(Fundamental) Physics of Elementary Particles

Relativistic kinematics (more detail),

 particle decays \& scattering, etc.Tristan Hübsch
Depaittment of Physics and Astronomy
Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

Fundamental Physics of Elementary Particles

PRロGRAM

- Relativistic Kinematics (More Detail)
- Space \& time mixing, "usual" relativistic effects, revisited
- Definitions and some crucial minuses
- Particle Decay
- 2-particle decay kinematics
- n-particle decay generalization
- Particle Collisions \& Scattering
- The CM-system vs. the target system
- Fusing collisions, and process threshold

Invariance \& covariance $v s$. conservation

- Quantum Kinematics - The Heisenberg Zone
- Charge Conservation - Gauge \& Other Charges

Relativistic Kinematics

LロRENTZ TRANSFロRMATIGNS

- The space-time coordinate transformations that leave Maxwell's equations invariant mix space and time:

$$
\begin{array}{ll}
\vec{r}^{\prime}=\vec{r}+(\gamma-1)(\hat{v} \cdot \vec{r}) \hat{v}-\gamma \vec{v} t, & \vec{r}=\vec{r}^{\prime}+(\gamma-1)\left(\hat{v} \cdot \vec{r}^{\prime}\right) \hat{v}+\gamma \vec{v} t^{\prime}, \\
t^{\prime}=\gamma\left(t-\frac{\vec{v} \cdot \vec{r}}{c^{2}}\right), & t=\gamma\left(t^{\prime}+\frac{\vec{v} \cdot \vec{r}^{\prime}}{c^{2}}\right), \\
\gamma:=\left(1-\frac{\vec{v}^{2}}{c^{2}}\right)^{-\frac{1}{2}}, & \hat{v}:=\frac{\vec{v}}{\sqrt{\vec{v}^{2}}} .
\end{array}
$$

Or, put another way:

$$
\vec{r}^{\prime}=\vec{r}_{\perp}+\gamma\left(\vec{r}_{\|}-\vec{v} t\right), \quad \vec{r}=\vec{r}_{\perp}^{\prime}+\gamma\left(\vec{r}_{\|}^{\prime}+\vec{v} t\right)
$$

... positions change in the direction of motion only.

Relativistic Kinematics

CロNSEQUENCES ロF LロRENTZ TRANSFGRMATIUNS
－Relativity of simultaneity $\left(t_{A}=t_{B}\right)$ ：

$$
t_{i}^{\prime}=\gamma\left(t_{i}-\frac{\vec{v} \cdot \vec{r}_{i}}{c^{2}}\right), \quad i=A, B, \quad \Rightarrow \quad t_{A}^{\prime}-t_{B}^{\prime}=\gamma \frac{\vec{v} \cdot\left(\vec{r}_{B}-\vec{r}_{A}\right)}{c^{2}}
$$

－Relativity of length／distance／extent：

$$
\Delta \vec{r}^{\prime}=\Delta \vec{r}+(\gamma-1)(\hat{v} \cdot \Delta \vec{r}) \hat{v}=\Delta \vec{r}_{\perp}+\gamma \Delta \vec{r}_{\|},
$$

FitzGerald－Lorentz

 contraction$$
\begin{aligned}
\triangle \vec{r}_{\|}^{\prime} & =\gamma \triangle \vec{r}_{\|}, \\
\Delta \vec{r}_{\perp}^{\prime} & =\triangle \vec{r}_{\perp},
\end{aligned}
$$

Relativity of duration／passage of time：

$$
t_{B}-t_{A}=\gamma\left(t_{B}^{\prime}-t_{A}^{\prime}\right)+\gamma \frac{\vec{v} \cdot\left(\vec{r}_{B}^{\prime}-\vec{r}_{A}^{\prime}\right)}{c^{2}} .
$$

time dilation $\Delta t=\gamma \triangle t^{\prime}$

Relativity of ．．．well，relative velocities：

$$
\begin{aligned}
& \vec{u}:=\frac{\Delta \vec{r}}{\Delta t}=\frac{\vec{u}_{\|}^{\prime}+\vec{v}}{\left(1+\frac{\left(\vec{v} \cdot \vec{u}^{\prime}\right)}{c^{2}}\right)}+\frac{\vec{u}_{\perp}^{\prime}}{\gamma\left(1-\frac{\left(\vec{v} \cdot \vec{u}^{\prime}\right)}{c^{2}}\right)} \\
& \text { addition of velocities }
\end{aligned}
$$

$$
\vec{u}_{\|}^{\prime}=\left(\vec{u}_{\|}^{\prime} \cdot \hat{v}\right) \hat{v}, \quad \vec{u}_{\perp}^{\prime} \cdot \hat{v}=0 .
$$

Relativistic Kinematics

CロNVENTIロNS AND DETAILS

- Frequently useful expansions:

$$
\begin{array}{ll}
\gamma=\frac{1}{\sqrt{1-\beta^{2}}} \approx 1+\frac{1}{2} \beta^{2}+\frac{3}{8} \beta^{4}+\frac{5}{16} \beta^{6}+O\left(\beta^{8}\right), & \beta:=\frac{v^{2}}{c^{2}} \ll 1 ; \\
\text { and } \quad \approx \frac{1}{\sqrt{2 \epsilon}}\left[1+\frac{1}{4} \epsilon+\frac{3}{32} \epsilon^{2}+\frac{5}{128} \epsilon^{3}+O\left(\epsilon^{4}\right)\right] . & \epsilon:\left(1-\frac{|\vec{v}|}{c}\right)
\end{array}
$$

Notation (Cartesian coord's):

$$
\mathrm{x}:=\sum_{\mu=0}^{3} x^{\mu} \hat{\mathbf{e}}_{\mu}, \quad \text { where } \quad x^{0}=c t, \vec{r}=\sum_{i=1}^{3} x^{i} \hat{\mathbf{e}}_{i},
$$

... so Lorentz transformations are linear:

Relativistic Kinematics

CロNVENTIUNS AND DETAILS

- Lorentz boosts:

$$
\frac{\partial \mathrm{L}^{\mu} v}{\partial x^{\rho}}=0, \quad(\mu, v, \rho=0,1,2,3), \quad \mathbf{L}^{T} \boldsymbol{\eta}=\boldsymbol{\eta} \mathbf{L}^{-1}, \quad \operatorname{det}(\mathbf{L})=1,
$$

leave invariant the "proper time," τ :

$$
c^{2} \tau^{2}=\mathrm{x}^{2}=\mathrm{x} \cdot \mathrm{x}:=x^{\mu} \eta_{\mu v} x^{v}
$$

- where $\left[\eta_{\mu \nu}\right]=\operatorname{diag}[1,-1,-1,-1]$ is the spacetime metric.
$\bullet s=-c \tau$ is the "interval," $\mathrm{d} s^{2}=-c^{2} \mathrm{~d} \tau^{2}$ the "line element."

Relativistic Kinematics

CロNVENTIロNS AND DETAILS

- The oft-cited special case:

$$
\left[\mathrm{L}^{\mu}{ }_{\nu}\right]=\left[\begin{array}{cccc}
\gamma & -\gamma \frac{v}{c} & 0 & 0 \\
-\gamma \frac{v}{c} & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is related (by analytic continuation) to a rotation:

$$
\left[\begin{array}{c}
c\left(i t^{\prime}\right) \\
x^{\prime 1} \\
x^{\prime 2} \\
x^{\prime 3}
\end{array}\right]=\left[\begin{array}{cccc}
\cos (\phi) & -\sin (\phi) & 0 & 0 \\
\sin (\phi) & \cos (\phi) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
c(i t) \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right]
$$

- and the coordinates $\left(x^{0}=c i t, x^{1}, x^{2}, x^{3}\right)$ span the "World of (Hermann) Minkowski;" but $t \rightarrow i t$ is "Wick-rotation."

Relativistic Kinematics

Energy and Mamentum

- (Hamiltonian action) \propto ("world line" length):

$$
\begin{aligned}
& S=-\int_{A}^{B} \mathrm{~d}(c \tau) \alpha \stackrel{(1.8)}{=}-\int_{t_{A}}^{t_{B}} \mathrm{~d} t \frac{\alpha c}{\gamma}, \\
& L=-\alpha c \sqrt{1-\frac{v^{2}}{c^{2}}} \approx-\alpha c+\frac{1}{2} \alpha c \frac{v^{2}}{c^{2}}+\alpha c O\left(\frac{v^{4}}{c^{4}}\right)
\end{aligned}
$$

\ldots where we set $a=m c$, leading to:

$$
=-m c^{2} \gamma^{-1}=-m c^{2} \sqrt{1-\frac{\vec{v}^{2}}{c^{2}}}=-m c^{2} \sqrt{\left.1-\frac{1}{c^{2}} \right\rvert\, \dot{\vec{r}}^{2}} .
$$

Thereupon:

$$
\begin{aligned}
\vec{p} & :=\frac{\partial L}{\partial \dot{\vec{r}}}=\frac{\partial L}{\partial \vec{v}}=m \gamma \vec{v} \\
E & :=\vec{p} \cdot \dot{\vec{r}}-L=m \gamma \vec{v} \cdot \vec{v}+m c^{2} \gamma^{-1}=m \gamma c^{2}
\end{aligned}
$$

Relativistic Kinematics

ENERGY-MロMENTUM

- Note: $E=\gamma m c^{2}$ is total energy; $E_{0}=m c^{2}$ is rest energy.
- Also: $T=E-E_{0}=m(\gamma-1) c^{2}$ is kinetic energy.
- The energy-momentum 4-vector (4-momentum) is

$$
\left.\left.\mathrm{p}=\left(p_{\mu}\right):=\frac{1}{\sim} / c, \vec{p}\right)=m \gamma c, m \gamma \vec{v}\right)
$$

the Lorentz-invariant square of which is:

$$
\begin{aligned}
\mathrm{p}^{2} & :=p_{\mu} \eta^{\mu v} p_{v}=E^{2} / c^{2}-\vec{p}^{2}=m^{2} \gamma^{2} c^{2}-\vec{p}^{2} \\
& =m^{2} \gamma^{2} c^{2}\left(1-\frac{v^{2}}{c^{2}}\right)=m^{2} c^{2} .
\end{aligned}
$$

This defines the Lorentz-invariant mass:

$$
\left.m^{2} c^{4}=\mathrm{p} \cdot \mathrm{p}=E^{2}-\vec{p}^{2} c^{2} \quad \text { (just like } c^{2} \tau^{2}=\mathrm{x} \cdot \mathrm{x}=c^{2} t^{2}-\vec{r}^{2}\right)
$$

- and the Lorentz-invariant combination of $E, p_{x}, p_{y} \& p_{z}$.

Relativistic Kinematics

CロNVENTIUNS AND DETAILS

- Now about that sign in $\mathrm{p}=(-E / c, \vec{p})$:
- Starting from quantum theory in coord. representation,

$$
p_{\mu}=\frac{\hbar}{i} \frac{\partial}{\partial x^{\mu}}
$$

we identify:

$$
p_{0}=\frac{\hbar}{i} \frac{\partial}{\partial x^{0}}=\frac{\hbar}{i} \frac{\partial}{\partial(c t)}=-\frac{1}{c} i \hbar \frac{\partial}{\partial t}=\frac{21}{2 c} H, \quad \vec{p}=+\frac{\hbar}{i} \vec{\nabla} .
$$

The same may be derived by purely classical arguments:

$$
\begin{aligned}
\left(v^{\mu}\right) & :=\frac{\partial x^{\mu}}{\partial t}=\left(c, \dot{x}^{1}, \dot{x}^{2}, \dot{x}^{3}\right) \quad S=-\int_{t_{A}}^{t_{B}} \mathrm{~d} t m c^{2} \sqrt{1-\frac{\vec{v}^{2}}{c^{2}}=-\int_{x_{A}^{0}}^{x_{B}^{0}} \mathrm{~d} x^{0} L_{0}} \\
L_{0} & :=m \sqrt{c^{2}-\vec{v}^{2}}, \quad p_{0}:=c \frac{\partial\left(-m \sqrt{c^{2}-\vec{v}^{2}}\right)}{\partial c}=-m \gamma c=\frac{M}{3} / c \\
p_{\mu} & :=\frac{\partial L_{0}}{\partial \frac{\partial x^{\mu}}{\partial x^{0}}}=\frac{\partial L_{0}}{\frac{1}{c} \partial \dot{x}^{\mu}}=c \frac{\partial L_{0}}{\partial v^{\mu}}, \quad p_{i} \quad:=c \frac{\partial\left(-m \sqrt{c^{2}-\vec{v}^{2}}\right)}{\partial v^{i}}=m \gamma \delta_{i j} v^{j}
\end{aligned}
$$

Decays and Collisions

GENERAL REMARKS

- Strictly conserved quantities
- the sum of (observable) 4-momenta
- the sum of (observable) angular momenta (incl. spin)
- the sum of (observable) Noether charges (incl. EM ch.)
- Collisions can be:

Type
 Kinetic Energy

Elastic
Fissile/Explosive
Fusing/Implosive

Conserved

 increased decreased
Mass

Conserved

 decreased increased
Particle Decays

2-Particle Decay

- Consider $A \rightarrow B+C$, with $m_{A} \neq 0$.
- Use the A-rest frame: $\mathrm{p}_{A}=\left(-m_{A} c, \overrightarrow{0}\right)$, and

$$
\mathrm{p}_{B}=\left(-E_{B} / c, \vec{p}_{B}\right), \quad \mathrm{p}_{C}=\left(-E_{C} / c, \vec{p}_{C}\right)
$$

- 4-momentum conservation: $\mathrm{p}_{A}=\mathrm{p}_{B}+\mathrm{p}_{C}$, implies that

$$
-m_{A} C=-E_{B} / c-E_{C} / c \quad \text { and } \quad \vec{p}_{B}=-\vec{p}_{C}
$$

This is useful, but provides no relationship between the energies and the 3-momenta.
So, consider $\mathrm{p}_{A}=\mathrm{p}_{B}+\mathrm{p}_{C}$ also as a 4-vector equation.

- This equation is (by definition) not invariant,
- but $\mathrm{p}_{A}^{2}=\left(\mathrm{p}_{B}+\mathrm{p}_{C}\right)^{2}, \mathrm{p}_{B}^{2}=\left(\mathrm{p}_{A}-\mathrm{p}_{C}\right)^{2}$ and $\mathrm{p}^{2}=\left(\mathrm{p}_{A}-\mathrm{p}_{B}\right)^{2}$ are.

Particle Decays

2-Particle Decay

- So, consider $\mathrm{p}_{A}{ }^{2}=\left(\mathrm{p}_{B}+\mathrm{p}_{C}\right)^{2}$:

$$
\mathrm{p}_{A}^{2}=\left(\mathrm{p}_{B}+\mathrm{p}\right)^{2}=\mathrm{p}_{B}^{2}+\mathrm{p}_{C}^{2}+2 \mathrm{p}_{B} \cdot \mathrm{p}_{C},
$$

$$
m_{A}^{2} c^{2} \quad m_{B}^{2} c^{2}+m_{C}^{2} c^{2}+2\left(\frac{E_{B}}{c} \frac{E_{C}}{c}-\vec{p}_{B} \cdot \vec{p}_{C}\right),
$$

$$
m_{B}^{2} c^{2}+m_{C}^{2} c^{2}+2 \frac{E_{B} E_{C}}{c^{2}}+2 \vec{p}_{B}^{2}
$$

... so there is a relationship between energies and 3momenta (and masses)!

- But, it's complicated.

Particle Decays

2-Particle Decay

- Consider instead $\mathrm{p}_{B}{ }^{2}=\left(\mathrm{p}_{A}-\mathrm{p}_{C}\right)^{2}$:

$$
\begin{gathered}
\mathrm{p}_{B}^{2}=\left(\mathrm{p}_{A}-\mathrm{p}_{C}\right)^{2}= \\
\| \\
\mathrm{p}_{A}^{2}+\mathrm{p}_{C}^{2}-2 \mathrm{p}_{A} \cdot \mathrm{p}_{C} \\
\| \\
m_{A}^{2} c^{2}+m_{C}^{2} c^{2}-2 \frac{E_{A}}{c} \frac{E_{C}}{c}, \\
m_{A}^{2} c^{2}+m_{C}^{2} c^{2}-2 m_{A} E_{C}
\end{gathered}
$$

This is immediately solved:

$$
E_{C}=\left(\frac{m_{A}^{2}+m_{C}^{2}-m_{B}^{2}}{2 m_{A}}\right) c^{2}
$$

And $p^{2}=\left(p_{A}-p_{B}\right)^{2}$ similarly yields the $B \leftrightarrow C$ result for E_{B}.

Particle Decays

2-PARticle Decay

- Use the universal (on-shell) relativistic relationship:

$$
\begin{aligned}
\left|\vec{p}_{C}\right| & =\sqrt{\frac{E_{C}^{2}}{c^{2}}-m_{C}^{2} c^{2}}=c \sqrt{\left(\frac{m_{A}^{2}+m_{C}^{2}-m_{B}^{2}}{2 m_{A}}\right)^{2}-m_{C}^{2}} \\
& =c \frac{\sqrt{\left(m_{A}+m_{B}+m_{C}\right)\left(m_{A}-m_{B}+m_{C}\right)\left(m_{A}+m_{B}-m_{C}\right)}}{2 m_{A}} \\
& =c \frac{\sqrt{m_{A}^{4}+m_{B}^{4}+m_{C}^{4}-2 m_{A}^{2} m_{B}^{2}-2 m_{A}^{2} m_{C}^{2}-2 m_{B}^{2} m_{C}^{2}}}{2 m_{A}}
\end{aligned}
$$

$$
=c \frac{\sqrt{\left(m_{A}+m_{B}+m_{C}\right)\left(m_{A}-m_{B}+m_{C}\right)\left(m_{A}+m_{B}-m_{C}\right)\left(m_{A}-m_{B}-m_{C}\right)}}{2 m_{A}}
$$

... and recall:

$$
\vec{p}_{B}=-\vec{p}_{C}
$$

$E_{B}=\left(\frac{m_{A}^{2}+m_{B}^{2}-m_{C}^{2}}{2 m_{A}}\right) c^{2}, \quad E_{C}=\left(\frac{m_{A}^{2}+m_{C}^{2}-m_{B}^{2}}{2 m_{A}}\right) c^{2}$.

Particle Decays

2-Particle Decay

- What about $A \rightarrow B+C$, with $m_{A}=0$?
- Well, $\mathrm{p}_{A}{ }^{2}=\left(\mathrm{p}_{B}+\mathrm{p}_{C}\right)^{2}$ produced the result:

$$
m_{A}^{2} c^{2}=m_{B}^{2} c^{2}+m_{C}^{2} c^{2}+2 \frac{E_{B} E_{C}}{c^{2}}+2 \vec{p}_{B}^{2}
$$

\ldots whereby $m_{A}=0$ would imply that a sum of nonnegative quantities vanishes ...
... which can happen only if all of them vanish simultaneously.

- So, a massless particle can only decay into two massless, and stationary particles ... which is a contradiction.
- This much is true on-shell (when $E^{2}=\vec{p}^{2} c^{2}+m^{2} c^{4}$).

Particle Decays

≥ 3-PARTICLE DECAYS

- 3- and more-particle decays:
$\mathrm{p}=\sum_{i} \mathrm{p}_{i}, \widehat{\mathrm{p}-\mathrm{p}_{i}=\sum_{j \neq i} \mathrm{p}_{j}, \quad \mathrm{p}_{i}=\mathrm{p}-\sum_{j \neq i} \mathrm{p}_{j}, \quad \mathrm{p}_{i}+\mathrm{p}_{j}=\mathrm{p}-\sum_{k \neq i, j} \mathrm{p}_{k}, ~}$
- ... and very many others.
- Squaring them (using the rest-frame of the un-indexed "parent" particle), obtain equations such as

$$
\begin{aligned}
& \frac{1}{2}\left(m^{2}-\sum_{i} m_{i}^{2}\right) c^{4}=\sum_{j>i}\left(E_{i} E_{j}-\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| c^{2} \cos \left(\phi_{i j}\right)\right), \\
& \frac{1}{2}\left(m^{2}-m_{i}^{2}+\sum_{j \neq i} m_{j}^{2}\right) c^{4}=m c^{2} \sum_{j \neq i} E_{j}-\sum_{\substack{j<k \\
j, k \neq i}}\left(E_{j} E_{k}-\left|\vec{p}_{j}\right|\left|\vec{p}_{k}\right| c^{2} \cos \left(\phi_{j k}\right)\right),
\end{aligned}
$$

- ... and so on, with: $\mathrm{p}_{i} \cdot \mathrm{p}_{j}=p_{i \mu} \eta^{\mu \nu k k i} p_{j v}=\frac{E_{i} E_{j}}{c^{2}}-\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| \cos \left(\phi_{i j}\right)$.

Particle Scattering

KINEMATICS

- Typically, $A+B \rightarrow C_{1}+C_{2}+\ldots$, for which we use

$$
\mathrm{p}_{1}+\mathrm{p}_{2}=\sum_{i>2} \mathrm{p}_{i},
$$

- rewritten in as many ways as convenient, then squared.
- We may use the CM system:

$$
\begin{aligned}
\mathrm{p}_{1}+\mathrm{p}_{2}=\left(-\frac{E_{1}}{c}-\frac{E_{2}}{c}, \overrightarrow{0}\right), & \text { i.e., } \quad \vec{p}_{1}=-\vec{p}_{2} \\
\| & \text { i.e., } \sum_{i>2} \vec{p}_{i}=0,
\end{aligned}
$$

reproduces conservation of energy and 3-momenta,

Particle Scattering

KINEMATICS

- We may use the target-system, say, $\mathrm{p}_{2}=\left(-m_{2} c, 0,0,0\right)$:

$$
\begin{gathered}
\mathrm{p}_{1}^{\prime}+\mathrm{p}_{2}^{\prime}=\left(-\frac{E_{1}^{\prime}}{c}-m_{2} c, \vec{p}_{1}^{\prime}\right), \text { i.e., } \quad \vec{p}_{2}^{\prime}=\overrightarrow{0} \\
\| \\
\sum_{i>2} \mathrm{p}_{i}^{\prime}=\sum_{i>2}\left(-\frac{E_{i}}{c}, \vec{p}_{i}\right), \quad \text { i.e., } \quad \sum_{i>2} \vec{p}_{i}^{\prime}=\vec{p}_{1}^{\prime} .
\end{gathered}
$$

We cannot use the 4 -vectors from the CM-system and the target-system together, but we can use Lorentzinvariant quantities from the two systems together:

$$
\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)^{2}=\left(\sum_{i>2} \mathrm{p}_{i}\right)^{2}=\left(\mathrm{p}_{1}^{\prime}+\mathrm{p}_{2}^{\prime}\right)^{2}=\left(\sum_{i>2} \mathrm{p}_{i}^{\prime}\right)^{2}=\ldots
$$

Particle Scattering

FUSING CロLLISIロN

- Consider $A+B \rightarrow C$, with $m_{B} \neq 0$ and B the target.

$$
\mathrm{p}_{A}=\left(-E_{A} / c, \vec{p}_{A}\right), \quad \mathrm{p}_{B}=\left(-m_{B} c, \overrightarrow{0}\right), \quad \mathrm{p}_{C}=\left(-E_{C} / c, \vec{p}_{C}\right),
$$

- Conservation of 4-momentum yields:

$$
\left(-\frac{E_{C}}{c}, \vec{p}_{C}\right)=\left(-\frac{E_{A}}{c}-m B_{B}, \vec{p}_{A}\right) \quad \begin{aligned}
& E_{C}=E_{A}+m_{B} c^{2} \\
& \vec{p}_{C}=\vec{p}_{A}=: \vec{p}
\end{aligned}
$$

and squaring $\mathrm{p}_{A}+\mathrm{p}_{B}=\mathrm{p}_{C}$ yields:
$\mathrm{p}_{\mathrm{C}}{ }^{2}=\mathrm{p}_{A}{ }^{2}+\mathrm{p}_{B}{ }^{2}+2 \mathrm{p}_{A} \cdot \mathrm{p}_{B}$
$m_{C}^{2} c^{2}=m_{A}^{2} c^{2}+m_{B}^{2} c^{2}+2 E_{A} m_{B}, \quad \Rightarrow \quad E_{A}=\frac{m_{C}^{2}-\left(m_{A}^{2}+m_{B}^{2}\right)}{2 m_{B}} c^{2}$.

- The probe (A) must have a precisely tuned energy for it to fuse with the target (B).

Particle Scattering

FUSING CロLLISIロN

- Since $E=m c^{2}+T$, in particular $T_{A}=E_{A}-m_{A} c^{2}$, and

$$
T_{A}=\frac{m_{C}^{2}-\left(m_{A}^{2}+m_{B}^{2}\right)}{2 m_{B}} c^{2}-m_{A} c^{2}=\frac{m_{C}^{2}-\left(m_{A}+m_{B}\right)^{2}}{2 m_{B}} c^{2}
$$

- is the required kinetic energy of the probe for it so fuse with the target. (A neutron to be absorbed by ${ }^{235} \mathrm{U} . .$.)
It supports the impression that the kinetic energy is making up the difference between $\left(m_{A}+m_{B}\right)$ and $m_{C} \ldots$...except, it is really the difference between the squares of these quantities, "normalized" by $2 m_{B}$.
- This result is clearly the time-reversal of the one regarding a 2 -particle decay.

Particle Scattering

PARTICLE PRODUCTION THRESHOLD

- Consider now $A+B \rightarrow C_{1}+C_{2}+\ldots$
- ... and assume that the $A+B$ collision has barely enough total energy to create the resulting particles, C_{i}.
- The C_{i} are then (almost) at rest, with no kinetic energy.

$$
\begin{aligned}
\left.\mathrm{p}_{i}\right|_{\text {thole }} & =\left(-m_{i} c, \overrightarrow{0}\right), \\
\min \left[\left(\mathrm{p}_{A}^{\prime}+\mathrm{p}_{B}^{\prime}\right)^{2}\right] & =\left(\left.\sum_{i} \mathrm{p}_{i}\right|_{\text {thold }}\right)^{2}, \\
\min \left[m_{A}^{2} c^{2}+m_{B}^{2} c^{2}+2 E_{A}^{\prime} m_{B}\right] & =\left(\sum_{i} m_{i} c\right)^{2}, \\
\left(m_{A}^{2}+m_{B}^{2}\right) c^{2}+2 \min \left(E_{A}^{\prime}\right) m_{B} & =\sum_{i, j} m_{i} m_{j} c^{2} . \\
\text { The threshold: } \quad E_{A}^{\prime} & \geqslant \frac{1}{2 m_{B}}\left(\sum_{i, j} m_{i} m_{j}-\left(m_{A}^{2}+m_{B}^{2}\right)\right) c^{2}
\end{aligned}
$$

Particle Scattering

PARTICLE PRロDUCTIロN THRESHロLD

－In terms of kinetic energy：

$$
T_{A}^{\prime} \geqslant \frac{1}{2 m_{B}}\left(\sum_{i, j} m_{i} m_{j}-\left(m_{A}+m_{B}\right)^{2}\right) c^{2}
$$

－So，for a collision of the type $X+X \rightarrow 3 X+X^{*}$ （resulting in three X＇s and an anti－X ）
．．．the test－X must hit the target X with the kinetic energy of $\left[\left(4 \cdot 4-(1+1)^{2}\right) / 2\right] m_{X} c^{2}=6 m_{X} c^{2}$ ！
This is more than naively expected：
－to create $X+X^{*}$ ，shouldn＇t one need to invest only $2 m_{X} c^{2}$ ？
－No：3－momentum before collision is $\neq 0$ ，
－．．．the product $3 X+X^{*}$ cannot be at rest；that costs energy．

Particle Scattering

PARTICLE PRロDUCTIロN THRESHロLD
－In beam－to－beam collisions，CM－frame＝lab－frame ．

$$
\vec{p}_{A}=-\vec{p}_{B}=: \vec{p},
$$

－If the colliding particles have the same mass，

$$
E_{A}=E_{B}=: E, \quad \text { and } \quad \mathrm{p}_{A}+\mathrm{p}_{B}=(2 E / c, \overrightarrow{0})
$$

so that

$$
\begin{aligned}
& \min \left[\left(\mathrm{p}_{A}+\mathrm{p}_{B}\right)^{2}\right]=\left(\left.\sum_{i} \mathrm{p}_{i}\right|_{\text {thold }^{\prime}}\right)^{2}, \\
& \left(-\frac{2 \min (E)}{c}, \overrightarrow{0}\right)^{2}=\left(\sum_{i} m_{i} c\right)^{2}, \Rightarrow \min (E)=\frac{1}{2} \sum_{i} m_{i} c^{2} .
\end{aligned}
$$

Particle Scattering

PARTICLE PRロDUCTIロN THRESHロLD

－In terms of kinetic energy：

$$
\min \left(\sum T_{X}\right)=\left(\sum_{i=1}^{4} m_{X}-2 m_{X}\right) c^{2} \stackrel{2 X \rightarrow 3 X}{=}+\frac{\bar{X}}{\sum 2 m_{X} c^{2}, ~}
$$

－which indeed conforms to the naive expectations．
－This is the main reason for performing beam－to－beam collisions（if possible），
．．．rather than bombarding a stationary target with accelerated（energized）probes．
Before the collision，the total 3－momentum $=0$ ．
－After the collision，the total 3－momentum $=0$ ，
－．．．so the collision products can be at rest．

Particle Scattering

Relative Kinetic Energy

Compare the CM/lab-frame and the relative frame of, say, B being the "target":

$$
\begin{aligned}
\left(\mathrm{p}_{A}+\mathrm{p}_{B}\right)^{2} & =\left(\mathrm{p}_{A}^{\prime}+\mathrm{p}_{B}^{\prime}\right)^{2}, \\
\left(\frac{E_{A}+E_{B}}{c}\right)^{2} & =\left(-\frac{E_{A}^{\prime}}{c}-m_{B} c, \vec{p}_{A}\right)^{2} .
\end{aligned}
$$

Using that $m_{A}=m_{B}=m, \quad \vec{p}_{A}=-\vec{p}_{B}$

$$
4 E_{A}^{2}=2 m c^{2}\left(E_{A}^{\prime}+m c^{2}\right), \quad T_{A}^{\prime}=4 T_{A}\left(1+\frac{T_{A}}{2 m c^{2}}\right)
$$

$T / m c^{2}$	1	2	5	10	20	50	100	\cdots
$T^{\prime} / m c^{2}$	6	16	70	240	880	5200	20400	\cdots

Particle Scattering

KINEMATICS LESSONS

- Energy is conserved, but not invariant:
- The total energy of colliding particles before the collision equals the total energy of all collision products.
- The c^{-1}-multiple of energy is the $0^{\text {th }}$ component of the Lorentz-variant 4-vector of energy-momentum; it changes when boosting from one reference frame into another.
Mass is invariant, but not conserved:
- The square-root of the Lorentz-invariant (4-momentum) ${ }^{2}$; remains unchanged from one frame to another.
- The sum of masses of the colliding particles need not equal the sum of masses of the collision products.
- Conservation is in time, which is not Lorentz-invariant.

Quantum Kinematics

The Heisenberg Zane

- As is well known (for each $i=1,2,3$ separately):

$$
\triangle p_{i} \triangle x^{i} \geqslant \frac{1}{2} \hbar, \quad \triangle p_{0} \triangle x^{0}=\triangle E \triangle \tau \geqslant \frac{1}{2} \hbar .
$$

- This is an inherent indeterminacy, not an uncertainty.
- Elementary consequence of non-commutativity:

$$
\begin{gathered}
C:=-i[A, B], \quad C^{\dagger}=C . \\
{\left[A_{0}, B_{0}\right]:=[(A-\langle A\rangle),(B-\langle B\rangle)]=i C} \\
\left.0 \leqslant\langle | A_{0}-\left.i \omega B_{0}\right|^{2}\right\rangle=\left\langle A_{0}^{2}\right\rangle-i \omega\left\langle\left[A_{0}, B_{0}\right]\right\rangle+\omega^{2}\left\langle A_{0}^{2}\right\rangle, \\
=\Delta_{A}^{2}+\omega\langle C\rangle+\omega^{2} \Delta_{B}^{2} .
\end{gathered}
$$

$$
\min (\omega)=-\langle C\rangle / 2 \Delta_{B}^{2}
$$

$$
\Delta_{A} \Delta_{B} \geqslant \frac{1}{2}|\langle[A, B]\rangle| \text {. }
$$

Quantum Kinematics

THE HEISENBERG ZaNE

$$
\Delta_{A} \Delta_{B} \geqslant \frac{1}{2}|\langle[A, B]\rangle| .
$$

- If A and B are (canonically) conjugate variables, $[A, B] \neq 0$ follows from the canonical Poisson brackets.
- But, E and τ are not canonically conjugate variables!
- In fact, τ is not the parameter of time, but the duration of the process occurring at the energy E. The parameter (coordinate) of time is not a canonical variable.
- Similarly, in field theory, p_{i} and x^{i} are not canonically conjugate variables; $\left(c t, x^{1}, x^{2}, x^{3}\right)$ are not canonical variables (eigenvalues of observable operators in QFT).
- Non-commutativity \supsetneq canonical non-commutativity.

Quantum Kinematics

The Heisenberg Zane

- The best known example:

$$
\left[x^{j}, p_{k}\right]=i \delta_{k}^{j} \hbar \Rightarrow \triangle_{x} \triangle_{p_{k}} \geqslant \frac{1}{2} \delta_{k}^{j} \hbar .
$$

- But,

$$
\left[J_{j}, J_{k}\right]=i \varepsilon_{j k} \ell{J_{\ell}}^{\Rightarrow} \Rightarrow \triangle_{J_{j}} \triangle_{J_{k}} \geqslant \frac{1}{2} \varepsilon_{j k} \|\left\langle J_{\ell}\right\rangle .
$$

... so J_{1} and J_{2} can be measured 'simultaneously', in states with $\left\langle J_{3}\right\rangle=0$, although they do not commute. The indeterminacy limit is state-dependent!

- And, of course,

$$
\left[J^{2}, J_{3}\right]=0, \quad \Rightarrow \quad \triangle_{J^{2}} \triangle_{J_{3}} \geqslant 0 .
$$

Charge Conservation

ELECTROMAGNETIC CHARGE

- Consider:

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=\frac{1}{4 \pi \epsilon_{0}} 4 \pi \rho_{e}, \Rightarrow \begin{array}{c}
\text { vanishes } \\
\text { trivially }
\end{array} \frac{\partial(\vec{\nabla} \cdot \vec{E})}{\partial t}=\frac{1}{4 \pi \epsilon_{0}} 4 \pi \frac{\partial \rho_{e}}{\partial t}, \\
& \vec{\nabla} \times(c \vec{B})-\frac{1}{c} \frac{\partial \vec{E}}{\partial t}=\frac{1}{4 \pi \epsilon_{0}} \frac{4 \pi}{c} \vec{\jmath}_{e}, \Rightarrow \overrightarrow{\nabla \cdot \vec{\nabla} \times\left(c^{2} \vec{B}\right)-\frac{\partial(\vec{\nabla} \cdot \vec{E})}{\partial t}}=\frac{1}{4 \pi \epsilon_{0}} 4 \pi \vec{\nabla} \cdot \vec{\jmath}_{e},
\end{aligned}
$$

.and so:

$$
\frac{\partial \rho_{e}}{\partial t}=-\vec{\nabla} \cdot \vec{\jmath}_{e}, \quad \Rightarrow \quad \frac{\mathrm{~d} Q_{e, V}}{\mathrm{~d} t}=-\oint_{\partial V} \mathrm{~d}^{2} \vec{r} \cdot \overrightarrow{\jmath_{e}},
$$

This is even simpler in Lorentz-covariant notation:

$$
\partial^{\mu} F_{\mu \nu}=\frac{1}{4 \pi \epsilon_{0}} \frac{4 \pi}{c} j_{e v}, \Rightarrow \partial^{v} j_{e v}=4 \pi \epsilon_{0} \frac{c}{4 \pi} \partial^{v} \partial^{\mu} F_{\mu \nu} \equiv 0
$$

- ... and follows simply from $F_{\mu \nu}=-F_{\nu \mu}$.

Charge Conservation

CHARGES IN GENERAL

- Additive charges \leftrightarrow continuous symmetries:
- linear momentum \leftrightarrow translation in space $\}$ Heisenberg
- energy \leftrightarrow translation in time Zone
- angular momentum \leftrightarrow rotation in space
- electromagnetic charge \leftrightarrow see Chapter 3

- Multiplicative charges \leftrightarrow discrete symmetries
- $\mathrm{P}($ parity $) \leftrightarrow$ reflection in space
- $\mathrm{T} \leftrightarrow$ reversal of time
- $\mathrm{C} \leftrightarrow$ Charge (Hermitian/Dirac) conjugation

Thanks!

Tristan Hubsch

Department of Physics and Astronomy Howard University, Washington DC

Prirodno-Matematički Fakultet Univerzitet u Novom Sadu
http://homepage.mac.com/thubsch/

