(Fundamental) Physics of Elementary Particles

Introduction to the quark model, differential & Feynman's diagrammatic calculus

Tristan Hübsch

Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

Fundamental Physics of Elementary Particles

PROGRAM

Introduction to the quark model

- History's Lessons
- Naive-pictoresque classification of hadrons
- Bound states in the quark-model
- Relativistic Kinematics
 - Conservation laws
 - 4-dimensional notation & tensor calculus
 - Relativistic kinematics
- Feynman diagrams
 - Decay constant & the process amplitude
 - A toy-model

MESONS AND THE μ -"MESON"

• Yukawa (1934): a "meson" with $m \sim 150 \text{ MeV}/c^2$

• 1937: a particle $w/m \sim 100 \text{ MeV}/c^2$

• 1946: the 100 MeV/*c*²-particle doesn't interact strongly

- 1947: $m_{\pi} \sim 150 \text{ MeV}/c^2 \& m_{\mu} \sim 100 \text{ MeV}/c^2$
- 1947: $K^0 \rightarrow \pi^+ + \pi^-$, '49: $K^+ \rightarrow \pi^+ + \pi^-$, '50: $\Lambda^0 \rightarrow p^+ + \pi^-$
- Strange particles: produced fast (~10⁻²³ s) & in pairs, but decay slowly (~10⁻¹⁰–10⁻⁸ s)

 Strangeness, preserved by strong interactions, but violated by weak interactions.

 And the μ-"meson"? Well ... it isn't a hadron! It's a (heavier) copy of the electron.

THE μ -ON AND NEUTRINI

• 1947, C. Powell: the difference between π and μ :

 $\pi^- \longrightarrow \mu^- + \overline{\nu}_{\mu},$ $\searrow e^- + \overline{\nu}_e + \nu_{\mu}.$

• 1956, F. Reines & C. Cowan (1st big "waiting" exp.): $\overline{\nu}_e + p^+ \rightarrow n^0 + e^+$.

• 1959, R. Davis, Jr. & D.S. Harmer:

 $\overline{\nu}_e + n^0 \longrightarrow p^+ + e^-$

 doesn't happen, confirming the lepton conservation number of Konopinski & Mahmoud (1953).

THE H-ON AND NEUTRINI

• Finally,

 $\mu^- \xrightarrow{?} e^- + 2\gamma$,

never happens either. This implies a separate conservation law for (*e*-, *v*_e) and for (*μ*-, *v*_μ)!
The μ-"doublet" seems utterly unnecessary

	Group	nuclear interactions	spin	number
Y/S	Leptons	only weak	half-integral	conserved
Hadrons	Mesons Baryons	both strong and weak both strong and weak	integral half-integral	not conserved conserved*
*Baryon nur Ernst Stücke	nber (albeit no lberg, to expla	ot under that name) conservation in the absence of the $p^+ \rightarrow e^+$ -	on was already in 19 + π^0 proton decay.	938 proposed by

GROWING NUMBER OF HADRONS

- By 1960's, too many hadrons to be elementary
- S-matrix theory
 - Initiated by Heisenberg, early 1930
 - 1960's (Geoffrey Chow, ...): bootstrap model
 - We observe only *asymptotic* states, not the ~ 10^{-23} s hadrons
 - Hadrons consist of hadrons all the way down.

Classification:

using isospin (Heisenberg, 1932/Wigner, 1937)
strangeness (Gell-Mann, 1965; Nishijima & Nakano)
subject to the GNN formula: Q = I₃ + ¹/₂(B + S)

QUARKS & MESONS

• Bound $(q\bar{q})$ states with u, d & s quarks, of spin-0:

QUARKS & MESONS

• Bound $(q\bar{q})$ states of *u*, *d* & *s* quarks, of spin-0:

QUARKS & MESONS

bound *P*-states (q-orb. momentum = 1)

• Bound $(q\bar{q})$ states of *u*, *d* & *s* quarks, of spin-1:

QUARKS & BARYONS

• Bound (qqq) states of u, d & s quarks, of spin- $\frac{1}{2}$:

QUARKS & BARYONS

• Bound (qqq) states of u, d & s quarks, of spin- $\frac{1}{2}$:

(ddu) (duu)

(dds) (dsu) (suu)

(ssd) (ssu)

Concrete 3-body wave-functions are quite complicated.

QUARKS & BARYONS

• Bound (qqq) states of u, d & s quarks, of spin- $\frac{3}{2}$:

q = -1

QUARKS & BARYONS

• Bound (qqq) states of u, d & s quarks, of spin- $\frac{3}{2}$:

(ddd) (ddu) (duu) (uuu) (dds) (dsu) (suu) (ssd) (ssu) (sss)

Concrete 3-body wave-functions are quite straightforward.

QUARKS & BARYONS

Bound state wave-functions factorize

- $\Psi(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \chi_1(\text{spin}) \chi_2(\text{flavor}) \chi_3(\text{color})$
- Ground state: $\Psi(x_1, x_2, x_3)$ spherically-symmetric, so also w.r.t. the $x_i \leftrightarrow x_j$ exchange for every *i*, *j* pair.
- The χ_3 (color) factor is antisymmetric.
- \Rightarrow the $\chi_1(\text{spin}) \chi_2(\text{flavor})$ factor must be symmetric w.r.t. the $i \leftrightarrow j$ exchange, for every *i*, *j* pair.
- If $\chi_1(spin) =$ totally symmetric,
 - then χ_2 (flavor) is totally symmetric \Rightarrow decuplet

• Denote

$$|\uparrow\rangle := |\frac{1}{2}, +\frac{1}{2}\rangle, \quad |\downarrow\rangle := |\frac{1}{2}, -\frac{1}{2}\rangle, \quad |\uparrow\uparrow\rangle := |\frac{1}{2}, +\frac{1}{2}\rangle |\frac{1}{2}, +\frac{1}{2}\rangle, \quad \text{etc.}$$

• Then we have that

$$|1_{2},\pm 1_{2}\rangle \otimes |1_{2},\pm 1_{2}\rangle =$$

$$\begin{cases} |1,+1\rangle &= |\uparrow\uparrow\rangle, \\ |1,0\rangle &= \frac{1}{\sqrt{2}} [|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle], \\ |1,-1\rangle &= |\downarrow\downarrow\rangle, & \text{triplet} \end{cases}$$
$$|0,0\rangle &= \frac{1}{\sqrt{2}} [|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle], \\ & \text{singlet} \end{cases}$$

• where the "triplet" is symmetric, a "singlet" is antisymmetric w.r.t. exchanging any two factors.

• The spin factor, $\chi_1(spin)$, is

 $|^{3}/_{2}, m_{s}\rangle = \left\{ |\downarrow\downarrow\downarrow\rangle, |\uparrow\downarrow\downarrow\rangle_{(123)}, |\uparrow\uparrow\downarrow\rangle_{(123)}, |\uparrow\uparrow\uparrow\rangle \right\},$

• where

$$\uparrow\downarrow\downarrow\rangle_{(123)}:=\frac{1}{\sqrt{3}}\big[|\uparrow\downarrow\downarrow\rangle+|\downarrow\uparrow\downarrow\rangle+|\downarrow\downarrow\uparrow\rangle\big].$$

All linear combinations of these are totally symmetric.
The flavor factor is

 $\chi_2(\text{flavor}) = \left\{ |ddd\rangle, |udd\rangle_{(123)}, |uud\rangle_{(123)}, |uuu\rangle, \cdots, |sss\rangle \right\}$ • \Rightarrow "decuplet", *i.e.*, 10 basis states.

• If the $\chi_1(\text{spin})$ factor is mixed, for example:

 $|\frac{1}{2},+\frac{1}{2}\rangle_{[12]} = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\uparrow\rangle - |\downarrow\uparrow\uparrow\rangle\right), \ |\frac{1}{2},-\frac{1}{2}\rangle_{[12]} = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\downarrow\rangle - |\downarrow\uparrow\downarrow\rangle\right)$

• ... there exist two linearly independent states:

 $\Big\{ |\uparrow\downarrow *\rangle_{[12]}, |\uparrow *\downarrow\rangle_{[13]} \Big\}, |*\uparrow\downarrow\rangle_{[23]} = |\uparrow *\downarrow\rangle_{[13]} - |\uparrow\downarrow *\rangle_{[12]}.$

• The product $|\uparrow\downarrow *\rangle_{[12]}|ud*\rangle_{[12]}$ is thus symmetry w.r.t. the 1 \leftrightarrow 2 exchange, and

 $|\uparrow\downarrow\ast\rangle_{[12]}|ud\star\rangle_{[12]}+|\uparrow\ast\downarrow\rangle_{[13]}|u\star d\rangle_{[13]}+|\ast\uparrow\downarrow\rangle_{[23]}|\star ud\rangle_{[23]}$

• is a totally symmetric state.

In spin-flavor factors of the type

 $|\uparrow\downarrow\ast\rangle_{[12]}|ud\star\rangle_{[12]}+|\uparrow\ast\downarrow\rangle_{[13]}|u\star d\rangle_{[13]}+|\ast\uparrow\downarrow\rangle_{[23]}|\star ud\rangle_{[23]}$

- "*" = $\pm \frac{1}{2}$ i " \star " = u, d, s,
- so we have spin- $(\pm \frac{1}{2})$ baryons:
 - (ddu) (duu) (dds) (dsu) (suu)

(ssd) (ssu)

 where the eight three-state wave-functions are all symmetrized according to the prescription above.

RELATIVISTIC KINEMATICS

- Law: conservation of energy
- Law: conservation of momentum
- Law: conservation of angular mom. & spin-statistics

conserv. of 4-vector

- Discrete symmetries
 - P (parity)
 - T (time reversal)
 - C (charge conjugation)
- CPT theorem
- 4-dimensional tensor calculus

DIFF. CALCULUS IN SPACE-TIME

• Derivative (general definition): • $D_x[f(x) \cdot g(x)] = D_x[f(x)] \cdot g(x) + f(x) \cdot D_x[g(x)]$ • Space-time: $\mathbb{R}^{1,3} := \{ x^{\mu} \in (-\infty, +\infty), \mu = 0, 1, 2, 3 \}$ • $\mathbf{x} = (x^0, x^1, x^2, x^3), \eta_{\mu\nu} = \text{diag}(1, -1, -1, -1)$ • $\mathbf{x} \cdot \mathbf{y} = x^0 y^0 - (x^1 y^1 + x^2 y^2 + x^3 y^3) = c^2(t_1 t_2) - \mathbf{r}_1 \cdot \mathbf{r}_2$ But — no one can force You to use my coordinates! • Your coordinates: $y^{\mu} = y^{\mu}(x^0, x^1, x^2, x^3)$. • ... we'll need differential calculus, to compare ...

DIFF. CALCULUS IN SPACE-TIME

Differential & derivative:

• General tensor density type (p,q;d): $\widetilde{T}_{\nu_{1}\cdots\nu_{p}}^{\mu_{1}\cdots\mu_{p}} = \left(\det\left[\frac{\partial y}{\partial x}\right]\right)^{d} \frac{\partial y^{\mu_{1}}}{\partial x^{\rho_{1}}}\cdots \frac{\partial y^{\mu_{p}}}{\partial x^{\rho_{p}}} \frac{\partial x^{\sigma_{1}}}{\partial y^{\nu_{1}}}\cdots \frac{\partial x^{\sigma_{q}}}{\partial y^{\nu_{q}}}T_{\sigma_{1}\cdots\sigma_{q}}^{\rho_{1}\cdots\rho_{p}}$

DIFF. CALCULUS IN SPACE-TIME

- "Index conservation"
 - Repeated index, once up–once down, is summed; it's choice is not free, the result does not depend on it.
 - Single index is free & not summed; it's choice is free, the result does depend on it.
 - The number/position of indices in summands must agree.
 - E.g.: $A_{\mu} \eta^{\mu\nu} = A^{\nu}$ "index raising"
 - $A^{\mu} \eta_{\mu\nu} = A_{\nu}$ "index lowering"
 - $A_{\mu} \eta^{\mu\nu} A_{\nu} = |A_{\nu}|^2 = A_0^2 (A_1^2 + A_2^2 + A_3^2)$ = square η -norm of the 4-vector (A_0, A_1, A_2, A_3)

DIFF. CALCULUS IN SPACE-TIME

• Now, *You* try:

- Tensor type of $X_{\mu^{\nu}}$ is (1,1).
- What is the tensor type of $X_{\mu\nu} Y_{\nu}$, if Y_{ν} is of type (0,1)?
- What is $X_{\mu\nu} Z_{\nu\rho\sigma}$, if $Z_{\nu\rho\sigma}$ is of type (0,3)?
- Is $X_{\mu\nu} Y_{\nu\rho\sigma}$ a tensor? Why?
- Is $X_{\mu\nu} Y^{\nu\rho\sigma}$ a tensor? Why?
- Is $\varepsilon^{\mu\nu\rho\sigma} X_{\mu\nu} Y_{\rho\sigma}$ a tensor, if $\varepsilon^{\mu\nu\rho\sigma}$ is a (4,0;1)-tensor density & $X_{\mu\nu}$ i $Y_{\rho\sigma}(0,2)$ -tensors? Why?
- Is $(\partial f/\partial x^{\mu})$ a tensor? Why?
- Is $(\partial A^{\mu}/\partial x^{\mu})$ a tensor? Why?

Tensors in Space-Time

DIFF. CALCULUS IN SPACE-TIME

• Let's check:

$$\frac{\partial f}{\partial x^{\mu}} \rightarrow \frac{\partial f}{\partial y^{\mu}} = \frac{\partial x^{\nu}}{\partial y^{\mu}} \frac{\partial f}{\partial x^{\nu}}$$

is a (0,1)-tensor. But,
$$\frac{\partial A^{\mu}}{\partial x^{\mu}} \rightarrow \frac{\partial \widetilde{A}^{\mu}}{\partial y^{\mu}} = \frac{\partial}{\partial y^{\mu}} \widetilde{A}^{\mu}(y) = \frac{\partial x^{\nu}}{\partial y^{\mu}} \frac{\partial}{\partial x^{\nu}} \frac{\partial y^{\mu}}{\partial x^{\rho}} A^{\rho}(x)$$
$$= \frac{\partial x^{\nu}}{\partial y^{\mu}} \frac{\partial y^{\mu}}{\partial x^{\rho}} \frac{\partial}{\partial x^{\nu}} A^{\rho}(x) + \frac{\partial x^{\nu}}{\partial y^{\mu}} \frac{\partial^{2} y^{\mu}}{\partial x^{\nu} \partial x^{\rho}} A^{\rho}(x)$$
$$= \frac{\partial A^{\nu}}{\partial x^{\nu}} + \frac{\partial x^{\nu}}{\partial y^{\mu}} \frac{\partial^{2} y^{\mu}}{\partial x^{\nu} \partial x^{\rho}} A^{\rho}(x)$$

Tuesday, November 1, 11

DIFF. CALCULUS IN SPACE-TIME

• If $x^{\mu} \rightarrow y^{\mu} = \Lambda^{\mu}{}_{\nu} x^{\nu}$ is a linear transformation, and the $\Lambda^{\mu}{}_{\nu}$ matrix is constant, then

$$\frac{\partial x^{\nu}}{\partial y^{\mu}}\frac{\partial^2 y^{\mu}}{\partial x^{\nu}\partial x^{\rho}} = \frac{\partial x^{\nu}}{\partial y^{\mu}}\frac{\partial}{\partial x^{\nu}}\frac{\partial y^{\mu}}{\partial x^{\rho}} = \frac{\partial x^{\nu}}{\partial y^{\mu}}\frac{\partial \Lambda^{\mu}}{\partial x^{\nu}} = 0$$

• For general transformations, $x^{\mu} \rightarrow y^{\mu} = \Lambda^{\mu}{}_{\nu} x^{\nu}$, the matrix elements $\Lambda^{\mu}{}_{\nu}$ are arbitrary functions of x^{ν} , & the 2nd, unfortunate summand does not vanish!

• The "tensoriality" of an expression depends on the (non)linearity of the transformation $x^{\mu} \rightarrow y^{\mu} = y^{\mu}(x)$ that we allow.

DIFF. CALCULUS IN SPACE-TIME

• If we define

$$\frac{\mathrm{D}A^{\nu}}{\mathrm{D}x^{\mu}} := \frac{\partial A^{\nu}}{\partial x^{\mu}} + \Gamma^{\nu}_{\mu\rho}A^{\rho} \qquad \frac{\mathrm{D}A_{\nu}}{\mathrm{D}x^{\mu}} := \frac{\partial A_{\nu}}{\partial x^{\mu}} - \Gamma^{\rho}_{\mu\nu}A_{\rho}$$

• Derive how " Γ " must transform w.r.t. a nonlinear change $x^{\mu} \rightarrow y^{\mu} = y^{\mu}(x)$, so that these two D-derivative would be (1,1) & (0,2)-tensors.

• That's the covariant derivative, Γ the Christoffel symbol.

• Linear changes $x^{\mu} \rightarrow y^{\mu} = \Lambda^{\mu}{}_{\nu} x^{\nu}$ are Lorentz transform's; compare with electrodynamics. The matrices $\Lambda^{\mu}{}_{\nu}$ form the SO(1,3) group. — *Huh*?

RELATIVISTIC KINEMATICS

• Useful:

•
$$\mathbf{p} = (-E/c, p_x, p_y, p_z)$$

- $\mathbf{p} \cdot \mathbf{p} = p_{\mu} \eta^{\mu\nu} p_{\nu} = p_{\mu} p^{\mu} = E^2 / c^2 p^2 = m^2 c^2 = \text{invariant}$
- $E = \gamma mc^2$ for a particle of mass m, E = pc if m = 0.
 - In non-relativistic physics, mass m = 0 particle is poppycock!
 (That is, its momentum, kinetic & gravitational potential energy would all have to vanish!)
- Well-known expansion for $\nu < c$:

$$E = \gamma m c^{2} = \frac{m c^{2}}{\sqrt{1 - v^{2}/c^{2}}} = m c^{2} \left(1 + \frac{1}{2} \frac{v^{2}}{c^{2}} + \frac{3}{8} \frac{v^{4}}{c^{4}} + \frac{5}{16} \frac{v^{6}}{c^{6}} + \cdots\right)$$

RELATIVISTIC KINEMATICS

- Two mass-*m* snowballs fuse at velocities ±0.60 *c*. What's the mass, *M*, of the fused snowball?
 - Since $p_1 = -p_2$, momentum conservation says: $p_M = 0$.
 - Energy conservation says $E_M = E_1 + E_2$, so $M = (E_1 + E_2)/c^2$,

•
$$M = 2(mc^2\gamma)/c^2 = 2m/(1-(\frac{3}{5})^2)^{1/2} = 5m/2 > 2m.$$

• The "increase" $M-2m = \frac{1}{2}m$ stems from kinetic energy.

 If a mass-M lump splits into two equal, mass-m parts, what's their parting speed?

- Energy conservation: $M = 2m\gamma$, so $\nu = c(1-(2m/M)^2)^{1/2}$.
- It must be that $m < \frac{1}{2}M$. Since $M_{\text{Deut.}} = 1875.6 \text{ MeV}/c^2$, and $m_p + m_n = 1877.9 \text{ MeV}/c^2$, we **need** 2.3 MeV-a for fission.

RELATIVISTIC KINEMATICS

A mass-M lump splits into two lumps, masses m₁ & m₂, compute the speeds v₁ i v₂.

- Momentum conservation says: $p_1 = -p_2$, jer $p_M = 0$.
- Energy conservation says: $E_1 + E_2 = E_M$.
- Use that $E_i^2 p_i^2 c^2 = m_i^2 c^4$ and $E_M = Mc^2$, since $p_M = 0$.
- Solve for $|\boldsymbol{p}| = |\boldsymbol{p}_1| = -|\boldsymbol{p}_2|$ and obtain

$$p = \pm \frac{c\sqrt{M^4 + (m_1^2 - m_2^2)^2 - 2M^2(m_1^2 + m_2^2)}}{2M}$$

• If
$$m_2 \approx 0$$
, then

$$p = \pm \frac{c(M^2 - m_1^2)}{2M}$$

Do the math. Plus, compute the total energies, $E_1 \& E_2$, in terms of $m_1, m_2 \& M$ only.

SOME BASIC REMARKS

- In decays, $dN = -\Gamma N dt$, so $N(t) = N(0)e^{-\Gamma t}$.
 - Since particles decay in several ways, $\Gamma_{tot} = \Sigma_i \Gamma_i$.
 - Average τ = 1/Γ_{tot}, (*branching ratio* for *i*th mode) = Γ_i/Γ_{tot}.
 "Golden rule":

$$d\Gamma = |\mathcal{M}|^2 \frac{S}{2\hbar M} \Big[\prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 2E_i} \Big] (2\pi)^4 \,\delta^4(\mathbf{p}_M - \sum_{j=1}^n \mathbf{p}_j)$$

- \mathcal{M} is the matrix element for a mass-M particle $\rightarrow n$ particles
- \mathbf{p}_i is the *i*th particle 4-momentum, $E_i = c(m_i^2 c^2 + \mathbf{p}_i^2)^{\frac{1}{2}}$ its energy;
- δ -function imposes 4-momentum conservation; this in the restsystem of the decaying particle, so $p_M = (Mc, \mathbf{0})$;
- *S* is the product of statistical factors 1/j! for each *j* same particles.

SOME BASIC REMARKS

- When a particle decays into two, if the 4-moments of the decay result are unknown, integrate over them:
 - $\Gamma = \frac{S}{2\hbar M} \frac{1}{(4\pi)^2} \int \frac{\mathrm{d}^3 p_1}{\sqrt{m_1^2 c^2 + p_1^2}} \frac{\mathrm{d}^3 p_2}{\sqrt{m_2^2 c^2 + p_2^2}} |\mathcal{M}|^2 \,\delta^4 \left(p_M p_1 p_2 \right)$

where

$$\delta^{4}(p_{M}-p_{1}-p_{2}) = \delta \left(Mc - \frac{E_{1}}{c} - \frac{E_{2}}{c}\right) \delta^{3}(-p_{1}-p_{2}) \\ = \delta \left(Mc - \sqrt{m_{1}^{2}c^{2} + p_{1}^{2}} - \sqrt{m_{2}^{2}c^{2} + p_{2}^{2}}\right) \delta^{3}(p_{1}+p_{2})$$

- p_2 -integration, b/c of δ^3 -function, becomes $p_2 \rightarrow -p_1$ subst.
- Angular p_1 -integration yields 4π —if \mathcal{M} does not depend.
- Typically, you are left with $|p_1|$ -integration.

TOY-MODEL FEYNMAN RULES

- Compute \mathcal{M} using Feynman rules
- Toy-model has three particles, of mass m_A, m_B & m_C.
 Asume m_A > m_B + m_C, so that A → B + C is the only possible decay:

TOY-MODEL FEYNMAN RULES

• Contributions to that (simplest) process:

• where every "vertex" is of the $A \rightarrow B + C$ type,

except that the m_A > m_B + m_C kinematic constraint may fail
 All diagrams have 3 vertices & one closed loop; next are those with two loops & 5 vertices ...

TOY-MODEL FEYNMAN RULES

• Even in the simplest case, the elastic collision can happen in <u>*two*</u> distinct ways, as depicted by (virtual histories):

B A C B

What's not forbidden, is allowed. And the rest, when no one's watching.

TOY-MODEL FEYNMAN RULES

- Denote external 4-momenta p_i, internal q_j; set the direction by orienting the lines.
- 2. For each vertex, write [-ig], where g is the parameter ("strength") of the interaction.
- 3. For each vertex, write $(2\pi)^4 \delta^4(k_1+k_2+k_3)$; (vertex-entering 4-momenta = $+k_i$, vertex-leaving = $-k_i$).
- 4. For each internal line insert a $[i/(q_j^2 m_j^2 c^2)]$ factor, where the 4-momentum q_j is free, so $q_j^2 \neq m_j^2 c^2$.
- 5. For each internal line insert d⁴q_j/(2π)⁴ & integrate.
 6. From the whole mess, cancell (2π)⁴ δ⁴(p₁+p₂+...-p_n).
 7. The result is -*i*M.

TOY-MODEL FEYNMAN RULES

• "Tree-level" value of $\Gamma_{A \rightarrow B+C}$:

• As there are no int. lines, rules 4 & 5 are void.

• Applying rules 1 & 2 we get the decorated diagram above, and rule 3 inserts the factor $(2\pi)^4 \delta^4(p_A - p_B - p_C)$, which then rule 6 throws out.

• What remains is $\mathcal{M} = g$, in this, simplest, approximation.

TOY-MODEL FEYNMAN RULES

Now compute: $\Gamma = \frac{S}{2\hbar m_A} \int |\mathcal{M}|^2 (2\pi)^4 \delta^4 (\mathbf{p}_A - \mathbf{p}_B - \mathbf{p}_C) \frac{c \, \mathrm{d}^3 \vec{p}_B}{2(2\pi)^3 E_B(\vec{p}_B)} \frac{c \, \mathrm{d}^3 \vec{p}_C}{2(2\pi)^3 E_C(\vec{p}_C)},$ $= \frac{S}{2(4\pi)^2 \hbar m_A} \int \mathrm{d}^3 \vec{p}_B |\mathcal{M}|^2 \frac{\delta \left(m_A c - \sqrt{m_B^2 c^2} + \vec{p}_B^2 - \sqrt{m_C^2 c^2} + (-\vec{p}_B)^2 \right)}{\sqrt{m_B^2 c^2} + \vec{p}_B^2} \sqrt{m_C^2 c^2} + (-\vec{p}_B)^2},$ $= \frac{S}{8\pi\hbar m_A} \int_0^\infty \frac{\rho^2 d\rho |\mathcal{M}|^2}{\sqrt{m_B^2 c^2 + \rho^2} \sqrt{m_C^2 c^2 + \rho^2}} \,\delta\Big(m_A c - \sqrt{m_B^2 c^2 + \rho^2} - \sqrt{m_C^2 c^2 + \rho^2}\Big).$ Substitute $\mathcal{E} = c \left(\sqrt{m_B^2 c^2 + \rho^2} + \sqrt{m_C^2 c^2 + \rho^2} \right), \qquad \frac{\mathrm{d}\mathcal{E}}{\mathcal{E}} = \frac{\rho(\mathcal{E}) \,\mathrm{d}\rho}{\sqrt{m_B^2 c^2 + \rho^2} \sqrt{m_C^2 c^2 + \rho^2}}$ $\frac{\rho^2 d\rho}{\sqrt{m_B^2 c^2 + \rho^2} \sqrt{m_C^2 c^2 + \rho^2}} = \rho(\mathcal{E}) \frac{d\mathcal{E}}{\mathcal{E}}$

Tuesday, November 1, 11

TOY-MODEL FEYNMAN RULES

• and obtain:

$$\begin{split} \Gamma &= \frac{S}{8\pi\hbar m_A} \int_{(m_B+m_C)c^2}^{\infty} \frac{\mathrm{d}\mathcal{E}}{\mathcal{E}} |\mathcal{M}|^2 \rho(\mathcal{E}) \,\delta(m_A c - \mathcal{E}/c), \\ &= \begin{cases} \frac{S \,\rho_0}{8\pi\hbar m_A^2 c} \,|\mathcal{M}(\rho_0)|^2, & \text{if} \quad m_A > m_B + m_C; \\ 0, & \text{if} \quad m_A \leqslant m_B + m_C. \end{cases} \end{split}$$

where

$$\rho_0 = |\vec{p}_B|_0 = \frac{c}{2m_A} \sqrt{m_A^4 + m_B^4 + m_C^4 - 2m_A^2 m_B^2 - 2m_A^2 m_C^2 - 2m_B^2 m_C^2}$$

$$\mathcal{E}(\rho_0) = m_A c^2$$

TOY-MODEL FEYNMAN RULES

• For the case when $\mathcal{M} = g$, we have

• $\Gamma = g^2 \rho_0 / 8\pi \hbar m_A^2 c$.

•
$$\tau = 1/\Gamma = 8\pi\hbar m_A^2 c/g^2 \rho_0$$
.

Exercises:

- Do the math.
- Check the units for the Γ and τ results.

Thanks!

Tristan Hubsch

Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

http://homepage.mac.com/thubsch/

Tuesday, November 1, 11