bP1

n H0 bP1

n H0 bP1

n H0|n; 0i
� bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0] bP1

n H0|n; 0i
� bP1

n [H
0] bP1

n [H
0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i

� bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i (1.90)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:

bPa

n |n; 0i = Â
m 6=n

|m; 0ihm; 0|
(E(0)

n � E(0)
m )a

|n; 0i = Â
m 6=n

1

(E(0)
n � E(0)

m )a

|m; 0i hm; 0|n; 0i| {z }
=0 (* m 6=n)

. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)

|n; 3i = bP1

n
�
(H0 � E(1)

n )|n; 2i � E(2)
n |n; 1i

�
,

= bP1

n H0|n; 2i � bP1

n |n; 2ihn; 0

��H0��n; 0i � bP1

n |n; 1ihn; 0

��H0 bP1

n H0��n; 0i,
= bP1

n H0 bP1
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n H0|n; 0ihn; 0

��H0 bP1

n H0��n; 0i
� bP3

n H0|n; 0ihn; 0|H0|n; 0i2

, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3i = bP1

n H0 bP1

n H0 bP1

n H0|n; 0i
� bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0] bP1

n H0|n; 0i
� bP1

n [H
0] bP1

n [H
0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i

� bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i (1.90)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:

bPa

n |n; 0i = Â
m 6=n

|m; 0ihm; 0|
(E(0)

n � E(0)
m )a

|n; 0i = Â
m 6=n

1

(E(0)
n � E(0)

m )a

|m; 0i hm; 0|n; 0i| {z }
=0 (* m 6=n)

. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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üb

sc
h,

th
ub

sc
h@

ho
w

ar
d.

ed
u,

w
ith

an
y

co
m

m
en

ts
/

su
gg

es
tio

ns
/

co
rr

ec
tio

ns
;t

ha
nk

yo
u!

—
D

R
A

FT

1.3. Feynman’s Diagrams and Calculus 105

= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)

|n; 3i = bP1

n
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(H0 � E(1)

n )|n; 2i � E(2)
n |n; 1i
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,

= bP1
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� bP3

n H0|n; 0ihn; 0|H0|n; 0i2

, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3i = bP1

n H0 bP1

n H0 bP1

n H0|n; 0i
� bP1

n [H
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n H0|n; 0i
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n H0|n; 0i
� bP1
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� bP1
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n [H
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n H0]|n; 0i (1.90)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1
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n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:

bPa

n |n; 0i = Â
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|m; 0ihm; 0|
(E(0)
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m )a
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(E(0)
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|m; 0i hm; 0|n; 0i| {z }
=0 (* m 6=n)

. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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üb

sc
h,

th
ub

sc
h@

ho
w

ar
d.

ed
u,

w
ith

an
y

co
m

m
en

ts
/

su
gg

es
tio

ns
/

co
rr

ec
tio

ns
;t

ha
nk

yo
u!

—
D

R
A

FT

{0 ?

Tuesday, November 1, 11



Quantum Mechanics: Warm-Up Calisthenics

Perturbation Picturebook
Before we introduce any diagrams, however, consider:

…and so on.  Now, you try for the 3rd one…
9

}!e subtractions 
may in fact be 
generated from 
the original 
expression!
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= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)

|n; 3i = bP1

n
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,
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n H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
� bP2

n H0 bP1

n H0|n; 0ihn; 0|H0|n; 0i � bP2

n H0|n; 0ihn; 0

��H0 bP1

n H0��n; 0i
� bP3
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, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3i = bP1
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n H0|n; 0i
� bP1

n H0 bP1

n [H
0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i

� bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i
� bP1

n H0 bP1
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n H0]|n; 0i (1.90)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1
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n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:

bPa

n |n; 0i = Â
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(E(0)
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(E(0)
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|m; 0i hm; 0|n; 0i| {z }
=0 (* m 6=n)

. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)

|n; 3i = bP1
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n H0|n; 0ihn; 0|H0|n; 0i2

, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3i = bP1
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n H0 bP1
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n H0] bP1
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� bP1

n H0 bP1
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0 bP1

n H0]|n; 0i (1.90)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1
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n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)
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n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:
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n |n; 0i = Â
m 6=n

|m; 0ihm; 0|
(E(0)

n � E(0)
m )a

|n; 0i = Â
m 6=n

1

(E(0)
n � E(0)
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|m; 0i hm; 0|n; 0i| {z }
=0 (* m 6=n)

. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)

|n; 3i = bP1

n
�
(H0 � E(1)

n )|n; 2i � E(2)
n |n; 1i

�
,

= bP1

n H0|n; 2i � bP1

n |n; 2ihn; 0

��H0��n; 0i � bP1

n |n; 1ihn; 0

��H0 bP1

n H0��n; 0i,
= bP1

n H0 bP1

n H0 bP1

n H0|n; 0i � bP1
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� bP2
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n H0|n; 0ihn; 0

��H0 bP1

n H0��n; 0i
� bP3

n H0|n; 0ihn; 0|H0|n; 0i2

, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3i = bP1

n H0 bP1

n H0 bP1

n H0|n; 0i
� bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i
� bP1
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n [H
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n [H
0] bP1

n H0|n; 0i
� bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i (1.90)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:

bPa

n |n; 0i = Â
m 6=n

|m; 0ihm; 0|
(E(0)

n � E(0)
m )a

|n; 0i = Â
m 6=n

1

(E(0)
n � E(0)

m )a

|m; 0i hm; 0|n; 0i| {z }
=0 (* m 6=n)

. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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Perturbation Picturebook
Recall:

Now that we have the computations, depict them:
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= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)

|n; 3i = bP1

n
�
(H0 � E(1)

n )|n; 2i � E(2)
n |n; 1i

�
,

= bP1

n H0|n; 2i � bP1

n |n; 2ihn; 0

��H0��n; 0i � bP1
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��H0 bP1

n H0��n; 0i,
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� bP3

n H0|n; 0ihn; 0|H0|n; 0i2

, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3i = bP1

n H0 bP1

n H0 bP1

n H0|n; 0i
� bP1

n [H
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0 bP1

n H0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i (1.90)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1

n [H
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n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:
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. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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= hn; 0|H0 bP1
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, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:
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where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
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n H0 bP1

n H0|n; 0i = bP1

n bP1
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*

(1.91a)bP1
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n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:
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0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:

bPa

n |n; 0i = Â
m 6=n

|m; 0ihm; 0|
(E(0)

n � E(0)
m )a

|n; 0i = Â
m 6=n

1

(E(0)
n � E(0)

m )a

|m; 0i hm; 0|n; 0i| {z }
=0 (* m 6=n)

. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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= hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i, (1.89e)

|n; 3i = bP1

n
�
(H0 � E(1)

n )|n; 2i � E(2)
n |n; 1i

�
,

= bP1

n H0|n; 2i � bP1

n |n; 2ihn; 0

��H0��n; 0i � bP1

n |n; 1ihn; 0

��H0 bP1

n H0��n; 0i,
= bP1

n H0 bP1

n H0 bP1

n H0|n; 0i � bP1

n H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
� bP2

n H0 bP1

n H0|n; 0ihn; 0|H0|n; 0i � bP2

n H0|n; 0ihn; 0

��H0 bP1

n H0��n; 0i
� bP3

n H0|n; 0ihn; 0|H0|n; 0i2

, (1.89f)

and so on. The particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3i = bP1

n H0 bP1

n H0 bP1

n H0|n; 0i
� bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i

� bP1

n [H
0] bP1

n [H
0] bP1

n H0|n; 0i
� bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i
� bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i (1.90)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For
example,

bP1

n [H
0] bP1

n H0 bP1

n H0|n; 0i = bP1

n bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

(1.91a)bP1

n [H
0 bP1

n H0] bP1

n H0|n; 0i = bP1

n bP1

n H0|n; 0i hn; 0|H0 bP1

n H0|n; 0i, etc.•
*

(1.91b)

The right-most “excisions” in (1.90) vanish:

bP1

n H0 bP1

n H0 bP1

n [H
0]|n; 0i = bP1

n H0 bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0|n; 0i, (1.92a)

bP1

n H0 bP1

n [H
0 bP1

n H0]|n; 0i = bP1

n H0 bP1

n |n; 0i| {z }
=0

hn; 0|H0 bP1

n H0|n; 0i, (1.92b)

owing to the fact that the normalization (1.86) guarantees:

bPa

n |n; 0i = Â
m 6=n

|m; 0ihm; 0|
(E(0)

n � E(0)
m )a

|n; 0i = Â
m 6=n

1

(E(0)
n � E(0)

m )a

|m; 0i hm; 0|n; 0i| {z }
=0 (* m 6=n)

. (1.93)

Since only factors of the form (H0 bPa

n · · · bPb

n H0) have a non-vanishing expectation
value in the original, “known” state |n; 0i, only such factors may be “excised.” The rela-
tions (1.88) may then be written as:

|n; ki = (bP1

n H0)k|n; 0i � all “excisions”, k > 0, (1.94a)

E(k)
n = hn; 0

��H0(bP1

n H0)k�1

��n; 0i � all “excisions”. k > 1, (1.94b)
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Using this “excising” notation, e.g., the expression (1.89e) becomes:

E(3)
n = hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP1

n [H
0] bP1

n H0|n; 0i. (1.95)

Digression 1.9: It is not hard to see that the expression (1.95) has no other non-vanishing “exci-
sions.” Take, for instance, the candidate

hn; 0|[H0] bP1

n H0 bP1

n H0|n; 0i := hn; 0| bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

= hn; 0| bP1

n| {z }
=0

H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i = 0. (1.96a)

The results (1.88) may be depicted graphically, drawing:

(in)
= |n; 0i,

(out)
= hn; 0|,

(propagator)
= bP1

n,

(2

nd order propagator)
= bP2

n,

(interaction)
= H0

. (1.97)

Then we have15:

hn; 0|H0|n; 0i (1.89a)7�! E(1)
n =

n n
, (1.98a)

bP1

n H0|n; 0i (1.89b)7�! |n; 1i =
n m

, (1.98b)

hn; 0

��H0 bP1

n H0��n; 0i (1.89c)7�! E(2)
n =

n m n
, (1.98c)

bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i
(1.89d)7�! |n; 2i =

n m m
� n m

n n

, (1.98d)

hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
(1.89e)7�! E(3)

n =
n m m n

� n m n

n n

, (1.98e)

and so on, where the subtractions are shown as stacks of diagrams, and represent a product
of the corresponding factors. The “excising” algorithm (1.89d) may be graphically depicted
also as:

=
(1.99)

Thus, the whole stationary perturbation theory in non-relativistic quantum mechanics exem-
plified by (1.98)–(1.98e) may be written unambiguously and precisely using the graphical
symbols (1.97). Similarly, the whole perturbation theory in field theory is faithfully written
in terms of Feynman diagrams.

1.3.3 Decays, Scattering and Calculations
In elementary particle physics, one studies decays, collisions/scatterings, and bound states
of these elementary particles. The analysis of bound states uses very successfully the non-
relativistic quantum mechanics in Schrödinger’s picture, with perturbatively added rela-
tivistic corrections [+ section 2.1]. On the other hand, decays and collisions/scatterings
15 In expressions such as hn; 0|H0|n; 0i, “in” is at the right, “out” at the left; the graphical depiction is mirrored.
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Using this “excising” notation, e.g., the expression (1.89e) becomes:

E(3)
n = hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP1

n [H
0] bP1

n H0|n; 0i. (1.95)

Digression 1.9: It is not hard to see that the expression (1.95) has no other non-vanishing “exci-
sions.” Take, for instance, the candidate

hn; 0|[H0] bP1

n H0 bP1

n H0|n; 0i := hn; 0| bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

= hn; 0| bP1

n| {z }
=0

H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i = 0. (1.96a)

The results (1.88) may be depicted graphically, drawing:

(in)
= |n; 0i,

(out)
= hn; 0|,

(propagator)
= bP1

n,

(2

nd order propagator)
= bP2

n,

(interaction)
= H0

. (1.97)

Then we have15:

hn; 0|H0|n; 0i (1.89a)7�! E(1)
n =

n n
, (1.98a)

bP1

n H0|n; 0i (1.89b)7�! |n; 1i =
n m

, (1.98b)

hn; 0

��H0 bP1

n H0��n; 0i (1.89c)7�! E(2)
n =

n m n
, (1.98c)

bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i
(1.89d)7�! |n; 2i =

n m m
� n m

n n

, (1.98d)

hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
(1.89e)7�! E(3)

n =
n m m n

� n m n

n n

, (1.98e)

and so on, where the subtractions are shown as stacks of diagrams, and represent a product
of the corresponding factors. The “excising” algorithm (1.89d) may be graphically depicted
also as:

=
(1.99)

Thus, the whole stationary perturbation theory in non-relativistic quantum mechanics exem-
plified by (1.98)–(1.98e) may be written unambiguously and precisely using the graphical
symbols (1.97). Similarly, the whole perturbation theory in field theory is faithfully written
in terms of Feynman diagrams.

1.3.3 Decays, Scattering and Calculations
In elementary particle physics, one studies decays, collisions/scatterings, and bound states
of these elementary particles. The analysis of bound states uses very successfully the non-
relativistic quantum mechanics in Schrödinger’s picture, with perturbatively added rela-
tivistic corrections [+ section 2.1]. On the other hand, decays and collisions/scatterings
15 In expressions such as hn; 0|H0|n; 0i, “in” is at the right, “out” at the left; the graphical depiction is mirrored.
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Using this “excising” notation, e.g., the expression (1.89e) becomes:

E(3)
n = hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP1

n [H
0] bP1

n H0|n; 0i. (1.95)

Digression 1.9: It is not hard to see that the expression (1.95) has no other non-vanishing “exci-
sions.” Take, for instance, the candidate

hn; 0|[H0] bP1

n H0 bP1

n H0|n; 0i := hn; 0| bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

= hn; 0| bP1

n| {z }
=0

H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i = 0. (1.96a)

The results (1.88) may be depicted graphically, drawing:

(in)
= |n; 0i,

(out)
= hn; 0|,

(propagator)
= bP1

n,

(2

nd order propagator)
= bP2

n,

(interaction)
= H0

. (1.97)

Then we have15:

hn; 0|H0|n; 0i (1.89a)7�! E(1)
n =

n n
, (1.98a)

bP1

n H0|n; 0i (1.89b)7�! |n; 1i =
n m

, (1.98b)

hn; 0

��H0 bP1

n H0��n; 0i (1.89c)7�! E(2)
n =

n m n
, (1.98c)

bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i
(1.89d)7�! |n; 2i =

n m m
� n m

n n

, (1.98d)

hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
(1.89e)7�! E(3)

n =
n m m n

� n m n

n n

, (1.98e)

and so on, where the subtractions are shown as stacks of diagrams, and represent a product
of the corresponding factors. The “excising” algorithm (1.89d) may be graphically depicted
also as:

=
(1.99)

Thus, the whole stationary perturbation theory in non-relativistic quantum mechanics exem-
plified by (1.98)–(1.98e) may be written unambiguously and precisely using the graphical
symbols (1.97). Similarly, the whole perturbation theory in field theory is faithfully written
in terms of Feynman diagrams.

1.3.3 Decays, Scattering and Calculations
In elementary particle physics, one studies decays, collisions/scatterings, and bound states
of these elementary particles. The analysis of bound states uses very successfully the non-
relativistic quantum mechanics in Schrödinger’s picture, with perturbatively added rela-
tivistic corrections [+ section 2.1]. On the other hand, decays and collisions/scatterings
15 In expressions such as hn; 0|H0|n; 0i, “in” is at the right, “out” at the left; the graphical depiction is mirrored.
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Using this “excising” notation, e.g., the expression (1.89e) becomes:

E(3)
n = hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP1

n [H
0] bP1

n H0|n; 0i. (1.95)

Digression 1.9: It is not hard to see that the expression (1.95) has no other non-vanishing “exci-
sions.” Take, for instance, the candidate

hn; 0|[H0] bP1

n H0 bP1

n H0|n; 0i := hn; 0| bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

= hn; 0| bP1

n| {z }
=0

H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i = 0. (1.96a)

The results (1.88) may be depicted graphically, drawing:

(in)
= |n; 0i,

(out)
= hn; 0|,

(propagator)
= bP1

n,

(2

nd order propagator)
= bP2

n,

(interaction)
= H0

. (1.97)

Then we have15:

hn; 0|H0|n; 0i (1.89a)7�! E(1)
n =

n n
, (1.98a)

bP1

n H0|n; 0i (1.89b)7�! |n; 1i =
n m

, (1.98b)

hn; 0

��H0 bP1

n H0��n; 0i (1.89c)7�! E(2)
n =

n m n
, (1.98c)

bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i
(1.89d)7�! |n; 2i =

n m m
� n m

n n

, (1.98d)

hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
(1.89e)7�! E(3)

n =
n m m n

� n m n

n n

, (1.98e)

and so on, where the subtractions are shown as stacks of diagrams, and represent a product
of the corresponding factors. The “excising” algorithm (1.89d) may be graphically depicted
also as:

=
(1.99)

Thus, the whole stationary perturbation theory in non-relativistic quantum mechanics exem-
plified by (1.98)–(1.98e) may be written unambiguously and precisely using the graphical
symbols (1.97). Similarly, the whole perturbation theory in field theory is faithfully written
in terms of Feynman diagrams.

1.3.3 Decays, Scattering and Calculations
In elementary particle physics, one studies decays, collisions/scatterings, and bound states
of these elementary particles. The analysis of bound states uses very successfully the non-
relativistic quantum mechanics in Schrödinger’s picture, with perturbatively added rela-
tivistic corrections [+ section 2.1]. On the other hand, decays and collisions/scatterings
15 In expressions such as hn; 0|H0|n; 0i, “in” is at the right, “out” at the left; the graphical depiction is mirrored.
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Using this “excising” notation, e.g., the expression (1.89e) becomes:

E(3)
n = hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP1

n [H
0] bP1

n H0|n; 0i. (1.95)

Digression 1.9: It is not hard to see that the expression (1.95) has no other non-vanishing “exci-
sions.” Take, for instance, the candidate

hn; 0|[H0] bP1

n H0 bP1

n H0|n; 0i := hn; 0| bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

= hn; 0| bP1

n| {z }
=0

H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i = 0. (1.96a)

The results (1.88) may be depicted graphically, drawing:

(in)
= |n; 0i,

(out)
= hn; 0|,

(propagator)
= bP1

n,

(2

nd order propagator)
= bP2

n,

(interaction)
= H0

. (1.97)

Then we have15:

hn; 0|H0|n; 0i (1.89a)7�! E(1)
n =

n n
, (1.98a)

bP1

n H0|n; 0i (1.89b)7�! |n; 1i =
n m

, (1.98b)

hn; 0

��H0 bP1

n H0��n; 0i (1.89c)7�! E(2)
n =

n m n
, (1.98c)

bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i
(1.89d)7�! |n; 2i =

n m m
� n m

n n

, (1.98d)

hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
(1.89e)7�! E(3)

n =
n m m n

� n m n

n n

, (1.98e)

and so on, where the subtractions are shown as stacks of diagrams, and represent a product
of the corresponding factors. The “excising” algorithm (1.89d) may be graphically depicted
also as:

=
(1.99)

Thus, the whole stationary perturbation theory in non-relativistic quantum mechanics exem-
plified by (1.98)–(1.98e) may be written unambiguously and precisely using the graphical
symbols (1.97). Similarly, the whole perturbation theory in field theory is faithfully written
in terms of Feynman diagrams.

1.3.3 Decays, Scattering and Calculations
In elementary particle physics, one studies decays, collisions/scatterings, and bound states
of these elementary particles. The analysis of bound states uses very successfully the non-
relativistic quantum mechanics in Schrödinger’s picture, with perturbatively added rela-
tivistic corrections [+ section 2.1]. On the other hand, decays and collisions/scatterings
15 In expressions such as hn; 0|H0|n; 0i, “in” is at the right, “out” at the left; the graphical depiction is mirrored.
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Using this “excising” notation, e.g., the expression (1.89e) becomes:

E(3)
n = hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP1

n [H
0] bP1

n H0|n; 0i. (1.95)

Digression 1.9: It is not hard to see that the expression (1.95) has no other non-vanishing “exci-
sions.” Take, for instance, the candidate

hn; 0|[H0] bP1

n H0 bP1

n H0|n; 0i := hn; 0| bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

= hn; 0| bP1

n| {z }
=0

H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i = 0. (1.96a)

The results (1.88) may be depicted graphically, drawing:

(in)
= |n; 0i,

(out)
= hn; 0|,

(propagator)
= bP1

n,

(2

nd order propagator)
= bP2

n,

(interaction)
= H0

. (1.97)

Then we have15:

hn; 0|H0|n; 0i (1.89a)7�! E(1)
n =

n n
, (1.98a)

bP1

n H0|n; 0i (1.89b)7�! |n; 1i =
n m

, (1.98b)

hn; 0

��H0 bP1

n H0��n; 0i (1.89c)7�! E(2)
n =

n m n
, (1.98c)

bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i
(1.89d)7�! |n; 2i =

n m m
� n m

n n

, (1.98d)

hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
(1.89e)7�! E(3)

n =
n m m n

� n m n

n n

, (1.98e)

and so on, where the subtractions are shown as stacks of diagrams, and represent a product
of the corresponding factors. The “excising” algorithm (1.89d) may be graphically depicted
also as:

=
(1.99)

Thus, the whole stationary perturbation theory in non-relativistic quantum mechanics exem-
plified by (1.98)–(1.98e) may be written unambiguously and precisely using the graphical
symbols (1.97). Similarly, the whole perturbation theory in field theory is faithfully written
in terms of Feynman diagrams.

1.3.3 Decays, Scattering and Calculations
In elementary particle physics, one studies decays, collisions/scatterings, and bound states
of these elementary particles. The analysis of bound states uses very successfully the non-
relativistic quantum mechanics in Schrödinger’s picture, with perturbatively added rela-
tivistic corrections [+ section 2.1]. On the other hand, decays and collisions/scatterings
15 In expressions such as hn; 0|H0|n; 0i, “in” is at the right, “out” at the left; the graphical depiction is mirrored.
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Using this “excising” notation, e.g., the expression (1.89e) becomes:

E(3)
n = hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP1

n [H
0] bP1

n H0|n; 0i. (1.95)

Digression 1.9: It is not hard to see that the expression (1.95) has no other non-vanishing “exci-
sions.” Take, for instance, the candidate

hn; 0|[H0] bP1

n H0 bP1

n H0|n; 0i := hn; 0| bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

= hn; 0| bP1

n| {z }
=0

H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i = 0. (1.96a)

The results (1.88) may be depicted graphically, drawing:

(in)
= |n; 0i,

(out)
= hn; 0|,

(propagator)
= bP1

n,

(2

nd order propagator)
= bP2

n,

(interaction)
= H0

. (1.97)

Then we have15:

hn; 0|H0|n; 0i (1.89a)7�! E(1)
n =

n n
, (1.98a)

bP1

n H0|n; 0i (1.89b)7�! |n; 1i =
n m

, (1.98b)

hn; 0

��H0 bP1

n H0��n; 0i (1.89c)7�! E(2)
n =

n m n
, (1.98c)

bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i
(1.89d)7�! |n; 2i =

n m m
� n m

n n

, (1.98d)

hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
(1.89e)7�! E(3)

n =
n m m n

� n m n

n n

, (1.98e)

and so on, where the subtractions are shown as stacks of diagrams, and represent a product
of the corresponding factors. The “excising” algorithm (1.89d) may be graphically depicted
also as:

=
(1.99)

Thus, the whole stationary perturbation theory in non-relativistic quantum mechanics exem-
plified by (1.98)–(1.98e) may be written unambiguously and precisely using the graphical
symbols (1.97). Similarly, the whole perturbation theory in field theory is faithfully written
in terms of Feynman diagrams.

1.3.3 Decays, Scattering and Calculations
In elementary particle physics, one studies decays, collisions/scatterings, and bound states
of these elementary particles. The analysis of bound states uses very successfully the non-
relativistic quantum mechanics in Schrödinger’s picture, with perturbatively added rela-
tivistic corrections [+ section 2.1]. On the other hand, decays and collisions/scatterings
15 In expressions such as hn; 0|H0|n; 0i, “in” is at the right, “out” at the left; the graphical depiction is mirrored.
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Using this “excising” notation, e.g., the expression (1.89e) becomes:

E(3)
n = hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP1

n [H
0] bP1

n H0|n; 0i. (1.95)

Digression 1.9: It is not hard to see that the expression (1.95) has no other non-vanishing “exci-
sions.” Take, for instance, the candidate

hn; 0|[H0] bP1

n H0 bP1

n H0|n; 0i := hn; 0| bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

= hn; 0| bP1

n| {z }
=0

H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i = 0. (1.96a)

The results (1.88) may be depicted graphically, drawing:

(in)
= |n; 0i,

(out)
= hn; 0|,

(propagator)
= bP1

n,

(2

nd order propagator)
= bP2

n,

(interaction)
= H0

. (1.97)

Then we have15:

hn; 0|H0|n; 0i (1.89a)7�! E(1)
n =

n n
, (1.98a)

bP1

n H0|n; 0i (1.89b)7�! |n; 1i =
n m

, (1.98b)

hn; 0

��H0 bP1

n H0��n; 0i (1.89c)7�! E(2)
n =

n m n
, (1.98c)

bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i
(1.89d)7�! |n; 2i =

n m m
� n m

n n

, (1.98d)

hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
(1.89e)7�! E(3)

n =
n m m n

� n m n

n n

, (1.98e)

and so on, where the subtractions are shown as stacks of diagrams, and represent a product
of the corresponding factors. The “excising” algorithm (1.89d) may be graphically depicted
also as:

=
(1.99)

Thus, the whole stationary perturbation theory in non-relativistic quantum mechanics exem-
plified by (1.98)–(1.98e) may be written unambiguously and precisely using the graphical
symbols (1.97). Similarly, the whole perturbation theory in field theory is faithfully written
in terms of Feynman diagrams.

1.3.3 Decays, Scattering and Calculations
In elementary particle physics, one studies decays, collisions/scatterings, and bound states
of these elementary particles. The analysis of bound states uses very successfully the non-
relativistic quantum mechanics in Schrödinger’s picture, with perturbatively added rela-
tivistic corrections [+ section 2.1]. On the other hand, decays and collisions/scatterings
15 In expressions such as hn; 0|H0|n; 0i, “in” is at the right, “out” at the left; the graphical depiction is mirrored.
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Using this “excising” notation, e.g., the expression (1.89e) becomes:

E(3)
n = hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP1

n [H
0] bP1

n H0|n; 0i. (1.95)

Digression 1.9: It is not hard to see that the expression (1.95) has no other non-vanishing “exci-
sions.” Take, for instance, the candidate

hn; 0|[H0] bP1

n H0 bP1

n H0|n; 0i := hn; 0| bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

= hn; 0| bP1

n| {z }
=0

H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i = 0. (1.96a)

The results (1.88) may be depicted graphically, drawing:

(in)
= |n; 0i,

(out)
= hn; 0|,

(propagator)
= bP1

n,

(2

nd order propagator)
= bP2

n,

(interaction)
= H0

. (1.97)

Then we have15:

hn; 0|H0|n; 0i (1.89a)7�! E(1)
n =

n n
, (1.98a)

bP1

n H0|n; 0i (1.89b)7�! |n; 1i =
n m

, (1.98b)

hn; 0

��H0 bP1

n H0��n; 0i (1.89c)7�! E(2)
n =

n m n
, (1.98c)

bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i
(1.89d)7�! |n; 2i =

n m m
� n m

n n

, (1.98d)

hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
(1.89e)7�! E(3)

n =
n m m n

� n m n

n n

, (1.98e)

and so on, where the subtractions are shown as stacks of diagrams, and represent a product
of the corresponding factors. The “excising” algorithm (1.89d) may be graphically depicted
also as:

=
(1.99)

Thus, the whole stationary perturbation theory in non-relativistic quantum mechanics exem-
plified by (1.98)–(1.98e) may be written unambiguously and precisely using the graphical
symbols (1.97). Similarly, the whole perturbation theory in field theory is faithfully written
in terms of Feynman diagrams.

1.3.3 Decays, Scattering and Calculations
In elementary particle physics, one studies decays, collisions/scatterings, and bound states
of these elementary particles. The analysis of bound states uses very successfully the non-
relativistic quantum mechanics in Schrödinger’s picture, with perturbatively added rela-
tivistic corrections [+ section 2.1]. On the other hand, decays and collisions/scatterings
15 In expressions such as hn; 0|H0|n; 0i, “in” is at the right, “out” at the left; the graphical depiction is mirrored.
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Using this “excising” notation, e.g., the expression (1.89e) becomes:

E(3)
n = hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP1

n [H
0] bP1

n H0|n; 0i. (1.95)

Digression 1.9: It is not hard to see that the expression (1.95) has no other non-vanishing “exci-
sions.” Take, for instance, the candidate

hn; 0|[H0] bP1

n H0 bP1

n H0|n; 0i := hn; 0| bP1

n H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i,•
*

= hn; 0| bP1

n| {z }
=0

H0 bP1

n H0|n; 0i hn; 0|H0|n; 0i = 0. (1.96a)

The results (1.88) may be depicted graphically, drawing:

(in)
= |n; 0i,

(out)
= hn; 0|,

(propagator)
= bP1

n,

(2

nd order propagator)
= bP2

n,

(interaction)
= H0

. (1.97)

Then we have15:

hn; 0|H0|n; 0i (1.89a)7�! E(1)
n =

n n
, (1.98a)

bP1

n H0|n; 0i (1.89b)7�! |n; 1i =
n m

, (1.98b)

hn; 0

��H0 bP1

n H0��n; 0i (1.89c)7�! E(2)
n =

n m n
, (1.98c)

bP1

n H0 bP1

n H0|n; 0i � bP1

n bP1

n H0|n; 0ihn; 0

��H0��n; 0i
(1.89d)7�! |n; 2i =

n m m
� n m

n n

, (1.98d)

hn; 0|H0 bP1

n H0 bP1

n H0|n; 0i � hn; 0|H0 bP2

n H0|n; 0ihn; 0|H0|n; 0i
(1.89e)7�! E(3)

n =
n m m n

� n m n

n n

, (1.98e)

and so on, where the subtractions are shown as stacks of diagrams, and represent a product
of the corresponding factors. The “excising” algorithm (1.89d) may be graphically depicted
also as:

=
(1.99)

Thus, the whole stationary perturbation theory in non-relativistic quantum mechanics exem-
plified by (1.98)–(1.98e) may be written unambiguously and precisely using the graphical
symbols (1.97). Similarly, the whole perturbation theory in field theory is faithfully written
in terms of Feynman diagrams.

1.3.3 Decays, Scattering and Calculations
In elementary particle physics, one studies decays, collisions/scatterings, and bound states
of these elementary particles. The analysis of bound states uses very successfully the non-
relativistic quantum mechanics in Schrödinger’s picture, with perturbatively added rela-
tivistic corrections [+ section 2.1]. On the other hand, decays and collisions/scatterings
15 In expressions such as hn; 0|H0|n; 0i, “in” is at the right, “out” at the left; the graphical depiction is mirrored.
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Spacetime Processes (QM ☛ QFT)

Perturbation Picturebook
!e general idea is to depict physical processes, in a 1–1 
unambiguous way:

…but not literally!

12

1.3. Feynman’s Diagrams and Calculus 101

Conclusion 1.1 The 4-momentum conservation law is strict, applies to all processes,
up to the resolution (precision) dictated by Heisenberg’s indeterminacy principle.

To effectively differentiate the precision of the application of the 4-momentum conservation
law, we define:

Definition 1.5 States of a (system, object, particle, etc.) that cannot be directly ob-
served owing to Heisenberg’s indeterminacy principle are called virtual. Processes
that involve even just one virtual incoming or outgoing state are called virtual. States
and processes that are not virtual are real; in real processes, all incoming and outgo-
ing states are real.

Comment 1.4 Processes “1” and “2” in (1.76) are virtual, but the process “1+2” is
real. A virtual particle is also said to be “off-shell,” i.e., off the mass shell, which is
the hyperboloid p2 = p

µ

pµ = m2c2 in the 4-dimensional energy-momentum space.
That is, the 4-momentum of a particle “on shell” satisfies the relation (1.35)–(1.36),
whereas that of a particle “off shell,” does not.

1.3.1 Diagrams
Processes between particles are naturally represented graphically, by so-called Feynman di-
agrams12. It is important to understand that these diagrams must not be taken as a literal
rendition of a process in the “real” space, but as a schematic tool the primary task of which is
to help in the estimation and computation regarding physical processes that they represent.
For example, the Feynman diagrams

e�

e�

g

e�

e� 6t

e�

e�

g

p+

p+

(1.78)

look identical although the left-hand side diagram depicts the repulsive effect of (the Cou-
lomb force due to) the exchange of one photon between two electrons, and the right-hand
side one depicts the attractive effect of (the Coulomb force due to) the exchange of one
photon between an electron and a proton.

Except when noted differently, all Feynman diagrams herein are, by convention, drawn
with time passing predominantly upward and the lines of simultaneity being oriented pre-
dominantly left-right. Depending on the observer, the tilt of these lines changes13, which
12 The graphical representation of interactions is very intuitive and clear. Feynman certainly did not come up with

this idea first, but he did contribute to their popularity as he worked out the technical details that make those
diagrams into a useful computational tool. Ernst Stückelberg was the first to use the idea for the individual
processes, before Feynman, but had no actual drawings; Freeman Dyson was the first to rigorously establish the
link between these diagrams and the well known perturbative computations. Feynman linked these diagrams
to the so-called path integrals, which became a standard only years later.

13 To be precise, the tilt of all lines changes depending on the observer. However, the tilt of virtual lines—that rep-
resent particles that are unobservable in principle and so do not satisfy any classical equation of motion—may
change radically, and represent the motion of a massive, light-like, or even tachionic particle. In distinction, the
wave-functions of real particles satisfy their classical equations of motion, and so have the same character for
all observers: either massive, or light-like. (Or tachionic—should they ever be experimentally detected [+ di-
gression 5.1, p. 256].)
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1.3. Feynman’s Diagrams and Calculus 101

Conclusion 1.1 The 4-momentum conservation law is strict, applies to all processes,
up to the resolution (precision) dictated by Heisenberg’s indeterminacy principle.

To effectively differentiate the precision of the application of the 4-momentum conservation
law, we define:

Definition 1.5 States of a (system, object, particle, etc.) that cannot be directly ob-
served owing to Heisenberg’s indeterminacy principle are called virtual. Processes
that involve even just one virtual incoming or outgoing state are called virtual. States
and processes that are not virtual are real; in real processes, all incoming and outgo-
ing states are real.

Comment 1.4 Processes “1” and “2” in (1.76) are virtual, but the process “1+2” is
real. A virtual particle is also said to be “off-shell,” i.e., off the mass shell, which is
the hyperboloid p2 = p

µ

pµ = m2c2 in the 4-dimensional energy-momentum space.
That is, the 4-momentum of a particle “on shell” satisfies the relation (1.35)–(1.36),
whereas that of a particle “off shell,” does not.

1.3.1 Diagrams
Processes between particles are naturally represented graphically, by so-called Feynman di-
agrams12. It is important to understand that these diagrams must not be taken as a literal
rendition of a process in the “real” space, but as a schematic tool the primary task of which is
to help in the estimation and computation regarding physical processes that they represent.
For example, the Feynman diagrams

e�

e�

g

e�

e� 6t

e�

e�

g

p+

p+

(1.78)

look identical although the left-hand side diagram depicts the repulsive effect of (the Cou-
lomb force due to) the exchange of one photon between two electrons, and the right-hand
side one depicts the attractive effect of (the Coulomb force due to) the exchange of one
photon between an electron and a proton.

Except when noted differently, all Feynman diagrams herein are, by convention, drawn
with time passing predominantly upward and the lines of simultaneity being oriented pre-
dominantly left-right. Depending on the observer, the tilt of these lines changes13, which
12 The graphical representation of interactions is very intuitive and clear. Feynman certainly did not come up with

this idea first, but he did contribute to their popularity as he worked out the technical details that make those
diagrams into a useful computational tool. Ernst Stückelberg was the first to use the idea for the individual
processes, before Feynman, but had no actual drawings; Freeman Dyson was the first to rigorously establish the
link between these diagrams and the well known perturbative computations. Feynman linked these diagrams
to the so-called path integrals, which became a standard only years later.

13 To be precise, the tilt of all lines changes depending on the observer. However, the tilt of virtual lines—that rep-
resent particles that are unobservable in principle and so do not satisfy any classical equation of motion—may
change radically, and represent the motion of a massive, light-like, or even tachionic particle. In distinction, the
wave-functions of real particles satisfy their classical equations of motion, and so have the same character for
all observers: either massive, or light-like. (Or tachionic—should they ever be experimentally detected [+ di-
gression 5.1, p. 256].)
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1.3. Feynman’s Diagrams and Calculus 101

Conclusion 1.1 The 4-momentum conservation law is strict, applies to all processes,
up to the resolution (precision) dictated by Heisenberg’s indeterminacy principle.

To effectively differentiate the precision of the application of the 4-momentum conservation
law, we define:

Definition 1.5 States of a (system, object, particle, etc.) that cannot be directly ob-
served owing to Heisenberg’s indeterminacy principle are called virtual. Processes
that involve even just one virtual incoming or outgoing state are called virtual. States
and processes that are not virtual are real; in real processes, all incoming and outgo-
ing states are real.

Comment 1.4 Processes “1” and “2” in (1.76) are virtual, but the process “1+2” is
real. A virtual particle is also said to be “off-shell,” i.e., off the mass shell, which is
the hyperboloid p2 = p

µ

pµ = m2c2 in the 4-dimensional energy-momentum space.
That is, the 4-momentum of a particle “on shell” satisfies the relation (1.35)–(1.36),
whereas that of a particle “off shell,” does not.

1.3.1 Diagrams
Processes between particles are naturally represented graphically, by so-called Feynman di-
agrams12. It is important to understand that these diagrams must not be taken as a literal
rendition of a process in the “real” space, but as a schematic tool the primary task of which is
to help in the estimation and computation regarding physical processes that they represent.
For example, the Feynman diagrams
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(1.78)

look identical although the left-hand side diagram depicts the repulsive effect of (the Cou-
lomb force due to) the exchange of one photon between two electrons, and the right-hand
side one depicts the attractive effect of (the Coulomb force due to) the exchange of one
photon between an electron and a proton.

Except when noted differently, all Feynman diagrams herein are, by convention, drawn
with time passing predominantly upward and the lines of simultaneity being oriented pre-
dominantly left-right. Depending on the observer, the tilt of these lines changes13, which
12 The graphical representation of interactions is very intuitive and clear. Feynman certainly did not come up with

this idea first, but he did contribute to their popularity as he worked out the technical details that make those
diagrams into a useful computational tool. Ernst Stückelberg was the first to use the idea for the individual
processes, before Feynman, but had no actual drawings; Freeman Dyson was the first to rigorously establish the
link between these diagrams and the well known perturbative computations. Feynman linked these diagrams
to the so-called path integrals, which became a standard only years later.

13 To be precise, the tilt of all lines changes depending on the observer. However, the tilt of virtual lines—that rep-
resent particles that are unobservable in principle and so do not satisfy any classical equation of motion—may
change radically, and represent the motion of a massive, light-like, or even tachionic particle. In distinction, the
wave-functions of real particles satisfy their classical equations of motion, and so have the same character for
all observers: either massive, or light-like. (Or tachionic—should they ever be experimentally detected [+ di-
gression 5.1, p. 256].)
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changes the interpretation of the diagram:
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According to the interpretation on the left-hand side, the left-hand side particle first emits
a photon, which then the right-hand side particle absorbs; according to the interpretation
on the right-hand side, the right-hand side particle emits a photon first, which then the left-
hand side particle absorbs. Thus we simply speak of an “exchanged” photon, and a diagram
such as (1.79) is identified as a schematic representation of this process, and not as a literal,
real depiction of the process in spacetime.

The exchanged photon must be virtual, since the individual processes (the left-hand
half and the right-hand one)
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(1.80)

are kinematically forbidden [+ exercise 1.2.7]—while the proceses (1.78) are real. How-
ever, this implies that processes such as (1.78) must be understood as one of the contribu-
tions to the process that may be depicted as
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(1.81)

where the schematic region in the shaded ellipse is virtual; particles and processes that
are entirely within this region can neither be observed nor measured directly as a matter
of (Heisenberg’s indeterminacy) principle. On the other hand, that means that within the
shaded region of indeterminacy, many other sub-processes—i.e., all possible sub-processes—can
occur, and in fact do occur [+ conclusion 0.3, p. 54]. It remains to determine the hierarchy
of their contributions to the physical quantity being computed for the considered physical
process (specified by the particles outside the indeterminacy region!):

4x 4px > h̄/2

4E4t > h̄/2
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According to the interpretation on the left-hand side, the left-hand side particle first emits
a photon, which then the right-hand side particle absorbs; according to the interpretation
on the right-hand side, the right-hand side particle emits a photon first, which then the left-
hand side particle absorbs. Thus we simply speak of an “exchanged” photon, and a diagram
such as (1.79) is identified as a schematic representation of this process, and not as a literal,
real depiction of the process in spacetime.

The exchanged photon must be virtual, since the individual processes (the left-hand
half and the right-hand one)
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are kinematically forbidden [+ exercise 1.2.7]—while the proceses (1.78) are real. How-
ever, this implies that processes such as (1.78) must be understood as one of the contribu-
tions to the process that may be depicted as
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where the schematic region in the shaded ellipse is virtual; particles and processes that
are entirely within this region can neither be observed nor measured directly as a matter
of (Heisenberg’s indeterminacy) principle. On the other hand, that means that within the
shaded region of indeterminacy, many other sub-processes—i.e., all possible sub-processes—can
occur, and in fact do occur [+ conclusion 0.3, p. 54]. It remains to determine the hierarchy
of their contributions to the physical quantity being computed for the considered physical
process (specified by the particles outside the indeterminacy region!):
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output = outgoing state

input = incoming state

Spacetime Processes (QM ☛ QFT)

Perturbation Picturebook
!e “process” is whatever takes “input” → “output”:

In this case, it is a 1-photon electromagnetic interaction  
(sca%ering) of an electron with another electron.
What is observed are the incoming two particles in the 
incoming 2-particle state, and the outgoing two particles 
in the outgoing 2-particle state.
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According to the interpretation on the left-hand side, the left-hand side particle first emits
a photon, which then the right-hand side particle absorbs; according to the interpretation
on the right-hand side, the right-hand side particle emits a photon first, which then the left-
hand side particle absorbs. Thus we simply speak of an “exchanged” photon, and a diagram
such as (1.79) is identified as a schematic representation of this process, and not as a literal,
real depiction of the process in spacetime.

The exchanged photon must be virtual, since the individual processes (the left-hand
half and the right-hand one)
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are kinematically forbidden [+ exercise 1.2.7]—while the proceses (1.78) are real. How-
ever, this implies that processes such as (1.78) must be understood as one of the contribu-
tions to the process that may be depicted as
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where the schematic region in the shaded ellipse is virtual; particles and processes that
are entirely within this region can neither be observed nor measured directly as a mat-
ter of (Heisenberg’s indeterminacy) principle. On the other hand, that also means that
within the shaded region of indeterminacy, many other sub-processes—i.e., all possible sub-
processes—can occur, and in fact do occur [+ conclusion 0.3, p. 54]. It remains to deter-
mine the hierarchy of their contributions to the physical quantity being computed for the
considered physical process (specified by the particles outside the indeterminacy region!):
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Spacetime Processes (QM ☛ QFT)

Perturbation Picturebook
!e un-observable exchange photon is thus virtual!
Indeed, the two 3-particle processes separately…

…are kinematically forbidden.
Q.: Why?
A.: Conservation of 4-momentum.
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changes the interpretation of the diagram:
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According to the interpretation on the left-hand side, the left-hand side particle first emits
a photon, which then the right-hand side particle absorbs; according to the interpretation
on the right-hand side, the right-hand side particle emits a photon first, which then the left-
hand side particle absorbs. Thus we simply speak of an “exchanged” photon, and a diagram
such as (1.79) is identified as a schematic representation of this process, and not as a literal,
real depiction of the process in spacetime.

The exchanged photon must be virtual, since the individual processes (the left-hand
half and the right-hand one)
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are kinematically forbidden [+ exercise 1.2.7]—while the proceses (1.78) are real. How-
ever, this implies that processes such as (1.78) must be understood as one of the contribu-
tions to the process that may be depicted as
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where the schematic region in the shaded ellipse is virtual; particles and processes that
are entirely within this region can neither be observed nor measured directly as a mat-
ter of (Heisenberg’s indeterminacy) principle. On the other hand, that also means that
within the shaded region of indeterminacy, many other sub-processes—i.e., all possible sub-
processes—can occur, and in fact do occur [+ conclusion 0.3, p. 54]. It remains to deter-
mine the hierarchy of their contributions to the physical quantity being computed for the
considered physical process (specified by the particles outside the indeterminacy region!):
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Spacetime Processes (QM ☛ QFT)

Perturbation Picturebook
!e “process” is whatever takes “input” → “output”:

Whatever is not forbidden, is mandatory. –R. Feynman
Notice, these sub-processes can be ordered:

by counting the “elementary” interaction vertices
by counting loops
by (non-)planarity

…which are qualitative—& depicted—characteristics
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According to the interpretation on the left-hand side, the left-hand side particle first emits
a photon, which then the right-hand side particle absorbs; according to the interpretation
on the right-hand side, the right-hand side particle emits a photon first, which then the left-
hand side particle absorbs. Thus we simply speak of an “exchanged” photon, and a diagram
such as (1.79) is identified as a schematic representation of this process, and not as a literal,
real depiction of the process in spacetime.

The exchanged photon must be virtual, since the individual processes (the left-hand
half and the right-hand one)
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are kinematically forbidden [+ exercise 1.2.7]—while the proceses (1.78) are real. How-
ever, this implies that processes such as (1.78) must be understood as one of the contribu-
tions to the process that may be depicted as
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where the schematic region in the shaded ellipse is virtual; particles and processes that
are entirely within this region can neither be observed nor measured directly as a mat-
ter of (Heisenberg’s indeterminacy) principle. On the other hand, that also means that
within the shaded region of indeterminacy, many other sub-processes—i.e., all possible sub-
processes—can occur, and in fact do occur [+ conclusion 0.3, p. 54]. It remains to deter-
mine the hierarchy of their contributions to the physical quantity being computed for the
considered physical process (specified by the particles outside the indeterminacy region!):
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a photon, which then the right-hand side particle absorbs; according to the interpretation
on the right-hand side, the right-hand side particle emits a photon first, which then the left-
hand side particle absorbs. Thus we simply speak of an “exchanged” photon, and a diagram
such as (1.79) is identified as a schematic representation of this process, and not as a literal,
real depiction of the process in spacetime.
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ever, this implies that processes such as (1.78) must be understood as one of the contribu-
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where the schematic region in the shaded ellipse is virtual; particles and processes that
are entirely within this region can neither be observed nor measured directly as a mat-
ter of (Heisenberg’s indeterminacy) principle. On the other hand, that also means that
within the shaded region of indeterminacy, many other sub-processes—i.e., all possible sub-
processes—can occur, and in fact do occur [+ conclusion 0.3, p. 54]. It remains to deter-
mine the hierarchy of their contributions to the physical quantity being computed for the
considered physical process (specified by the particles outside the indeterminacy region!):
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hand side particle absorbs. Thus we simply speak of an “exchanged” photon, and a diagram
such as (1.79) is identified as a schematic representation of this process, and not as a literal,
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where the schematic region in the shaded ellipse is virtual; particles and processes that
are entirely within this region can neither be observed nor measured directly as a mat-
ter of (Heisenberg’s indeterminacy) principle. On the other hand, that also means that
within the shaded region of indeterminacy, many other sub-processes—i.e., all possible sub-
processes—can occur, and in fact do occur [+ conclusion 0.3, p. 54]. It remains to deter-
mine the hierarchy of their contributions to the physical quantity being computed for the
considered physical process (specified by the particles outside the indeterminacy region!):
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on the right-hand side, the right-hand side particle emits a photon first, which then the left-
hand side particle absorbs. Thus we simply speak of an “exchanged” photon, and a diagram
such as (1.79) is identified as a schematic representation of this process, and not as a literal,
real depiction of the process in spacetime.
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where the schematic region in the shaded ellipse is virtual; particles and processes that
are entirely within this region can neither be observed nor measured directly as a mat-
ter of (Heisenberg’s indeterminacy) principle. On the other hand, that also means that
within the shaded region of indeterminacy, many other sub-processes—i.e., all possible sub-
processes—can occur, and in fact do occur [+ conclusion 0.3, p. 54]. It remains to deter-
mine the hierarchy of their contributions to the physical quantity being computed for the
considered physical process (specified by the particles outside the indeterminacy region!):
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Spacetime Processes (QFT)

Perturbation Picturebook
A 1–1 correspondence:

the fundamental theory that designs the considered process,
diagram elements depicting terms from a Lagrangian,
rules of linking graphical elements, depicting a computation 
with the individual terms from the speci#ed Lagrangian,
rules of listing all possible—and needed—Feynman diagrams,
the #nal mathematical expression for the matrix element 
(amplitude of probability) for the considered process, as a 
weighted sum of sub-processes,
the computation (estimate) of this mathematical expression.

!is would be the goal of a Quantum Field !eory 
course…
…which this is not.
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Perturbation Picturebook
Back in the A-B-C toy model, the A → B+C decay.
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Spacetime Processes (QFT)
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Perturbation Picturebook
And from O(g5) onward, there are also complications:

18

Spacetime Processes (QFT)

1.3. Feynman’s Diagrams and Calculus 113

Procedure 1.1 The contribution to the matrix element (amplitude) M corresponding
to a Feynman diagram in the ABC-model is computed following the algorithm:

1. Notation: Denote the incoming and outgoing 4-momenta by p
1

, p
2

. . . and the “in-
ternal” 4-momenta (assigned to lines that connect two vertices within the graph) q

1

,

q
2

. . . Orient each line, selecting the positive sense of the corresponding 4-momentum.
2. Vertices: Assign to each vertex the factor �ig.
3. Lines: Assign to the jth internal line the factor i

q2

j �m2

j c2

, the so-called propagator. As

this depicts a virtual particle, q2

j \=m2

j c2 [+ table B.6, p. 478].
4. 4-momentum conservation: Assign to each vertex the factor (2p)4

d

4(Âj kj), where
kj (�kj) are the 4-momenta entering (leaving) the vertex.

5. 4-momentum integration: Assign to the jth internal line the
R

d

4qj
(2p)4

-integral.
6. Reading off the amplitude: The above procedure produces�

� iM
�
(2p)4

d

4(Â
j

pj) (1.126)

where the (2p)4

d

4(Âj pj) represents the 4-momentum conservation law, and from
where the amplitude (matrix element) M is read off.

The A ! B + C Decay
The lowest order contribution is of the order g1:

A

B C
g

(1.127)

The time axis is directed vertically, upward. the next contributions are of the order g3:

A

B CA

C B

A

B C

A

C B

A

B C
A

BC

A

B C
A

BC (1.128)

and so on. The lowest order contribution (1.127) is depicted by a tree-graph (with no closed
loop). The subsequent contributions (1.128) all have precisely one closed loop and are of
the order g3; there are no contributions of even order g2k. However, starting with the next
(g5) order, a novelty appears, which can be seen by comparing the following two graphs:
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Procedure 1.1 The contribution to the matrix element (amplitude) M corresponding
to a Feynman diagram in the ABC-model is computed following the algorithm:

1. Notation: Denote the incoming and outgoing 4-momenta by p
1

, p
2

. . . and the “in-
ternal” 4-momenta (assigned to lines that connect two vertices within the graph) q

1

,

q
2

. . . Orient each line, selecting the positive sense of the corresponding 4-momentum.
2. Vertices: Assign to each vertex the factor �ig.
3. Lines: Assign to the jth internal line the factor i

q2

j �m2

j c2

, the so-called propagator. As

this depicts a virtual particle, q2

j \=m2

j c2 [+ table B.6, p. 478].
4. 4-momentum conservation: Assign to each vertex the factor (2p)4

d

4(Âj kj), where
kj (�kj) are the 4-momenta entering (leaving) the vertex.

5. 4-momentum integration: Assign to the jth internal line the
R

d

4qj
(2p)4

-integral.
6. Reading off the amplitude: The above procedure produces�

� iM
�
(2p)4

d

4(Â
j

pj) (1.126)

where the (2p)4

d

4(Âj pj) represents the 4-momentum conservation law, and from
where the amplitude (matrix element) M is read off.

The A ! B + C Decay
The lowest order contribution is of the order g1:
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g

(1.127)

The time axis is directed vertically, upward. the next contributions are of the order g3:
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and so on. The lowest order contribution (1.127) is depicted by a tree-graph (with no closed
loop). The subsequent contributions (1.128) all have precisely one closed loop and are of
the order g3; there are no contributions of even order g2k. However, starting with the next
(g5) order, a novelty appears, which can be seen by comparing the following two graphs:

(1.129)
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O(g5) O(g5)

planar non-planar
two loops # of loops ?

q1 q2

q4

q3 q6

q5

q1 q2

q4q3

q6q5

Since 4-mom. 
conservation #xes 

4 of the 6 qi’s,
2 remain free and 

must be 
integrated!
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A Few Stray Comments

19

overview

Molecular Physics

Atomic Physics

Nuclear Physics

Elementary Particle 
Physics

Elementary Particle 
Physics

molecules (bound states of atoms)
(foundation of all chemistry!)

atoms (e– & nuclei bound states)

atomic nuclei (p+ & n0 bound states)

hadrons (quark bound states)

quarks, leptons, photons,…

Notice the extraordinary double-duty done by the physics discipline of Elementary Particle 
Physics—possibly including also a third tier, as professed to exists by such as string theory.
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Perturbation Picturebook
Strict Conservation Laws

Spacetime
Continuous (4-momentum & angular momentum)
Discrete (P, T, C)

Not Spacetime
EM charge
Chromodynamic Color
Weak Isospin

Phenomenological Conservation Laws
lepton number(s, incl. e–, μ– & τ – separately)
baryon number(s, incl. strangeness, charm, …)

20

Conservation Laws
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Thanks!
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