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Fundamental Physics of Elementary Particles

2

Relativistic Kinematics (More Detail)
Space & time mixing, “usual” relativistic effects, revisited
De"nitions and some crucial minuses

Particle Decay
2-particle decay kinematics
n-particle decay generalization

Particle Collisions & Sca#ering
$e CM-system vs. the target system
Fusing collisions, and process threshold

Invariance & covariance vs. conservation
Quantum Kinematics — "e Heisenberg Zone
Charge Conservation — Gauge & Other Charges
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Lorentz Transformations

Relativistic Kinematics
"e space-time coordinate transformations that leave 
Maxwell’s equations invariant mix space and time:

Or, put another way:

…positions change in the direction of motion only.
3

~r 0 =~r + (g�1)( ˆv ·~r) ˆv � g~vt, ~r = ~r 0 + (g�1)( ˆv ·~r 0) ˆv + g~vt0,

t0 = g

⇣
t � ~v ·~r

c2

⌘
, t = g

⇣
t0 +

~v ·~r 0

c2

⌘
,

g

:=
⇣

1 � ~v 2

c2

⌘� 1

2

,

ˆv :=
~vp
~v 2

.

>:

~r 0 =~r? + g (~rk �~v t), ~r =~r 0? + g (~r 0k +~v t)
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time dilation

FitzGerald-Lorentz
contraction

addition of velocities

Consequences of Lorentz Transformations

Relativistic Kinematics
Relativity of simultaneity (tA = tB):

Relativity of length/distance/extent:

Relativity of duration/passage of time:

Relativity of …well, relative velocities:

4

t0i = g

⇣
ti �

~v ·~ri
c2

⌘
, i = A, B, ) t0A � t0B = g

~v · (~rB �~rA)
c2

4~r 0 = 4~r + (g�1)( ˆv ·4~r) ˆv = 4~r? + g4~rk,
4~r 0

k = g4~rk,
4~r 0

? = 4~r?,

tB�tA = g(t0B�t0A) + g

~v · (~r 0
B�~r 0

A)
c2

.

4t = g4t0,

~u :=
4~r
4t

=
~u 0

k +~v
�
1 + (~v·~u 0)

c2

� +
~u 0
?

g
�
1 + (~v·~u 0)

c2

� , ~u 0
k = (~u0

k·v̂)v̂, ~u 0
?·v̂ = 0.
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Conventions and Details

Relativistic Kinematics
Frequently useful expansions:

Notation (Cartesian coord’s):

…so Lorentz transformations are linear:

5

g =
1p

1 � b2
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1
2
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3
8
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5
16
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�
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1
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32
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5
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�
e4�

i
.
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v2

c2 ⌧ 1;
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⇣

1� |~v|
c

⌘
⌧ 1.
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3

Â
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µ
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3
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Conventions and Details

Relativistic Kinematics
Lorentz boosts:

leave invariant the “proper time,” τ:

where [ημν] = diag[1,–1,–1,–1] is the spacetime metric.
s = – cτ  is the “interval,”  ds2 = –c2dτ2  the “line element.”

6
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and where ˆe

1

, ˆe

2

, ˆe

3

are usual unit vectors in some (e.g. Cartesian) inertial coordinate system,
and ˆe

0

is the additional, fourth unit vector in the direction of time. From now on, we
adopt the strict Einstein convention, whereby summation is implied over any pair of indices
precisely if one is a superscript and the other a subscript; thus, Â-symbols are no longer
written except for emphasis. Also, Greek indices range over values 0, 1, 2, 3, while Latin
indices are restricted to range over 1, 2, 3.

Digression 1.2: Note the difference in transformations:

dxµ =
⇣

∂xµ

∂yn

⌘
dyn

, (1.12a)

∂

∂xµ

=
⇣

∂yn

∂xm

⌘
∂

∂yn

,

9>=>; inverse (!) transformation
(1.12b)

when changing coordinates xµ ! yµ. Taking a cue from the transformations (1.12b)–(1.12a),
any 4-vector the components of which transform:

Aµ(x) =
⇣

∂xµ

∂yn

⌘
An(y) are called contravariant; (1.12c)

B
µ

(x) =
⇣

∂yn

∂xµ

⌘
B

n

(y) are called covariant. (1.12d)

In this 4-vector notation, the general Lorentz transformations may be compactly writ-
ten as

yµ = Lµ

n

xn

, , y = LL

L

L

x ,

264 y0

y1

y2

y3

375 =

24 L0

0

L0

1

L0

2

L0

3

L1

0

L1

1

L1

2

L1

3

L2

0

L2

1

L2

2

L2

3

L3

0

L3

1

L3

2

L3

3

3524 x0

x1

x2

x3

35
. (1.13a)

Comparing (1.13) with (1.2), rewriting as the analogous system of equations, all 4⇥ 4 = 16

matrix elements Lµ

n

for concrete boosts may be identified:

LL

L

L

=

266664
g �g

vx
c �g

vy
c �g

vz
c

�g

vx
c 1 + (g � 1) v 2

x
~v 2

(g � 1)
vxvy
~v 2

(g � 1) vxvz
~v 2

�g

vy
c (g � 1)

vyvx
~v 2

1 + (g � 1)
v 2

y
~v 2

(g � 1)
vyvz
~v 2

�g

vz
c (g � 1) vzvx

~v 2

(g � 1) vzvz
~v 2

1 + (g � 1) v 2

z
~v 2

377775 (1.13b)

In the general case, Lorentz transformations (also represented by matrices LL

L

L

) include also
the familiar rotations in addition to boosts (1.13). This makes the matrices LL

L

L

constant
(independent of spacetime coordinates), hh

h

h

-orthogonal [+ (1.20)], and of unit determinant:

∂Lµ

n

∂xr

= 0, (µ, n, r = 0, 1, 2, 3), LL

L

L

T
hh

h

h

= hh

h

h

LL

L

L

�1

, det(LLL
L

) = 1, (1.14)

so they form the group of unimodular orthogonal matrices, denoted “SO(1, 3).”

Digression 1.3: By comparison, the transformation (1.13) is seen to be the special case of the
general (1.12a), when the matrix ∂xµ

∂yn

= Lµ

n

satisfies the additional conditions (1.14), whereby
the coordinate change xµ ! yn is linear (yn = Lµ

n

xn + Cµ) and homogeneous (Cµ = 0).

But, how come the matrices [Lµ

n

] for the SO(1, 3) group, and not SO(4) or SO(2, 2)?
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üb

sc
h,

th
ub

sc
h@

ho
w

ar
d.

ed
u,

w
ith

an
y

co
m

m
en

ts
/

su
gg

es
tio

ns
/

co
rr

ec
tio

ns
;t

ha
nk

yo
u!

—
D

R
A

FT

86 Chapter 1. Physics in Spacetime
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satisfies the additional conditions (1.14), whereby
the coordinate change xµ ! yn is linear (yn = Lµ
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xn + Cµ) and homogeneous (Cµ = 0).

But, how come the matrices [Lµ
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üb

sc
h,

th
ub

sc
h@

ho
w

ar
d.

ed
u,

w
ith

an
y

co
m

m
en

ts
/

su
gg

es
tio

ns
/

co
rr

ec
tio

ns
;t

ha
nk

yo
u!

—
D

R
A

FT

1.1. The Lorentz Transformations and Tensors 87

Just as the rotation group, SO(3), leaves the Euclidean length invariant, so do Lorentz
transformations leave the quantity

(c t)2 := c2 t2 �~r 2 = c2 t2 �
⇥
(x1)2 + (x2)2 + (x3)2

⇤
(1.16)

invariant [+ appendix A.1.4]. Since c is constant, the quantity t is also Lorentz-invariant
and is called the “proper time.” The name stems from the fact that, in any particular inertial
system, for any two separate moments in time in the same place we have 4t = tB�tA 6= 0

and 4~r =~rB�~rA = 0, so that

4t

2 := (tB�tA)
2 � c�2

⇥
(x1

B�x1

A)
2 � (x2

B�x2

A)
2 � (x3

B�x3

A)
2| {z }

=0

⇤
= (tB�tA)

2

. (1.17)

Note that time dilation (1.8) implies that the proper times for any process is always the
shortest; in any other inertial system, the duration of that process can only be longer than
the proper times or equal to it. Indeed: since 4t is invariant, in any inertial system where
4~r 6= 0, and the events A and B do not happen in the same point in space, 4t must be
bigger so that (4t)2 � c�2(4~r)2 would remain constant, i.e., invariant with respect to the
transformation from that inertial system into the inertial (rest-)system where 4~r = 0.

The invariant quantity c2

t

2 may be more compactly written as5

c2

t

2 = x2 = x·x := xµ

h

µn

xn

, (1.18)

where “x·y” denotes the (Lorentzian) scalar product of 4-vectors,

Definition 1.2 For 4-vectors x and y, the invariant (scalar) product is

x·y = xµ

h

µn

yµ

. (1.19)

The quantity x2 := x·x is, simply, the “4-vector x square.” The matrix

hh

h

h

= [h
µn

] =

"
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

#
(1.20)

is the metric tensor—the metric—of the empty (flat) spacetime. The number of
positive and negative eigenvalues in the matrix [h

µn

] is called the signature , and
spacetime and its metric are said to have signature (1, 3).

Also,

Definition 1.3 A 4-vector v in spacetime with the metric tensor h

µn

is called:

time-like (temporal), if v2 > 0, (1.21a)

space-like (spatial), if v2 < 0, (1.21b)

light-like (null), if v2 = 0. (1.21c)

5 The scalar product of two n-vectors a and b is denote as “a·b”; the Reader must understand from the context
if this denotes the Euclidean, Lorentzian or some other scalar product. Following this tradition, note that the
notation herein is unambiguous, as Euclidean 3-vectors are indicated by an over-arrow and Lorentzian 4-vectors
are denoted by “upright” Latin letters. Therefore,~a·~b is the Euclidean scalar product, while a·b is Lorentzian.
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Conventions and Details

Relativistic Kinematics
"e o#-cited special case:

is related (by analytic continuation) to a rotation:

and the coordinates (x0 = cit, x1, x2, x3) span the “World 
of (Hermann) Minkowski;” but t → it is “Wick-rotation.”

7
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It should be pretty obvious that the replacement t ! (it), changes the sign of h

00

, the
signature into (0, 4), and the boosts (1.13). The qualitative nature of this change is easiest
to spot in the special case when the coordinate system is chosen so that ~v ! v ˆe

1

in the
relation (1.13):

[Lµ

n

] =

2664
g �g

v
c 0 0

�g

v
c g 0 0

0 0 1 0

0 0 0 1

3775 =

2664
cosh(f) � sinh(f) 0 0

� sinh(f) cosh(f) 0 0

0 0 1 0

0 0 0 1

3775
| {z }

hyperbolic “rotation”

,

8<:
v =: c tanh(f),
g = cosh(f),

v
c g = sinh(f);

(1.22)

t!it��!

2664
cos(f) � sin(f) 0 0

sin(f) cos(f) 0 0

0 0 1 0

0 0 0 1

3775 , (1.23)

so that Lorentz boosts in the x1-direction become2664
c(it0)

x01
x02
x03

3775 =

2664
cos(f) � sin(f) 0 0

sin(f) cos(f) 0 0

0 0 1 0

0 0 0 1

3775
2664

c(it)
x1

x2

x3

3775 (1.24)

rotations in the (c(it), x1)-plane in the so-called Wick-rotated spacetime (c(it), x1

, x2

, x3). As
the complex transformation (ct, x1

, x2

, x3) ! (c(it), x1

, x2

, x3) was first used by Hermann
Minkowski, the Wick-rotated spacetime(c(it), x1

, x2

, x3) is called the “World of Minkowski.”
Thus, in the World of Minkowski (with the imaginary time), the Lorentz group of coordinate
transformations becomes SO(4), while in the real world (with real time) it is6 SO(1, 3).

Digression 1.4: Following the example of digression 1.2, p. 86, we see that the 4-vector with
components xµ is contravariant, whereby the vector with components x

µ

:= (h
µn

xn) covariant,
simply because the quantity xµ

h

µn

xn is invariant:

xµ ! yµ = Lµ

n

xn

, contravariant 4-vector; (1.25a)

) x
µ

:= (h
µn

xn) ! (h
µn

yn) = y
µ

= L
µ

n(h
nr

xr) = L
µ

n x
n

, covariant 4-vector; (1.25b)

where L
µ

n = [LLL
L

T ]
µ

n are the components of the transposed Lorentz matrix of transformations
Lµ

n

= [LLL
L

]µ
n

, so that:

x·x ! y·y= yµ(h(y)
µn

yn) = (Lµ

r

xr)(L
µ

s

h

(x)
sn

xn) = xr (Lµ

r

L
µ

s)h(x)
sn

xn

,

= xr ([LLL
L

LL

L

L

T ]
r

s)h(x)
sn

xn = xr

d

r

s

h

(x)
sn

xn

,

= xr

h

(x)
rn

xn = x·x, is invariant. (1.25c)

In the application of the relation (1.25b), it is said that the metric tensor h

µn

is used to lower a
superscript into a subscript. This then also specified the transformation of the metric:

) h

(x)
µn

! h

(y)
µn

= L
µ

r L
n

s

h

(x)
rs

, 2 times covariant tensor.
(1.25d)

6 We shall see later that the Lorentz group is actually Spin(1, 3), the double cover of the SO(1, 3) group, for spinors
to be describable by single-valued spacetime functions [+ discussion around the relations (3.44)–(3.47)].
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6 We shall see later that the Lorentz group is actually Spin(1, 3), the double cover of the SO(1, 3) group, for spinors
to be describable by single-valued spacetime functions [+ discussion around the relations (3.44)–(3.47)].
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üb

sc
h,

th
ub

sc
h@

ho
w

ar
d.

ed
u,

w
ith

an
y

co
m

m
en

ts
/

su
gg

es
tio

ns
/

co
rr

ec
tio

ns
;t

ha
nk

yo
u!

—
D

R
A

FT
88 Chapter 1. Physics in Spacetime

It should be pretty obvious that the replacement t ! (it), changes the sign of h

00

, the
signature into (0, 4), and the boosts (1.13). The qualitative nature of this change is easiest
to spot in the special case when the coordinate system is chosen so that ~v ! v ˆe

1

in the
relation (1.13):

[Lµ

n

] =

2664
g �g

v
c 0 0

�g

v
c g 0 0

0 0 1 0

0 0 0 1

3775 =

2664
cosh(f) � sinh(f) 0 0

� sinh(f) cosh(f) 0 0

0 0 1 0

0 0 0 1

3775
| {z }

hyperbolic “rotation”

,

8<:
v =: c tanh(f),
g = cosh(f),

v
c g = sinh(f);

(1.22)

t!it��!

2664
cos(f) � sin(f) 0 0

sin(f) cos(f) 0 0

0 0 1 0

0 0 0 1

3775 , (1.23)

so that Lorentz boosts in the x1-direction become2664
c(it0)

x01
x02
x03

3775 =

2664
cos(f) � sin(f) 0 0

sin(f) cos(f) 0 0

0 0 1 0

0 0 0 1

3775
2664

c(it)
x1

x2

x3

3775 (1.24)

rotations in the (c(it), x1)-plane in the so-called Wick-rotated spacetime (c(it), x1

, x2

, x3). As
the complex transformation (ct, x1

, x2

, x3) ! (c(it), x1

, x2

, x3) was first used by Hermann
Minkowski, the Wick-rotated spacetime(c(it), x1

, x2

, x3) is called the “World of Minkowski.”
Thus, in the World of Minkowski (with the imaginary time), the Lorentz group of coordinate
transformations becomes SO(4), while in the real world (with real time) it is6 SO(1, 3).

Digression 1.4: Following the example of digression 1.2, p. 86, we see that the 4-vector with
components xµ is contravariant, whereby the vector with components x

µ

:= (h
µn

xn) covariant,
simply because the quantity xµ

h

µn

xn is invariant:

xµ ! yµ = Lµ

n

xn

, contravariant 4-vector; (1.25a)

) x
µ

:= (h
µn

xn) ! (h
µn

yn) = y
µ

= L
µ

n(h
nr

xr) = L
µ

n x
n

, covariant 4-vector; (1.25b)

where L
µ

n = [LLL
L

T ]
µ

n are the components of the transposed Lorentz matrix of transformations
Lµ

n

= [LLL
L

]µ
n

, so that:

x·x ! y·y= yµ(h(y)
µn

yn) = (Lµ

r

xr)(L
µ

s

h

(x)
sn

xn) = xr (Lµ

r

L
µ

s)h(x)
sn

xn

,

= xr ([LLL
L

LL

L

L

T ]
r

s)h(x)
sn

xn = xr

d

r

s

h

(x)
sn

xn

,

= xr

h

(x)
rn

xn = x·x, is invariant. (1.25c)

In the application of the relation (1.25b), it is said that the metric tensor h

µn

is used to lower a
superscript into a subscript. This then also specified the transformation of the metric:

) h

(x)
µn

! h

(y)
µn

= L
µ

r L
n

s

h

(x)
rs

, 2 times covariant tensor.
(1.25d)

6 We shall see later that the Lorentz group is actually Spin(1, 3), the double cover of the SO(1, 3) group, for spinors
to be describable by single-valued spacetime functions [+ discussion around the relations (3.44)–(3.47)].
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Energy and Momentum

Relativistic Kinematics
(Hamiltonian action) ∝ (“world line” length):

…where we set α = mc, leading to:

"ereupon:

8

S = �
Z B

A
d(ct) a

(1.8)
= �

Z tB

tA
dt

ac
g

,

L = �ac

r
1 � v2

c2

⇡ �ac +
1

2

ac
v2

c2

+ ac O
⇣v4

c4

⌘
where we used the non-relativistic expansion (1.10c). Since the initial constant,

L = �mc2

g

�1 = � mc2

r
1 � ~v 2

c2

= � mc2

r
1 � 1

c2

|
.
~r |2.

~p :=
∂L
∂

.
~r

=
∂L
∂~v

= mg~v
(

E := ~p·
.
~r � L = mg~v·~v + mc2

g

�1 = mgc2

,

1.10a h
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Energy-Momentum

Relativistic Kinematics
Note: E = γmc2 is total energy; E0 = mc2 is rest energy.
Also: T = E–E0 = m(γ–1)c2 is kinetic energy.
"e energy-momentum 4-vector (4-momentum) is

the Lorentz-invariant square of which is:

"is de$nes the Lorentz-invariant mass:

and the Lorentz-invariant combination of E, px , py & pz.
9

p = (p
µ

) := (�E/c,~p) = (�mgc, mg~v).

p2 := p
µ

h

µn p
n

= E2

/c2 � ~p 2 = m2

g

2c2 � ~p 2

2 = m2

g

2c2

⇣
1 � v2

c2

⌘
= m2c2

.

m2c4 = p·p = E2 � ~p 2c2 (just like c2t2 = x·x = c2t2 �~r 2)

Tuesday, November 1, 11



Conventions and Details

Relativistic Kinematics
Now about that sign in                              :
Starting from quantum theory in coord. representation,

we identify:

"e same may be derived by purely classical arguments:

10

2

g =
1p

1 � b2
⇡ 1 +

1
2

b2 +
3
8

b4 +
5
16

b6 + O
�

b8�, b :=
v2

c2 ⌧ 1;

and ⇡ 1p
2e

h
1 +

1
4

e +
3

32
e2 +

5
128

e3 + O
�
e4�

i
. e :=

⇣
1� |~v|

c

⌘
⌧ 1.

yµ = L

µ
n xn, , y = LLLL x ,

2

4
y0

y1

y2

y3

3

5 =

2

4
L

0
0 L

0
1 L

0
2 L

0
3

L

1
0 L

1
1 L

1
2 L

1
3

L

2
0 L

2
1 L

2
2 L

2
3

L

3
0 L

3
1 L

3
2 L

3
3

3

5

2

4
x0

x1

x2

x3

3

5 . (0.15a)

m2c4 = p·p = E2 � ~p 2c2 (just like c2t2 = x·x = c2t2 �~r 2) (0.16)

p = (�E/c,~p) (0.17)

)—it is simplest to rely on quantum mechanics, where in coordinate representation
become p

µ

= h̄
i

∂

∂xµ

:

p
0

=
h̄
i

∂

∂x0

=
h̄
i

∂

∂(ct)
= � 1

c
ih̄

∂

∂t
= � 1

c
H, ~p = +

h̄
i
~r.

(vµ) :=
∂xµ

∂t
= (c,

.x1

,

.x2

,

.x3). S = �
Z tB

tA

dt mc2

s
1 � ~v 2

c2

= �
Z x0

B

x0

A

dx0 L
0

,

L
0

:= m
p

c2 �~v 2

,

( p
0

:= c
∂

�
�m

p
c2�~v 2

�
∂c = �mgc = �E/c,

pi := c
∂

�
�m

p
c2�~v 2

�
∂vi = mg dij vj

,p
µ

:=
∂L

0

∂

∂xµ

∂x0

=
∂L

0

1

c ∂

.xµ

= c
∂L

0

∂vµ

,
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General Remarks

Decays and Collisions
Strictly conserved quantities

the sum of (observable) 4-momenta
the sum of (observable) angular momenta (incl. spin)
the sum of (observable) Noether charges (incl. EM ch.)

Collisions can be:

11

Type Kinetic Energy Mass

Elastic Conserved Conserved

Fissile/Explosive increased decreased

Fusing/Implosive decreased increased

Tuesday, November 1, 11



2-Particle Decay

Particle Decays
Consider A → B + C, with mA ≠ 0.
Use the A-rest frame:                              , and

4-momentum conservation: pA = pB + pC , implies that

"is is useful, but provides no relationship between the 
energies and the 3-momenta.
So, consider  pA = pB + pC   also as a 4-vector equation.
"is equation is (by de$nition) not invariant,
but pA2=(pB+pC)2, pB2=(pA–pC)2 and  pC2=(pA–pB)2 are.

12

92 Chapter 1. Physics in Spacetime

1.2 Relativistic Kinematics: Limitations and Consequences
The essential reason for defining the 4-momentum (1.30) and (1.31a) is the fact that this
4-vector physical quantity is conserved [+ footnote 13, p. 52]. Because of the typical appli-
cation, we’ll consider collisions and decays.

Using the definitions (1.31a), (1.33) and (1.34), for collisions we have:
1. The sum of relativistic 4-momenta is strictly conserved.
2. The sum of relativistic kinetic energies:

(a) is conserved in elastic collisions;
(b) grows in “exo-energetic” (fissile or explosive) processes;
(c) is diminished in “endo-energetic” (fusing, implosive or sticky) processes.

Since the mass equals m = (E � T)/c2, is it conserved only in elastic collisions. In explo-
sive/fissile collisions, the total mass is diminished, which supports the impression that part
of the mass was “converted” into kinetic energy; in implosive/fusing/sticking processes, the
total mass grows, as if part of kinetic energy was “converted” into mass. One must keep
in mind that the total mass of a composite system equals (up to the coefficient of propor-
tionality, c2) the rest energy, which includes various “internal forms of energy,” as these are
usually called in non-relativistic physics. thus, e.g., the total mass of a hydrogen atom equals
(mp + me)c2 + Eb, where Eb is the binding energy of the hydrogen atom in the particular
state, in the first approximation given by Bohr’s formula (–1.26).

Example 1.1: Two equal snowballs of mass m each fly with the same speed |~vi| = bc, 0 < b 6 1,
towards each other, then collide and fuse into one large snowball. For which speed of the
colliding snowballs will the resulting snowball have a mass of M = 3m (so that “m+m ! 3m”)?
Solution: Given that ~p

1

= �~p
2

, conservation of the linear momentum 3-vector gives that ~p
1+2

=
~p

1

+ ~p
2

= 0, that is, the resulting snowball is at rest (which should be obvious). Conservation
of p

0

now gives EA + EB = EA+B, i.e.:

2mgc2 = Mc2

, ) M =
2mp
1 � b

2

> 2m, since b > 0. (1.41)

Inserting M = 3m, solve the equation (1.41) for b, and obtain b =
p

5

3

⇡ 74.54%.

— ¶ —
Part of the analysis of this process, the one that relies exclusively on applications of

the 4-momentum conservation law is usually referred to as “kinematics.” Sometime, that
term also implies the application of the conservation law of angular momentum. For the
remainder of this chapter, angular momentum considerations are omitted, and a few simple
processes are studies “kinematically,” as a user’s guide for application in general.

1.2.1 Decays
Two-Particle Decays
The simplest decay is of the form A ! B + C. Label the 4-momenta:

A ! B + C, pA = (�mAc,

~
0), pB = (�EB/c,~pB), pC = (�EC/c,~pC), (1.42)

where we used the fact that before the decay, particle A (with mA 6= 0) defines an inertial
system where it is at rest, so that its total relativistic energy reduces to rest energy, EA =
mAc2. The 4-momentum conservation law provides:

pA = pB + pC, or pB = pA � pC, (1.43)
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pB = (�EB/c,~pB), pC = (�EC/c,~pC),

�mAc = �EB/c � EC/c ~pB = �~pCand
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Particle Decays
So, consider  pA2=(pB+pC)2:

…so there is a relationship between energies and 3-
momenta (and masses)!
But, it’s complicated.

13

p

2
A = (pB + p)2 = p

2
B + p

2
C + 2 pB · pC,

k k
·

k k

m 2
B c2 + m 2

C c2 + 2
⇣EB

c
EC

c
� ~pB·~pC

⌘
,

⇣

c c
� ·

k

m 2
B c2 + m 2

C c2 + 2
EB EC

c2 + 2~pB
2.

k k

m 2
A c2

2-Particle Decay
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Particle Decays
Consider instead  pB2=(pA–pC)2:

"is is immediately solved:

14

p

2
B = (pA � pC)

2 = p

2
A + p

2
C � 2 pA · pC,

k k

m 2
B c2 m 2

A c2 + m 2
C c2 � 2

EA

c
EC

c
,

k

m 2
A c2 + m 2

C c2 � 2 mA EC.

EC =
⇣m 2

A + m 2

C � m 2

B

2mA

⌘
c2

.

And pC
2=(pA–pB)2

similarly yields the

B↔C result for EB.

2-Particle Decay
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Particle Decays
Use the universal (on-shell) relativistic relationship:

…and recall:

15

q

|~pC| =

s
E 2

C

c2

� m2

C c2 = c

s⇣m 2

A + m 2

C � m 2

B

2mA

⌘
2

� m2

C,

= c
p
(mA + mB + mC)(mA � mB + mC)(mA + mB � mC)(mA � mB � mC)

2mA
,

= c

q
m 4

A + m 4

B + m 4

C � 2m 2

A m 2

B � 2m 2

A m 2

C � 2m 2

B m 2

C

2mA

~pB = �~pC

EB =
⇣mA

2 + mB
2 � mC

2

2mA

⌘
c2, EC =

⇣mA
2 + mC

2 � mB
2

2mA

⌘
c2.

NOTICE

All of these are

constants!

2-Particle Decay
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Particle Decays
What about A → B + C, with mA = 0 ?
Well, pA2=(pB+pC)2 produced the result:

…whereby mA = 0 would imply that a sum of non-
negative quantities vanishes…
…which can happen only if all of them vanish 
simultaneously.
So, a massless particle can only decay into two massless, 
and stationary particles… which is a contradiction.
"is much is true on-shell (when                                     ).

16

2

g =
1p

1 � b2
⇡ 1 +

1
2

b2 +
3
8

b4 +
5
16

b6 + O
�

b8�, b :=
v2

c2 ⌧ 1;

and ⇡ 1p
2e

h
1 +

1
4

e +
3

32
e2 +

5
128

e3 + O
�
e4�

i
. e :=

⇣
1� |~v|

c

⌘
⌧ 1.

yµ = L

µ
n xn, , y = LLLL x ,

2

4
y0

y1

y2

y3

3

5 =

2

4
L

0
0 L

0
1 L

0
2 L

0
3

L

1
0 L

1
1 L

1
2 L

1
3

L

2
0 L

2
1 L

2
2 L

2
3

L

3
0 L

3
1 L

3
2 L

3
3

3

5

2

4
x0

x1

x2

x3

3

5 . (0.15a)

m2c4 = p·p = E2 � ~p 2c2 (just like c2t2 = x·x = c2t2 �~r 2) (0.16)

p = (�E/c,~p) (0.17)

pµ :=
∂L0

∂ ∂xµ

∂x0

=
∂L0

1
c ∂

.xµ
= c

∂L0
∂vµ (0.18)

�mAc = �EB/c � EC/c ~pB = �~pC (0.19)

p

2
A = (pB + p)2 = p

2
B + p

2
C + 2 pB · pC,

k k

m 2
A c2 m 2

B c2 + m 2
C c2 + 2

⇣EB

c
EC

c
� ~pB·~pC

⌘
,

k (0.20)

m 2
B c2 + m 2

C c2 + 2
EB EC

c2 + 2~pB
2.

m 2
A c2 = m 2

B c2 + m 2
C c2 + 2

EB EC

c2 + 2~pB
2, (0.21)

p

2
B = (pA � pC)

2 = p

2
A + p

2
C � 2 pA · pC,

k k

m 2
B c2 m 2

A c2 + m 2
C c2 � 2

EA

c
EC

c
,

k (0.22)

m 2
A c2 + m 2

C c2 � 2 mA EC.

EB =
⇣mA

2 + mB
2 � mC

2

2mA

⌘
c2, EC =

⇣mA
2 + mC

2 � mB
2

2mA

⌘
c2. (0.23)

2

g =
1p

1 � b2
⇡ 1 +

1
2

b2 +
3
8

b4 +
5
16

b6 + O
�

b8�, b :=
v2

c2 ⌧ 1;

and ⇡ 1p
2e

h
1 +

1
4

e +
3

32
e2 +

5
128

e3 + O
�
e4�

i
. e :=

⇣
1� |~v|

c

⌘
⌧ 1.

yµ = L

µ
n xn, , y = LLLL x ,

2

4
y0

y1

y2

y3

3

5 =

2

4
L

0
0 L

0
1 L

0
2 L

0
3

L

1
0 L

1
1 L

1
2 L

1
3

L

2
0 L

2
1 L

2
2 L

2
3

L

3
0 L

3
1 L

3
2 L

3
3

3

5

2

4
x0

x1

x2

x3

3

5 . (0.15a)

m2c4 = p·p = E2 � ~p 2c2 (just like c2t2 = x·x = c2t2 �~r 2) (0.16)

p = (�E/c,~p) (0.17)

pµ :=
∂L0

∂ ∂xµ

∂x0

=
∂L0

1
c ∂

.xµ
= c

∂L0
∂vµ (0.18)

�mAc = �EB/c � EC/c ~pB = �~pC (0.19)

p

2
A = (pB + p)2 = p

2
B + p

2
C + 2 pB · pC,

k k

m 2
A c2 m 2

B c2 + m 2
C c2 + 2

⇣EB

c
EC

c
� ~pB·~pC

⌘
,

k (0.20)

m 2
B c2 + m 2

C c2 + 2
EB EC

c2 + 2~pB
2.

m 2
A c2 = m 2

B c2 + m 2
C c2 + 2

EB EC

c2 + 2~pB
2, (0.21)

p

2
B = (pA � pC)

2 = p

2
A + p

2
C � 2 pA · pC,

k k

m 2
B c2 m 2

A c2 + m 2
C c2 � 2

EA

c
EC

c
,

k (0.22)

m 2
A c2 + m 2

C c2 � 2 mA EC.

EB =
⇣mA

2 + mB
2 � mC

2

2mA

⌘
c2, EC =

⇣mA
2 + mC

2 � mB
2

2mA

⌘
c2. (0.23)

E2 = ~p 2c2 + m2c4
(0.24)

2-Particle Decay
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Particle Decays
3- and more-particle decays:

…and very many others.
Squaring them (using the rest-frame of the un-indexed 
“parent” particle), obtain equations such as

…and so on, with:
17
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From here, by squaring, rearranging terms to isolate the square-root, then by squaring again,
we obtain: ⇥

m 4

A + (m 2

B � m 2

C )2

⇤
c2 = 2m 2

A

⇥
(m 2

B + m 2

C )c2 + 2~p 2

⇤
. (1.48d)

Solving this for |~p | one re-derives the result (1.47).

Digression 1.8: On the other hand, if we express (in the equation (1.48a)) EA and one of EB, EC

in terms of linear momenta and masses using the general relation (1.36), we obtain, e.g.:

mA c2 =
q

m 2

B c2 + ~p 2 + EC, i.e., mA c2 + EC =
q

m 2

B c2 + ~p 2

, (1.49a)

the square of which give, after a little simplifying:

E 2

C � 2mA c2 EC +
⇥
(m 2

B � m 2

C )c4 � ~p 2c2

⇤
= 0. (1.49b)

After inserting the previous result (1.47) and simplifying, the solutions of this quadratic equa-
tions are:

E(±)
C =

h
mA ±

m 2

A + m 2

B � m 2

C

2mA

i
c2

, (1.49c)

where E(�)
C equals the result (1.46).

That the solution E(+)
C is not physical is quickest to see from the special case when mB =

mC = 0, as is the case in the decay p

0 ! 2g. For this case,

E(+)
B = E(+)

C =
3

2

mA c2

, which would imply mA c2 = EA
(1.48a)
= E(+)

B + E(+)
C = 3mA c2

, (1.49d)

which is clearly a contradiction.
The technical advantage in using the square of a suitably chosen form of the 4-momentum

conservation equation (1.45) is fully understood only through filling in the derivation steps that
had been omitted here (mostly, in rearranging and simplifying). The diligent Student is therefore
highly recommended to complete these alternate computations.

Many-Particle Decays
The analysis of a decay of a particle into more than two “fragments” is of course more
complicated. However, the starting point is again the 4-momentum conservation, which
may be written in any of the following forms:

p = Â
i

pi, pi = p � Â
j 6=i

pj, p � pi = Â
j 6=i

pj, 8i, (1.50a)

pi + pj = p � Â
k 6=i,j

pk, p � pi � pj = Â
k 6=i,j

pk, 8i, j, etc. (1.50b)

Squaring the 4-vector equations (1.50) in the rest-frame of the decaying particle, where

p = (E/c,

~
0), so that p2 = m2c2 = E2

/c2

, (1.51)

we respectively obtain the equations:
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pj,
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Â
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pi + pj = p � Â
k 6=i,j

pk,

1
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�
m2 � Â

i
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i
�
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j>i

�
EiEj � |~pi||~pj|c2

cos(fij)
�
,

2 2 Â 2

�
4 2 Â Â

�
� � � �

1

2

�
m2 � m2

i + Â
j 6=i

m 2

j
�

c4 = mc2 Â
j 6=i

Ej � Â
j<k

j,k 6=i

�
EjEk � |~pj||~pk|c2

cos(fjk)
�
,

pi·pj = piµhµn pjn =
EiEj

c2

� |~pi||~pj| cos(fij).

Not overdetermined,

just abundant in ways

to approach any case.≥3-Particle Decays
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Kinematics

Particle Scattering
Typically, A + B → C1 + C2 +…, for which we use

rewri'en in as many ways as convenient, then squared.
We may use the CM system:

reproduces conservation of energy and 3-momenta,
18

p
1

+ p
2

= Â
i>2

pi,

CM system, before: p

1

+ p

2

=
⇣
� E

1

c
� E

2

c
,

~
0

⌘
, i.e., ~p

1

= �~p
2

,

k

CM system, after: Â
i>2

pi = Â
i>2

⇣
� Ei

c
,

~
0

⌘
, i.e., Â

i>2

~pi = 0,
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Kinematics

We may use the target-system, say,  p2 = (–m2c, 0, 0, 0):

We cannot use the 4-vectors from the CM-system and 
the target-system together, but we can use Lorentz-
invariant quantities from the two systems together:

19

Particle Scattering

target system, before: p

0
1
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0
2

=
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1
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2
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1
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k
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2

= . . . ,
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Fusing Collision

Consider A + B → C, with mB ≠ 0 and B the target.

Conservation of 4-momentum yields:

and squaring  pA + pB = pC  yields:

"e probe (A) must have a precisely tuned energy for it 
to fuse with the target (B).

20

Particle Scattering

pA = (�EA/c,~pA), pB = (�mBc,

~
0), pC = (�EC/c,~pC),

⇣
� EC

c
, ~pC

⌘
=

⇣
� EA

c
� mBc , ~pA

⌘
,

from which it follows that ~pC = ~pA =: ~p, as well as that

⌘
, as well as that EC = EA + mBc2. Squaring (

pC
2 = pA

2 + pB
2 + 2pA·pB,

·

m2

C c2 = m2

Ac2 + m2

Bc2 + 2EAmB, , ) EA =
m2

C � (m2

A + m2

B)
2mB

c2

.
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Since E = mc2 + T, in particular TA = EA – mAc2, and

is the required kinetic energy of the probe for it so fuse 
with the target. (A neutron to be absorbed by 235U…)
It supports the impression that the kinetic energy is 
making up the difference between (mA + mB) and mC…
…except, it is really the difference between the squares 
of these quantities, “normalized” by 2mB.
"is result is clearly the time-reversal of the one 
regarding a 2-particle decay.

21

Fusing Collision

Particle Scattering

3

or in the target system (choosing, say, target = “2,” so that p

2

= (�m
2

c,

~
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target system, before: p
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1
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2
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⇣
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1
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� m

2

c , ~p0
1

⌘
, i.e., ~p0

2
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0, (0.28)
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0
i = Â
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⇣
� Ei

c
, ~pi

⌘
, i.e., Â

i>2

~p0i = ~p 0
1

. (0.29)

TA =
m2

C � (mA
2 + mB

2)
2mB

c2 � mAc2 =
m2

C � (mA + mB)2

2mB
c2

. (0.30)
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Particle Production Threshold

Consider now  A + B → C1 + C2 +…
…and assume that the A + B collision has barely enough 
total energy to create the resulting particles, Ci.
"e Ci are then (almost) at rest, with no kinetic energy.

22

Particle Scattering
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⇣
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2 + mB

2)
⌘

c2$e threshold:
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In terms of kinetic energy:

So, for a collision of the type  X + X → 3X + X* 
(resulting in three X’s and an anti-X)
…the test-X must hit the target X with the kinetic 
energy of [(4·4–(1+1)2)/2]mX c2 = 6 mX c2!
"is is more than naively expected:

to create X + X*, shouldn’t one need to invest only 2mX c2 ?
No: 3-momentum before collision is ≠0,
…the product 3X+X* cannot be at rest; that costs energy.

23

Particle Scattering
Particle Production Threshold

T0
A > 1

2 mB

⇣
Â
i,j

mi mj � (mA + mB)
2

⌘
c2
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In beam-to-beam collisions, CM-frame = lab-frame.

If the colliding particles have the same mass,

so that

24

Particle Scattering

~pA = �~pB =: ~p,

EA = EB =: E,
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2E/c,

~
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.

Particle Production Threshold
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In terms of kinetic energy:

which indeed conforms to the naive expectations.
"is is the main reason for performing beam-to-beam 
collisions (if possible),
…rather than bombarding a stationary target with 
accelerated (energized) probes.
Before the collision, the total 3-momentum = 0.
A#er the collision, the total 3-momentum = 0,
…so the collision products can be at rest.

25

Particle Scattering
Particle Production Threshold

min

�
Â TX

�
=

⇣
4

Â
i=1

mX � 2mX

⌘
c2

2X!3X+X
= 2mX c2

,
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Relative Kinetic Energy

Compare the CM/lab-frame and the relative frame of, 
say, B being the “target”:

Using that
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Since both particles have the same minimal energy (as they are identical) before the collision, and T = E�mc2
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If mA = mB = m, then from ~pA = �~pB it follows that EA = EB =: E; also, so write E0
A = E0

. Using the results of

the previous computations, we arrive at:
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where the second term is the fast-growing relativistic corrections:
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Kinematics Lessons

Energy is conserved, but not invariant:
$e total energy of colliding particles before the collision 
equals the total energy of all collision products.
$e c–1-multiple of energy is the 0th component of the 
Lorentz-variant 4-vector of energy-momentum; it changes 
when boosting from one reference frame into another.

Mass is invariant, but not conserved:
$e square-root of the Lorentz-invariant (4-momentum)2; 
remains unchanged from one frame to another.
$e sum of masses of the colliding particles need not equal 
the sum of masses of the collision products.

Conservation is in time, which is not Lorentz-invariant.
27
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The Heisenberg Zone

As is well known (for each i = 1, 2, 3 separately):

"is is an inherent indeterminacy, not an uncertainty.
Elementary consequence of non-commutativity:

28

Quantum Kinematics
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where the second term is the fast-growing relativistic corrections:
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The right-hand side expression is minimized for min(w) = �hCi/2D 2
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If A and B are (canonically) conjugate variables,
[A, B] ≠ 0 follows from the canonical Poisson brackets.

But, E and τ are not canonically conjugate variables!
In fact, τ is not the parameter of time, but the duration of 
the process occurring at the energy E. $e parameter 
(coordinate) of time is not a canonical variable.
Similarly, in "eld theory, pi and xi are not canonically 
conjugate variables; (ct, x1, x2, x3) are not canonical 
variables (eigenvalues of observable operators in QFT).

Non-commutativity ⊋ canonical non-commutativity.
29

The Heisenberg Zone

Quantum Kinematics
DA DB > 1

2

|h[A, B]i| .
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Variable!

Constant!
"e best known example:

But,

…so J1 and J2 can be measured ‘simultaneously,’ in 
states with 〈J3 〉 = 0, although they do not commute.
"e indeterminacy limit is state-dependent!
And, of course,

30

The Heisenberg Zone

Quantum Kinematics
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vanishes
trivially

Electromagnetic Charge

Consider:

…and so:

"is is even simpler in Lorentz-covariant notation:

…and follows simply from Fμν = – Fνμ .
31
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ter…
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Charges in General

Additive charges ↔ continuous symmetries:
linear momentum ↔ translation in space
energy ↔ translation in time
angular momentum ↔ rotation in space
electromagnetic charge ↔ see Chapter 3
chromodynamic color ↔ see Chapter 4
weak isospin ↔ see Chapter 5

Multiplicative charges ↔ discrete symmetries
P (parity) ↔ re&ection in space
T ↔ reversal of time
C ↔ Charge (Hermitian/Dirac) conjugation

32

Charge Conservation

Heisenberg
Zone}

No Hei-
senberg
Zone; see 
later…

}

Tuesday, November 1, 11



Thanks!

Tristan Hubsch
Department of Physics and Astronomy
Howard University, Washington DC

Prirodno-Matematički Fakultet
Univerzitet u Novom Sadu
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