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History’s Lessons

Yukawa (1934): a “meson” with m~150 MeV/c2

1937: a particle w/m~100 MeV/c2

1946: the 100 MeV/c2-particle doesn’t interact strongly
1947: mπ~150 MeV/c2 & mμ~100 MeV/c2

1947: K0 → π+ + π–, ’49: K+ → π+ + π+ + π–, ’50: Λ0 → p+ + π–

Strange particles: produced fast (~10–23 s) & in pairs,
 but decay slowly (~10–10–10–8 s)
Strangeness, preserved by strong interactions,
 but violated by weak interactions.
And the μ-“meson”?
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Mesons and the μ-“meson”

Well… it isn’t a hadron.
It’s a (heavier) copy of the electron.
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1947, C. Powell: the difference between π and μ:

1956, F. Reines & C. Cowan (1st big “waiting” exp.):

1959, R. Davis, Jr. & D.S. Harmer:

doesn’t happen, con#rming the lepton conservation 
number of Konopinski & Mahmoud (1953).
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History’s Lessons
The μ-on and Neutrini

0.3. A Historical Inventory of the Fundamental Ingredients of the World 53

0.3.10 Leptons
During 1937–1947, particles of about 100–150 MeV/c2 mass were found in photographs of
cosmic ray induced processes, and these were at first identified with Yukawa’s mediators
of the strong interaction. However, in 1947, Cecil Powell showed that these photographs
involve two very different kinds of particles: In a characteristic cascade decay (frequently
found on the same photograph) we have

p

� �! µ

� + n

µ

, (0.23a)
&

e� + ne + n

µ

. (0.23b)

In the first decay (0.23a), using the derivation (1.42)–(1.47) shows that precisely one par-
ticle is not recorded in the photograph (because it is not charged), as the energy of the
recorded muon is fixed. This invisible particle is here correctly denoted n

µ

, although in
the analyses before 1962 [+ table 0.4, p. 69] one did not know about the difference be-
tween the electron- and the muon-neutrino, nor was it known that the first decay (0.23)
produces an antineutrino. Again using the derivation (1.42)–(1.47) shows that the second
decay (0.23b) produces two invisible particles, because the energy of the visible electron
varies. These two invisible particles were herein again correctly denoted ne + n

µ

, although
before 1962 the distinctions between the two were not known.

In the first two decades of Pauli’s proposal, theoretical proofs that neutrinos must exist
abounded. However, no experimental verification was known.

In 1956, Reines and Cowan published the results of one of the first big “waiting exper-
iments”: a huge tank of water with detector-studded walls, where they waited to observe
the so-called inverse b-decay, the process

ne + p+ �! n0 + e+. (0.24)

guaranteed to exist by the crossing symmetry. By clever and detailed analysis of a large num-
ber of measurements, Reines and Cowan managed to provide an unambiguous experimental
proof of the neutrino’s existence. Additionally, their analysis showed that antineutrinos in-
teract with ordinary matter extraordinarily feebly: By contemporary estimates (which are by
now independently confirmed) the antineutrino flux through their detector was ⇠ 5 ⇥ 10

17

antineutrinos per second per meter squared, yet only a handful of type (0.24) reactions were
registered per hour.

So in 1956, a quarter of a century after his original proposal, Pauli’s insistence to
preserve the conservation laws triumphed! As we shall see later, conservation laws are
directly related to symmetries—which is the content of Amalie Emmy Noether’s theorem.
Thus was the reliance on symmetries and conservation laws irrevocably infused into the
understanding of Nature—which is highly ironic, given Pauli’s denigrating attitude towards
the use of group theory [+ page 147]. We shall see that the success of relativistic physics
also may be understood from the point of view of symmetries, although this was definitely
not evident at the time.

By crossing symmetry, we know that the reaction

ne + n0 �! p+ + e� (0.25)

also must occur. R. Davis and D.S. Harmer then looked for signals of the analogous reaction
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54 Chapter 0. Fundamental Physics: Elementary Particles and Processes

analogous reaction occurring

ne + n0 �! p+ + e�, (it doesn’t!). (0.26)

From the fact that (0.24) does occur while (0.26) does not, it follows that a neutrino is
distinguishable from an antineutrino, and that we may associate with them opposite values
of a conserved quantity. In fact, already in 1953, Konopinski and Mahmoud [228] proposed
such a conserved quantity. With small adaptation of their original proposal, we may call this
conserved quantity the lepton number, so that

L = +1 : e�, ne; µ

�
, n

µ

; t

�
, n

t

; (0.27a)
L = �1 : e+, ne; µ

+
, n

µ

; t

+
, n

t

; (0.27b)
L = 0 : all other particles. (0.27c)

Of course, in 1953 one knew nothing of the existence of the t

±-leptons and -neutrinos,
and even the existence of muon-neutrinos (as distinct from electron-neutrinos) was not
known unambiguously. Nevertheless, using these values, the reactions (0.24) and (0.25)
are permitted, while (0.26) is forbidden by the lepton number conservation law.

The conservation of the lepton number—as defined by the values (0.27)—is a law that
we can use much as the electric charge conservation, although the values (0.27) are ascribed
to particles so as to explain the occurrence of processes like (0.24)–(0.25) and the absence
of processes like (0.26). Just as the electric charge conservation is related to a certain
continuous U(1) symmetry [+ chapter 3.1–3.3], so does the lepton number conservation
have its “own” symmetry, which will be important when discussing the lagrangian for the
theory of lepton interactions.

Finally, none of the so far mentioned conservation laws prevents the potential decay

µ

� ?�! e� + 2g, (0.28)

ut such was never observed. Experience with quantum physics of atomic transitions and
reactions and also the increasing number of processes with elementary particles indicates
the rule:

Conclusion 0.3 Whatever is not forbidden, is mandatory. – Richard Feynman

Thus, the absence of the (0.28) decay requires an explanation15 in the form of a proposal
that leptons e±, ne and ne have a separately conserved number, as do µ

±, n

µ

and n

µ

, and
also the later discovered t

±, n

t

and n

t

.
The absence of the process (0.28) is thus seen as the manifestation of the ban imposed

by the separate muon- and electron-number conservation law. These laws in turn do permit
the decays (0.23a)–(0.23b): the net sum of each of the three separate lepton numbers on
the “before” side of either of those processes equals the sum of those same lepton numbers
on the “after” side. The same holds for all other listed processes, including Fermi’s for-
mula (0.22) for the b-decay. This illustrates the basic principle, that Laws of Nature must
have no exception and must hold universally16.
15 Candidates for a Law of Nature are not proven but disproven by exceptions.
16 One often says that for small speeds non-relativistic physics holds and that for speeds that are near the speed

of light in vacuum the relativistic physics holds. Literally taken, this is false: what is true is that relativistic
physics holds always, but that for small enough speeds the non-relativistic approximations suffice in practice,
i.e., that the difference between particular concrete results of relativistic computations and their non-relativistic
approximations cannot be experimentally detected.
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üb

sc
h,

th
ub

sc
h@

ho
w

ar
d.

ed
u,

w
ith

an
y

co
m

m
en

ts
/

su
gg

es
tio

ns
/

co
rr

ec
tio

ns
;t

ha
nk

yo
u!

—
D

R
A

FT

Tuesday, November 1, 11



Finally,

never happens either. $is implies a separate 
conservation law for (e–, νe) and for (μ–, νμ)!
$e μ-“doublet” seems u&erly unnecessary

5

History’s Lessons
The μ-on and Neutrini
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0.3. A Historical Inventory of the Fundamental Ingredients of the World 55

This analysis, following the proposal by Konopinski and Mahmoud [228], formally
introduced a separate conservation law for the electron-, muon- and tau-lepton number, in
addition to the the conservation laws of electric charge, energy and 3-dimensional linear
momentum (i.e., jointly, of the energy-momentum 4-vector), and of the angular momen-
tum.

— ¶ —
Finally, it is worth noting that the name lepton stems from the greek adjective for

“light”, because of the relatively small electron mass, as compared to that of the proton and
the neutron and for which then the collective name is baryon, from the greed adjective for
“heavy”. Particles with masses between me ⇡ 0.511MeV/c2 and mp ⇡ 938 MeV/c2 were thus
named mesons, from the greed word for “middle”. However, the discovery of the muon and
the verification that it is identical to the electron—except for being ⇡ 206 times heavier, that
original and näıve nomenclature had to change. By the mid-XX century, these names were
re-purposed according to the interaction type, as shown in table 0.2. The fact that the lepton

Table 0.2: Defining collections of elementary particles according to their interactions

Group nuclear interactions spin number

Leptons only weak half-integral conserved

Hadrons
⇢

Mesons both strong and weak integral not conserved
Baryons both strong and weak half-integral conserved⇤

⇤Baryon number (albeit not under that name) conservation was already in 1938 proposed by
Ernst Stückelberg, to explain the absence of the p+ ! e+ + p

0 proton decay.

and the baryon numbers are conserved in all processes, whereas the number of mesons is
not, is a feature of Nature that slowly became ever clearer, through the analysis of an ever
larger number of processes.

0.3.11 Strange Particles
By mid-1947, there was perfect experimental proof of the existence of the electron, the pro-
ton and the neutron, of which practically all substance around us is comprised. Yukawa’s
p-meson was also experimentally detected, so that there existed a real chance for a the-
oretical description of the strong nuclear interactions to be developed so as to adequately
reproduce the experimental facts about atomic nuclei. Fermi’s theory of b-decay adequately
described all known effects of weak nuclear interaction. The antiparticle of the electron that
Dirac predicted was also detected experimentally and there was no doubt that, upon appro-
priate development of experimental devices, all other antiparticles would be experimentally
produced. The existence of the neutrino has experimentally still not been verified, but at
least ever more of the theorists agreed that it did have to exist.

Thus, only the existence of the muon presented a capricious puzzle of Nature: this
about 206 times heavier copy of the electron was completely unexpected and unexplained.

— ¶ —
In December of 1947, George D. Rochester and Clifford C. Butler opened Pandora’s

box: they published the results of their analysis of photographs of cosmic rays in the cloud
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By 1960’s, too many hadrons to be elementary
S-matrix theory

Initiated by Heisenberg, early 1930
1960’s (Geoffrey Chow, …): bootstrap model

We observe only asymptotic states, not the ~10–23 s hadrons
Hadrons consist of hadrons…

Classi#cation:
using isospin (Heisenberg, 1932/Wigner, 1937)
strangeness (Gell-Mann, 1965; Nishijima & Nakano)
subject to the GNN formula:

6

History’s Lessons
Growing Number of Hadrons

Q = I
3

+ 1

2

(B + S),

…all the way down.
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Quark Model

Bound (qq) states with u, d & s quarks, of spin-0:

7

Quarks & mesons

–

Tuesday, November 1, 11



Suitable 
linear 
combi-
nations

Quark Model

Bound (qq) states of u, d & s quarks, of spin-0:

8

–

( d s* ) ( u s* )

( d u* )
( u u* )
( d d* )
( s s* )

( u d* )

( s u* ) ( s d* )

Quarks & mesons

Tuesday, November 1, 11



Quark Model

Bound (qq) states of u, d & s quarks, of spin-1:

9

–

Quarks & mesons bound P-states
(q-orb. momentum = 1)

Tuesday, November 1, 11



Quark Model

Bound (qqq) states of u, d & s quarks, of spin-½:

10

Quarks & baryons

Baryon octet has
only two states
with s = –1 & q = 0.

Tuesday, November 1, 11



Quark Model

Bound (qqq) states of u, d & s quarks, of spin-½:

11

( ddu ) ( duu )

( dds ) ( dsu ) ( suu )

( ssd ) ( ssu )

Concrete 3-body wave-functions are quite complicated.

Quarks & baryons

Tuesday, November 1, 11



Quark Model

Bound (qqq) states of u, d & s quarks, of spin-³⁄₂:

12

h$p://en.wikipedia.org/wiki/Quark_model

Quarks & baryons

Tuesday, November 1, 11
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Quark Model

Bound (qqq) states of u, d & s quarks, of spin-³⁄₂:

13

( ddd ) ( ddu ) ( duu ) ( uuu )

( dds ) ( dsu ) ( suu )

( ssd ) ( ssu )

( sss )

Concrete 3-body wave-functions are quite straightforward.

Quarks & baryons
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Quark Model

Bound state wave-functions factorize
Ψ(x1,x2,x3) χ1(spin) χ2('avor) χ3(color)
Ground state: Ψ(x1,x2,x3) spherically-symmetric,
so also w.r.t. the xi ↔ xj exchange for every i, j pair.
(e χ3(color) factor is antisymmetric.
➾ the χ1(spin) χ2('avor) factor must be symmetric w.r.t. 
the i ↔ j exchange, for every i, j pair.

If χ1(spin) = totally symmetric,
then χ2('avor) is totally symmetric ➾ decuplet

14

Quarks & baryons
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singlet

triplet

Digression: Symmetrizing
Denote

$en we have that

where the “triplet” is symmetric, a “singlet” is 
antisymmetric w.r.t. exchanging any two factors.

15

2

� ⇧ ei⇤� , Aµ ⇧ Aµ + i e�i⇤⇧µei⇤ = Aµ � ⇧µ⇤ .

|�⌦ ⇧ ei⇤aTa |�⌦ , (0.0.3)

Aµ ⇧ Aµ + i e�i⇤aTa ⇧µei⇤aTa , (0.0.4)
⇤

Ta , Tb ] = i fab
c Tc , Ta  a , ei⇤aTa  G .

⌅
(8, 1, 0) (3, 2, 0)
(3⇥, 1, 0) (1, 3, 0)

⇧
⇤ (1, 1, 0)

µ
⇧�

⇧µ
=

2�2

3⌅
, � �(µ) =

�1
C1 +

2
3⌅ ln(µ)

.

|3/2, ms⌦ =
⌦
|3/2,�3/2⌦, |3/2,�1/2⌦, |3/2,+1/2⌦, |3/2,+3/2⌦

↵
,

=
⌦
|⌥⌥⌥⌦, |⌃⌥⌥⌦(123), |⌃⌃⌥⌦(123), |⌃⌃⌃⌦

↵
,

|⌃⌥⌥⌦(123) = 1↵
3

�
|⌃⌥⌥⌦+ |⌥⌃⌥⌦+ |⌥⌥⌃⌦

⇥

⇥2(ukus) =
⌦
|ddd⌦, |udd⌦(123), |uud⌦(123), |uuu⌦, · · · , |sss⌦

↵

|⌃⌦ := | 1
2 ,+ 1

2⌦, |⌥⌦ := | 1
2 ,� 1

2⌦, |⌃⌃⌦ := | 1
2 ,+ 1

2⌦|
1
2 ,+ 1

2⌦, itd.

|1/2,±1/2⌦⌅|1/2,±1/2⌦ =

⌃
  �

  ⌥

⌃
  �

  ⌥

|1,+1⌦ = |⌃⌃⌦,
|1, 0⌦ = 1↵

2

�
|1/2,+1/2⌦|1/2,�1/2⌦+ |1/2,�1/2⌦|1/2,+1/2⌦

⇥
,

|1,�1⌦ = |1/2,�1/2⌦|1/2,�1/2⌦,
(0.0.5)

etc.

1

G =
S

2h̄mA

Z
|M|2 (2p)4d4�

pA � pB � pC

� c d3~pB

2(2p)3EB(~pB)
c d3~pC

2(2p)3EC(~pC)
, (0.1)

=
S

2(4p)2 h̄mA

Z
d3~pB |M|2

d
⇣

mAc �
q

m2
Bc2 + ~p2

B �
q

m2
Cc2 + (�~pB)2

⌘

q
m2

Bc2 + ~p2
B

q
m2

Cc2 + (�~pB)2
, (0.2)

=
S

8p h̄mA

Z •

0

r2dr |M|2q
m2

Bc2 + r2
q

m2
Cc2 + r2

d
⇣

mAc �
q

m2
Bc2 + r2 �

q
m2

Cc2 + r2
⌘

. (0.3)

To simplify the integral, introduce

E = c
⇣q

m2
Bc2 + r2 +

q
m2

Cc2 + r2
⌘

,
dE
E =

r(E)drq
m2

Bc2 + r2
q

m2
Cc2 + r2

(0.4)

so

r2drq
m2

Bc2 + r2
q

m2
Cc2 + r2

= r(E)dE
E , (0.5)

G =
S

8p h̄mA

Z •

(mB+mC)c2

dE
E |M|2 r(E) d(mAc � E/c), (0.6)

=

( S r0

8p h̄m2
Ac

|M(r0)|2, if mA > mB + mC;

0, if mA 6 mB + mC.
(0.7)

where r0 = |~pB|0 solves the relation (0.4) with E(r0) = mAc2
:

r0 = |~pB|0 =
c

2mA

q
m4

A + m4
B + m4

C � 2m2
A m2

B � 2m2
A m2

C � 2m2
B m2

C (0.8)

and satisfies the linear momentum conservation law. It is useful to list a few simplifications:

when the two products have the same mass but are not the same particle, S = 1 and:

G =

p
1 � (2m/mA)

2

16p h̄mA

���M
� c

2

p
m2

A � (2m)2�
���
2
. (0.9)

If, furthermore, mB = 0 = mC but the products are still two distinct particles (e.g., a neutrino

and a photon, or two different neutrinos and where m ⇡ 0 is a pretty good approximation for

neutrinos), we have:

G =
1

16p h̄mA

��M(1
2 mAc)

��2. (0.10)

|1/2,±1/2i⌦|1/2,±1/2i =

8
>>>>><

>>>>>:

|1,+1i = |""i,
8
>><

>>:
|1, 0i = 1p

2

⇥
|"#i+ |#"i

⇤
,

|1,�1i = |##i,

|0, 0i = 1p
2

⇥
|"#i � |#"i

⇤
,

(0.11)
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Digression: Symmetrizing
$e spin factor, χ1(spin), is

where

All linear combinations of these are totally symmetric.
$e +avor factor is

➾ “decuplet”, i.e., 10 basis states.
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2

� ⇧ ei⇤� , Aµ ⇧ Aµ + i e�i⇤⇧µei⇤ = Aµ � ⇧µ⇤ .

|�⌦ ⇧ ei⇤aTa |�⌦ , (0.0.3)

Aµ ⇧ Aµ + i e�i⇤aTa ⇧µei⇤aTa , (0.0.4)
⇤

Ta , Tb ] = i fab
c Tc , Ta  a , ei⇤aTa  G .

⇧
(8, 1, 0) (3, 2, 0)
(3⇥, 1, 0) (1, 3, 0)

⌃
⇤ (1, 1, 0)

µ
⇧�

⇧µ
=

2�2

3⌅
, � �(µ) =

�1
C1 +

2
3⌅ ln(µ)

.

|3/2, ms⌦ =
↵
|⌥⌥⌥⌦, |⌃⌥⌥⌦(123), |⌃⌃⌥⌦(123), |⌃⌃⌃⌦

�
,

|⌃⌥⌥⌦(123) := 1↵
3

�
|⌃⌥⌥⌦+ |⌥⌃⌥⌦+ |⌥⌥⌃⌦

⇥

⇥2(ukus) =
↵
|ddd⌦, |udd⌦(123), |uud⌦(123), |uuu⌦, · · · , |sss⌦

�

|⌃⌦ := | 1
2 ,+ 1

2⌦, |⌥⌦ := | 1
2 ,� 1

2⌦, |⌃⌃⌦ := | 1
2 ,+ 1

2⌦|
1
2 ,+ 1

2⌦, itd.

|1/2,±1/2⌦⌅|1/2,±1/2⌦ =

⌥
⌦⌦⌦⌦⌦⌦ 

⌦⌦⌦⌦⌦⌦�

|1,+1⌦ = |⌃⌃⌦,
⌥
⌦⌦ 

⌦⌦�
|1, 0⌦ = 1↵

2

⇤
|⌃⌥⌦|⌥⌃⌦+ |⌥⌃⌦|⌃⌥⌦

⌅
,

|1,�1⌦ = |⌥⌥⌦,

|0, 0⌦ = 1↵
2

⇤
|⌃⌥⌦|⌥⌃⌦ � |⌥⌃⌦|⌃⌥⌦

⌅
,

(0.0.5)

2

� ⇧ ei⇤� , Aµ ⇧ Aµ + i e�i⇤⇧µei⇤ = Aµ � ⇧µ⇤ .

|�⌦ ⇧ ei⇤aTa |�⌦ , (0.0.3)

Aµ ⇧ Aµ + i e�i⇤aTa ⇧µei⇤aTa , (0.0.4)
�

Ta , Tb ] = i fab
c Tc , Ta  a , ei⇤aTa  G .

⇤
(8, 1, 0) (3, 2, 0)
(3⇥, 1, 0) (1, 3, 0)

⌅
⇤ (1, 1, 0)

µ
⇧�

⇧µ
=

2�2

3⌅
, � �(µ) =

�1
C1 +

2
3⌅ ln(µ)

.

|3/2, ms⌦ =
 
|⌥⌥⌥⌦, |⌃⌥⌥⌦(123), |⌃⌃⌥⌦(123), |⌃⌃⌃⌦

⌦
,

|⌃⌥⌥⌦(123) := 1↵
3

�
|⌃⌥⌥⌦+ |⌥⌃⌥⌦+ |⌥⌥⌃⌦

⇥
.

⇥2(ukus) =
 
|ddd⌦, |udd⌦(123), |uud⌦(123), |uuu⌦, · · · , |sss⌦

⌦

|⌃⌦ := | 1
2 ,+ 1

2⌦, |⌥⌦ := | 1
2 ,� 1

2⌦, |⌃⌃⌦ := | 1
2 ,+ 1

2⌦|
1
2 ,+ 1

2⌦, itd.

|1/2,±1/2⌦⌅|1/2,±1/2⌦ =

⇧
������⌥

������⌃

|1,+1⌦ = |⌃⌃⌦,
⇧
��⌥

��⌃
|1, 0⌦ = 1↵

2

�
|⌃⌥⌦|⌥⌃⌦+ |⌥⌃⌦|⌃⌥⌦

⇥
,

|1,�1⌦ = |⌥⌥⌦,

|0, 0⌦ = 1↵
2

�
|⌃⌥⌦|⌥⌃⌦ � |⌥⌃⌦|⌃⌥⌦

⇥
,

(0.0.5)

2

� ⌅ ei⇤� , Aµ ⌅ Aµ + i e�i⇤⇧µei⇤ = Aµ � ⇧µ⇤ .

|� ⌅ ei⇤aTa |� , (0.0.3)

Aµ ⌅ Aµ + i e�i⇤aTa ⇧µei⇤aTa , (0.0.4)
⇤

Ta , Tb ] = i fab
c Tc , Ta � a , ei⇤aTa � G .

⌅
(8, 1, 0) (3, 2, 0)
(3⇥, 1, 0) (1, 3, 0)

⇧
⇤ (1, 1, 0)

µ
⇧�

⇧µ
=

2�2

3⌅
, ⌥ �(µ) =

�1
C1 +

2
3⌅ ln(µ)

.

|3/2, ms =
⌃
|3/2, �3/2 , |3/2, �1/2 , |3/2,+1/2 , |3/2,+3/2 

⌥
,

=
⌃
|⌃⌃⌃ , |⇧⌃⌃ (123), |⇧⇧⌃ (123), |⇧⇧⇧ 

⌥
,

|⇧⌃⌃ (123) = 1⌦
3

�
|⇧⌃⌃ + |⌃⇧⌃ + |⌃⌃⇧ 

⇥

⇥2(ukus) =
⌃
|ddd , |udd (123), |uud (123), |uuu , · · · , |sss 

⌥
'avor
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Digression: Symmetrizing
If the χ1(spin) factor is mixed, for example:

…there exist two linearly independent states:

$e product                                       is thus symmetry w.r.t. 
the 1↔2 exchange, and

is a totally symmetric state.
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2

� ⇧ ei⇤� , Aµ ⇧ Aµ + i e�i⇤⇧µei⇤ = Aµ � ⇧µ⇤ .

|�⌦ ⇧ ei⇤aTa |�⌦ , (0.0.3)

Aµ ⇧ Aµ + i e�i⇤aTa ⇧µei⇤aTa , (0.0.4)
�

Ta , Tb ] = i fab
c Tc , Ta  a , ei⇤aTa  G .

⇤
(8, 1, 0) (3, 2, 0)
(3⇥, 1, 0) (1, 3, 0)

⌅
⇤ (1, 1, 0)

µ
⇧�

⇧µ
=

2�2

3⌅
, � �(µ) =

�1
C1 +

2
3⌅ ln(µ)

.

|3/2, ms⌦ =
 
|⌥⌥⌥⌦, |⌃⌥⌥⌦(123), |⌃⌃⌥⌦(123), |⌃⌃⌃⌦

⌦
,

|⌃⌥⌥⌦(123) := 1↵
3

�
|⌃⌥⌥⌦+ |⌥⌃⌥⌦+ |⌥⌥⌃⌦

⇥
.

⇥2(ukus) =
 
|ddd⌦, |udd⌦(123), |uud⌦(123), |uuu⌦, · · · , |sss⌦

⌦

|⌃⌦ := | 1
2 ,+ 1

2⌦, |⌥⌦ := | 1
2 ,� 1

2⌦, |⌃⌃⌦ := | 1
2 ,+ 1

2⌦|
1
2 ,+ 1

2⌦, itd.

|1/2,±1/2⌦⌅|1/2,±1/2⌦ =

⇧
������⌥

������⌃

|1,+1⌦ = |⌃⌃⌦,
⇧
��⌥

��⌃
|1, 0⌦ = 1↵

2

�
|⌃⌥⌦|⌥⌃⌦+ |⌥⌃⌦|⌃⌥⌦

⇥
,

|1,�1⌦ = |⌥⌥⌦,

|0, 0⌦ = 1↵
2

�
|⌃⌥⌦|⌥⌃⌦ � |⌥⌃⌦|⌃⌥⌦

⇥
,

(0.0.5)

|1/2, ms⌦[12] =
 
|⌃⌥⌃⌦[12], |⌃⌥⌥⌦[12]

⌦
,

|⌃⌥⇥⌦[12] := 1↵
2

�
|⌃⌥⇥⌦ � |⌥⌃⇥⌦

⇥
.

 
|⌃⌥⇥⌦[12], |⌃⇥⌥⌦[13]

⌦
,

|⇥⌃⌥⌦[23] = |⌃⇥⌥⌦[13] � |⌃⌥⇥⌦[12].

2

� ⇧ ei⇤� , Aµ ⇧ Aµ + i e�i⇤⇧µei⇤ = Aµ � ⇧µ⇤ .

|�⌦ ⇧ ei⇤aTa |�⌦ , (0.0.3)

Aµ ⇧ Aµ + i e�i⇤aTa ⇧µei⇤aTa , (0.0.4)
�

Ta , Tb ] = i fab
c Tc , Ta  a , ei⇤aTa  G .

⇤
(8, 1, 0) (3, 2, 0)
(3⇥, 1, 0) (1, 3, 0)

⌅
⇤ (1, 1, 0)

µ
⇧�

⇧µ
=

2�2

3⌅
, � �(µ) =

�1
C1 +

2
3⌅ ln(µ)

.

|3/2, ms⌦ =
 
|⌥⌥⌥⌦, |⌃⌥⌥⌦(123), |⌃⌃⌥⌦(123), |⌃⌃⌃⌦

⌦
,

|⌃⌥⌥⌦(123) := 1↵
3

�
|⌃⌥⌥⌦+ |⌥⌃⌥⌦+ |⌥⌥⌃⌦

⇥
.

⇥2(ukus) =
 
|ddd⌦, |udd⌦(123), |uud⌦(123), |uuu⌦, · · · , |sss⌦

⌦

|⌃⌦ := | 1
2 ,+ 1

2⌦, |⌥⌦ := | 1
2 ,� 1

2⌦, |⌃⌃⌦ := | 1
2 ,+ 1

2⌦|
1
2 ,+ 1

2⌦, itd.

|1/2,±1/2⌦⌅|1/2,±1/2⌦ =

⇧
������⌥

������⌃

|1,+1⌦ = |⌃⌃⌦,
⇧
��⌥

��⌃
|1, 0⌦ = 1↵

2

�
|⌃⌥⌦|⌥⌃⌦+ |⌥⌃⌦|⌃⌥⌦

⇥
,

|1,�1⌦ = |⌥⌥⌦,

|0, 0⌦ = 1↵
2

�
|⌃⌥⌦|⌥⌃⌦ � |⌥⌃⌦|⌃⌥⌦

⇥
,

(0.0.5)

|1/2, ms⌦[12] =
 
|⌃⌥⌃⌦[12], |⌃⌥⌥⌦[12]

⌦
,

|⌃⌥⇥⌦[12] := 1↵
2

�
|⌃⌥⇥⌦ � |⌥⌃⇥⌦

⇥
.

 
|⌃⌥⇥⌦[12], |⌃⇥⌥⌦[13]

⌦
,

|⇥⌃⌥⌦[23] = |⌃⇥⌥⌦[13] � |⌃⌥⇥⌦[12].

2

� ⇧ ei⇤� , Aµ ⇧ Aµ + i e�i⇤⇧µei⇤ = Aµ � ⇧µ⇤ .

|�⌦ ⇧ ei⇤aTa |�⌦ , (0.0.3)

Aµ ⇧ Aµ + i e�i⇤aTa ⇧µei⇤aTa , (0.0.4)
�

Ta , Tb ] = i fab
c Tc , Ta  a , ei⇤aTa  G .

⇤
(8, 1, 0) (3, 2, 0)
(3⇥, 1, 0) (1, 3, 0)

⌅
⇤ (1, 1, 0)

µ
⇧�

⇧µ
=

2�2

3⌅
, � �(µ) =

�1
C1 +

2
3⌅ ln(µ)

.

|3/2, ms⌦ =
 
|⌥⌥⌥⌦, |⌃⌥⌥⌦(123), |⌃⌃⌥⌦(123), |⌃⌃⌃⌦

⌦
,

|⌃⌥⌥⌦(123) := 1↵
3

�
|⌃⌥⌥⌦+ |⌥⌃⌥⌦+ |⌥⌥⌃⌦

⇥
.

⇥2(ukus) =
 
|ddd⌦, |udd⌦(123), |uud⌦(123), |uuu⌦, · · · , |sss⌦

⌦

|⌃⌦ := | 1
2 ,+ 1

2⌦, |⌥⌦ := | 1
2 ,� 1

2⌦, |⌃⌃⌦ := | 1
2 ,+ 1

2⌦|
1
2 ,+ 1

2⌦, itd.

|1/2,±1/2⌦⌅|1/2,±1/2⌦ =

⇧
������⌥

������⌃

|1,+1⌦ = |⌃⌃⌦,
⇧
��⌥

��⌃
|1, 0⌦ = 1↵

2

�
|⌃⌥⌦|⌥⌃⌦+ |⌥⌃⌦|⌃⌥⌦

⇥
,

|1,�1⌦ = |⌥⌥⌦,

|0, 0⌦ = 1↵
2

�
|⌃⌥⌦|⌥⌃⌦ � |⌥⌃⌦|⌃⌥⌦

⇥
,

(0.0.5)

|1/2, ms⌦[12] =
 
|⌃⌥⌃⌦[12], |⌃⌥⌥⌦[12]

⌦
,

|⌃⌥⇥⌦[12] := 1↵
2

�
|⌃⌥⇥⌦ � |⌥⌃⇥⌦

⇥
.

 
|⌃⌥⇥⌦[12], |⌃⇥⌥⌦[13]

⌦
,

|⇥⌃⌥⌦[23] = |⌃⇥⌥⌦[13] � |⌃⌥⇥⌦[12].

|⌃⌥⇥⌦[12]|ud�⌦[12] + |⌃⇥⌥⌦[13]|u�d⌦[13] + |⇥⌃⌥⌦[23]|�ud⌦[23]

2

� ⇧ ei⇤� , Aµ ⇧ Aµ + i e�i⇤⇧µei⇤ = Aµ � ⇧µ⇤ .

|�⌦ ⇧ ei⇤aTa |�⌦ , (0.0.3)

Aµ ⇧ Aµ + i e�i⇤aTa ⇧µei⇤aTa , (0.0.4)
�

Ta , Tb ] = i fab
c Tc , Ta  a , ei⇤aTa  G .

⇤
(8, 1, 0) (3, 2, 0)
(3⇥, 1, 0) (1, 3, 0)

⌅
⇤ (1, 1, 0)

µ
⇧�

⇧µ
=

2�2

3⌅
, � �(µ) =

�1
C1 +

2
3⌅ ln(µ)

.

|3/2, ms⌦ =
 
|⌥⌥⌥⌦, |⌃⌥⌥⌦(123), |⌃⌃⌥⌦(123), |⌃⌃⌃⌦

⌦
,

|⌃⌥⌥⌦(123) := 1↵
3

�
|⌃⌥⌥⌦+ |⌥⌃⌥⌦+ |⌥⌥⌃⌦

⇥
.

⇥2(ukus) =
 
|ddd⌦, |udd⌦(123), |uud⌦(123), |uuu⌦, · · · , |sss⌦

⌦

|⌃⌦ := | 1
2 ,+ 1

2⌦, |⌥⌦ := | 1
2 ,� 1

2⌦, |⌃⌃⌦ := | 1
2 ,+ 1

2⌦|
1
2 ,+ 1

2⌦, itd.

|1/2,±1/2⌦⌅|1/2,±1/2⌦ =

⇧
������⌥

������⌃

|1,+1⌦ = |⌃⌃⌦,
⇧
��⌥

��⌃
|1, 0⌦ = 1↵

2

�
|⌃⌥⌦|⌥⌃⌦+ |⌥⌃⌦|⌃⌥⌦

⇥
,

|1,�1⌦ = |⌥⌥⌦,

|0, 0⌦ = 1↵
2

�
|⌃⌥⌦|⌥⌃⌦ � |⌥⌃⌦|⌃⌥⌦

⇥
,

(0.0.5)

|1/2, ms⌦[12] =
 
|⌃⌥⌃⌦[12], |⌃⌥⌥⌦[12]

⌦
,

|⌃⌥⇥⌦[12] := 1↵
2

�
|⌃⌥⇥⌦ � |⌥⌃⇥⌦

⇥
.

 
|⌃⌥⇥⌦[12], |⌃⇥⌥⌦[13]

⌦
,

|⇥⌃⌥⌦[23] = |⌃⇥⌥⌦[13] � |⌃⌥⇥⌦[12].
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` = 0 = `0, for the masses of which16 is easy to show that they are lowest. In this case,
the baryon spin stems exclusively from the sum of the quark spins, for which the addition of
three spins of magnitude 1

2

we have:�
| 3

2

,± 3

2

i, | 3

2

,± 1

2

i
 

S
,

�
| 1

2

,± 1

2

i[12]

 
,

�
| 1

2

,± 1

2

i[23]

 
, (2.117)

where the subscript S denotes total symmetry and where, following Ref. [176], we use the
basis

| 1

2

,+ 1

2

i[12] = 1p
2

�
|"#"i � |#""i

�
, | 1

2

,� 1

2

i[12] = 1p
2

�
|"##i � |#"#i

�
; (2.118)

| 1

2

,+ 1

2

i[23] = 1p
2

�
|""#i � |"#"i

�
, | 1

2

,� 1

2

i[23] = 1p
2

�
|#"#i � |##"i

�
, (2.119)

and which are antisymmetric with respect to the exchange of the particles indicated in the
subscript. It is not hard to show that

| 1

2

,+ 1

2

i[13] = 1p
2

�
|""#i � |#""i

�
= | 1

2

,+ 1

2

i[12] + | 1

2

,+ 1

2

i[23], (2.120)

and similarly for | 1

2

,� 1

2

i[13]. We introduced the abbreviations:

|"i := | 1

2

,+ 1

2

i, |#i := | 1

2

,� 1

2

i, |"#"i := | 1

2

,+ 1

2

i| 1

2

,� 1

2

i| 1

2

,+ 1

2

i, etc. (2.121)

Using the approximate SU(3) f -symmetry, u,- d- and s-quark are treated as if they were
different “polarizations” of the same fermion, so that Pauli’s exclusion principle must be
applied. That is, the entire wave-function of the bound state of three quarks must be anti-
symmetric with respect to the exchange of any two of the three quarks. The wave-function
for the baryon then factorizes:

Y(baryon) = Y(~r, t) c(spin) c(“flavor”) c(color). (2.122)

For states with ` = 0 = `0, Y(~r, t) must be a totally symmetric function since it cannot
depend on angles, and so neither of the quark’s relative positions. On the other hand,
the color factor depends on the additional degree of freedom: each quark has a linear
combination of the three primary colors [+ section 0.3.13]. That is, every quark is in fact a
triple of quarks that span the 3-dimensional representation of the SU(3)c-symmetry17, and
a bound state of three quarks must be SU(3)c-invariant. Group theory applies to the SU(3)c-
symmetry as well as for SU(3) f , and the decomposition (A.77f) provides for the fact that
the SU(3)c-invariant factor c(color) is totally antisymmetric.

Since the entire product (2.122) must be totally antisymmetric by Pauli exclusion prin-
ciple, and Y(~r, t) is totally symmetric while c(color) is totally antisymmetric, it follows that
the product c(spin)c(“flavor”) must be totally symmetric.

Since the c(“flavor”) factor for the decuplet of the SU(3) f -symmetry is totally sym-
metric [+ decomposition (A.77f)], it follows that the c(spin) factor must also be totally
symmetric. Writing out the first part (2.117)
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16 The mass of a baryon as a bound state of three quarks equals the sum of the masses of the constituent quarks,
minus the mass equivalent of the binding energy. Then, the strongest-bound baryons are also the lightest
amongst the possible bound states of the given quarks.

17 Unlike the approximate SU(3) f -symmetry, the SU(3)c-symmetry is exact.
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` = 0 = `0, for the masses of which16 is easy to show that they are lowest. In this case,
the baryon spin stems exclusively from the sum of the quark spins, for which the addition of
three spins of magnitude 1
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where the subscript S denotes total symmetry and where, following Ref. [176], we use the
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and which are antisymmetric with respect to the exchange of the particles indicated in the
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Using the approximate SU(3) f -symmetry, u,- d- and s-quark are treated as if they were
different “polarizations” of the same fermion, so that Pauli’s exclusion principle must be
applied. That is, the entire wave-function of the bound state of three quarks must be anti-
symmetric with respect to the exchange of any two of the three quarks. The wave-function
for the baryon then factorizes:

Y(baryon) = Y(~r, t) c(spin) c(“flavor”) c(color). (2.122)

For states with ` = 0 = `0, Y(~r, t) must be a totally symmetric function since it cannot
depend on angles, and so neither of the quark’s relative positions. On the other hand,
the color factor depends on the additional degree of freedom: each quark has a linear
combination of the three primary colors [+ section 0.3.13]. That is, every quark is in fact a
triple of quarks that span the 3-dimensional representation of the SU(3)c-symmetry17, and
a bound state of three quarks must be SU(3)c-invariant. Group theory applies to the SU(3)c-
symmetry as well as for SU(3) f , and the decomposition (A.77f) provides for the fact that
the SU(3)c-invariant factor c(color) is totally antisymmetric.

Since the entire product (2.122) must be totally antisymmetric by Pauli exclusion prin-
ciple, and Y(~r, t) is totally symmetric while c(color) is totally antisymmetric, it follows that
the product c(spin)c(“flavor”) must be totally symmetric.

Since the c(“flavor”) factor for the decuplet of the SU(3) f -symmetry is totally sym-
metric [+ decomposition (A.77f)], it follows that the c(spin) factor must also be totally
symmetric. Writing out the first part (2.117)
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16 The mass of a baryon as a bound state of three quarks equals the sum of the masses of the constituent quarks,
minus the mass equivalent of the binding energy. Then, the strongest-bound baryons are also the lightest
amongst the possible bound states of the given quarks.

17 Unlike the approximate SU(3) f -symmetry, the SU(3)c-symmetry is exact.
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In spin-+avor factors of the type

“∗” = ±½      i          “★” = u, d, s  ,
so we have spin-(±½) baryons:

where the eight three-state wave-functions are all 
symmetrized according to the prescription above.

18

( ddu ) ( duu )

( dds ) ( dsu ) ( suu )

( ssd ) ( ssu )

Digression: Symmetrizing

2

� ⇧ ei⇤� , Aµ ⇧ Aµ + i e�i⇤⇧µei⇤ = Aµ � ⇧µ⇤ .

|�⌦ ⇧ ei⇤aTa |�⌦ , (0.0.3)

Aµ ⇧ Aµ + i e�i⇤aTa ⇧µei⇤aTa , (0.0.4)
�

Ta , Tb ] = i fab
c Tc , Ta  a , ei⇤aTa  G .

⇤
(8, 1, 0) (3, 2, 0)
(3⇥, 1, 0) (1, 3, 0)

⌅
⇤ (1, 1, 0)

µ
⇧�

⇧µ
=

2�2

3⌅
, � �(µ) =

�1
C1 +

2
3⌅ ln(µ)

.
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|⌥⌥⌥⌦, |⌃⌥⌥⌦(123), |⌃⌃⌥⌦(123), |⌃⌃⌃⌦

⌦
,

|⌃⌥⌥⌦(123) := 1↵
3

�
|⌃⌥⌥⌦+ |⌥⌃⌥⌦+ |⌥⌥⌃⌦

⇥
.

⇥2(ukus) =
 
|ddd⌦, |udd⌦(123), |uud⌦(123), |uuu⌦, · · · , |sss⌦

⌦
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2 ,+ 1

2⌦, |⌥⌦ := | 1
2 ,� 1
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2 ,+ 1

2⌦|
1
2 ,+ 1

2⌦, itd.

|1/2,±1/2⌦⌅|1/2,±1/2⌦ =

⇧
������⌥

������⌃

|1,+1⌦ = |⌃⌃⌦,
⇧
��⌥

��⌃
|1, 0⌦ = 1↵

2

�
|⌃⌥⌦|⌥⌃⌦+ |⌥⌃⌦|⌃⌥⌦

⇥
,

|1,�1⌦ = |⌥⌥⌦,

|0, 0⌦ = 1↵
2

�
|⌃⌥⌦|⌥⌃⌦ � |⌥⌃⌦|⌃⌥⌦

⇥
,

(0.0.5)

|1/2, ms⌦[12] =
 
|⌃⌥⌃⌦[12], |⌃⌥⌥⌦[12]

⌦
,

|⌃⌥⇥⌦[12] := 1↵
2

�
|⌃⌥⇥⌦ � |⌥⌃⇥⌦

⇥
.

 
|⌃⌥⇥⌦[12], |⌃⇥⌥⌦[13]

⌦
,

|⇥⌃⌥⌦[23] = |⌃⇥⌥⌦[13] � |⌃⌥⇥⌦[12].

|⌃⌥⇥⌦[12]|ud�⌦[12] + |⌃⇥⌥⌦[13]|u�d⌦[13] + |⇥⌃⌥⌦[23]|�ud⌦[23]
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Relativistic Kinematics

Law: conservation of energy
Law: conservation of momentum
Law: conservation of angular mom. & spin-statistics
Discrete symmetries

P (parity)
T (time reversal)
C (charge conjugation)

CPT theorem
4-dimensional tensor calculus

19

Relativistic kinematics

} conserv. of 4-vector 
energy-momentum
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Tensors in Space-Time

Derivative (general de#nition):
Dx[f(x)·g(x)] = Dx[f(x)]·g(x) + f(x)·Dx[g(x)]

Space-time: —1,3:={xμ∈(–∞,+∞), μ=0,1,2,3}
x = (x0, x1, x2, x3), ημν = diag(1,–1,–1,–1)
x·y = x0y0 – (x1y1 +x2y2 + x3y3) = c2(t1t2) – r1·r2

But — no one can force You to use my coordinates!
Your coordinates: yμ = yμ(x0, x1, x2, x3).
…we’ll need differential calculus, to compare…
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Differential & derivative:

General tensor density type (p,q;d):
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2 Fundamentalna fizika i elementarne čestice

2.1 Koncept elementarnosti i argument redukcije

µ = m⇧ h̄� c⇥ G⇤
N, ⇥ L�1 = [µ] = (M)

�M L2

T

⇥�� L
T

⇥⇥� L3

T2 M

⇥⇤
(2.1)

1 + � � ⇤ = 0,
2� + ⇥ + 3⇤ = �1,

� + ⇥ + 2⇤ = 0,

⌅
 �

 ⌃
⇥

⇤
⌥

⇧

� = �1,
⇥ = 1,
⇤ = 0,

(2.2)

tako da
µ =

m⇧ c
h̄

(2.3)

[��1 h̄� c⇥] = L�1
�M L2

T

⇥�� L
T

⇥⇥ !=
M L2

T2 (2.4)

� = 1,
�1 + 2� + ⇥ = 2,

� + ⇥ = 2,

⌅
 �

 ⌃
⇥

⇤
⌥

⇧

� = �1,
⇥ = 1,
⇤ = 0,

(2.5)

2.2 Elementarne čestice: otkrivanje i predispozicija

2.3 Inventar fundamentalnih sastojaka Sveta

3 Fizika u prostor-vremenu

3.1 Lorencove transformacije i tenzori

dyµ =
3

�
⌅=0

⌃yµ

⌃x⌅ dx⌅ ⌃

⌃yµ =
3

�
⌅=0

⌃x⌅

⌃yµ

⌃

⌃x⌅ (3.1)

3.2 Relativistička kinematika: ograničenja i posledice

3.3 Fejnmanovi dijagrami i proračuni

4 Gejdž simetrije: elektrodinamika

4.1 Faza talasne funkcije u kvantnoj mehanici

4.2 Elektromagnetno polje i elektromagnetni kvanti

4.3 Vodonikov atom, pozitronijum i kvarkonijum

4.4 Dirakove jednačine i rešenja,

5 Gejdž simetrije: hromodinamika i nekomutativne groupe

5.1 Sudari, staristika i osmostruki put

5.2 SU(3) grupa

5.3 Infracrveno ropstvo

5.4 Asimptotska sloboda
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contra-variant co-variant
tensor type (1,0) tensor type (0,1)
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4 Gejdž simetrije: elektrodinamika

4.1 Faza talasne funkcije u kvantnoj mehanici

4.2 Elektromagnetno polje i elektromagnetni kvanti

4.3 Vodonikov atom, pozitronijum i kvarkonijum

4.4 Dirakove jednačine i rešenja,
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“Index conservation”
Repeated index, once up–once down, is summed;
it’s choice is not free, the result does not depend on it.
Single index is free & not summed;
it’s choice is free, the result does depend on it.
(e number/position of indices in summands must agree.
E.g.:  Aμ ημν = Aν – “index raising”
Aμ ημν = Aν – “index lowering”
Aμ ημν Aν = |A•|2 = A02 – (A12 + A22 + A32)
 = square η-norm of the 4-vector (A0, A1, A2, A3)
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Now, You try:
Tensor type of Xμν is (1,1).
What is the tensor type of Xμν Yν , if Yν is of type (0,1)?
What is Xμν Zνρσ , if Zνρσ is of type (0,3)?
Is Xμν Yνρσ a tensor? – Why?
Is Xμν Yνρσ a tensor? – Why?
Is εμνρσ Xμν Yρσ a tensor, if εμνρσ is a (4,0;1)-tensor density & 
Xμν i Yρσ (0,2)-tensors? – Why?
Is (∂f/∂xμ) a tensor? – Why?
Is (∂Aμ/∂xμ) a tensor? – Why?
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Let’s check:

is a (0,1)-tensor. But,
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�xµ ⇥
� ⌦Aµ

�yµ =
�

�yµ
⌦Aµ(y) =

�x⌅

�yµ

�

�x⌅

�yµ

�x⌃ A⌃(x) (3.4)

=
�x⌅

�yµ

�yµ

�x⌃

�

�x⌅ A⌃(x) +
�x⌅

�yµ

�2yµ

�x⌅�x⌃ A⌃(x) (3.5)

=
�A⌅

�x⌅ +
�x⌅

�yµ

�2yµ

�x⌅�x⌃ A⌃(x) (3.6)
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If xμ → yμ = Λμν xν is a linear transformation, and the Λμν 
matrix is constant, then

For general transformations, xμ → yμ = Λμν xν, the matrix 
elements Λμν are arbitrary functions of xν, & the 2nd, 
unfortunate summand does not vanish!
$e “tensoriality” of an expression depends on the 
(non)linearity of the transformation xμ → yμ = yμ(x) that 
we allow.
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2 Fundamentalna fizika i elementarne čestice

2.1 Koncept elementarnosti i argument redukcije

µ = m⇧ h̄� c⇥ G⇤
N, ⇤ L�1 = [µ] = (M)

�M L2

T

⇥�� L
T

⇥⇥� L3

T2 M

⇥⇤
(2.1)

1 + � � ⇤ = 0,
2� + ⇥ + 3⇤ = �1,

� + ⇥ + 2⇤ = 0,

⌅
 �

 ⌃
⇤

⇤
⌥

⇧

� = �1,
⇥ = 1,
⇤ = 0,

(2.2)

tako da
µ =

m⇧ c
h̄

(2.3)

[��1 h̄� c⇥] = L�1
�M L2

T

⇥�� L
T

⇥⇥ !=
M L2

T2 (2.4)

� = 1,
�1 + 2� + ⇥ = 2,

� + ⇥ = 2,

⌅
 �

 ⌃
⇤

⇤
⌥

⇧

� = �1,
⇥ = 1,
⇤ = 0,

(2.5)

2.2 Elementarne čestice: otkrivanje i predispozicija

2.3 Inventar fundamentalnih sastojaka Sveta

3 Fizika u prostor-vremenu

3.1 Lorencove transformacije i tenzori

dyµ =
3

⇥
⌅=0

�yµ

�x⌅ dx⌅ �

�yµ =
3

⇥
⌅=0

�x⌅

�yµ

�

�x⌅ (3.1)

⌦T µ1···µp
⌅1···⌅p =

�
det
↵�y

�x

�⇥d �yµ1

�x⌃1
· · · �yµp

�x⌃p

�x⌥1

�y⌅1
· · · �x⌥q

�y⌅q
T ⌃1···⌃p

⌥1···⌥q (3.2)

� f
�xµ ⇥

� f
�yµ =

�x⌅

�yµ

� f
�x⌅ (3.3)

�Aµ

�xµ ⇥
� ⌦Aµ

�yµ =
�

�yµ
⌦Aµ(y) =

�x⌅

�yµ

�

�x⌅

�yµ

�x⌃ A⌃(x) (3.4)

=
�x⌅

�yµ

�yµ

�x⌃

�

�x⌅ A⌃(x) +
�x⌅

�yµ

�2yµ

�x⌅�x⌃ A⌃(x) (3.5)

=
�A⌅

�x⌅ +
�x⌅

�yµ

�2yµ

�x⌅�x⌃ A⌃(x) (3.6)

�x⌅

�yµ

�2yµ

�x⌅�x⌃ =
�x⌅

�yµ

�

�x⌅

�yµ

�x⌃ =
�x⌅

�yµ

��µ
⌃

�x⌅ = 0 (3.7)
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If we de#ne

Derive how “Γ” must transform w.r.t. a nonlinear change 
xμ → yμ = yμ(x), so that these two D-derivative would be 
(1,1) & (0,2)-tensors.
$at’s the covariant derivative, Γ the Christoffel symbol.
Linear changes xμ → yμ = Λμν xν are Lorentz transform’s; 
compare with electrodynamics.
$e matrices Λμν form the SO(1,3) group. — Huh?
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2 Fundamentalna fizika i elementarne čestice

2.1 Koncept elementarnosti i argument redukcije

µ = m⇧ h̄� c⇥ G⇤
N, ⇤ L�1 = [µ] = (M)

�M L2

T

⇥�� L
T

⇥⇥� L3

T2 M

⇥⇤
(2.1)

1 + � � ⇤ = 0,
2� + ⇥ + 3⇤ = �1,

� + ⇥ + 2⇤ = 0,

⌅
 �

 ⌃
⇤

⇤
⌥

⇧

� = �1,
⇥ = 1,
⇤ = 0,

(2.2)

tako da
µ =

m⇧ c
h̄

(2.3)

[��1 h̄� c⇥] = L�1
�M L2

T

⇥�� L
T

⇥⇥ !=
M L2

T2 (2.4)

� = 1,
�1 + 2� + ⇥ = 2,

� + ⇥ = 2,

⌅
 �

 ⌃
⇤

⇤
⌥

⇧

� = �1,
⇥ = 1,
⇤ = 0,

(2.5)

2.2 Elementarne čestice: otkrivanje i predispozicija

2.3 Inventar fundamentalnih sastojaka Sveta

3 Fizika u prostor-vremenu

3.1 Lorencove transformacije i tenzori

dyµ =
3

⇤
⌅=0

�yµ

�x⌅ dx⌅ �

�yµ =
3

⇤
⌅=0

�x⌅

�yµ

�

�x⌅ (3.1)

⌦T µ1···µp
⌅1···⌅p =

�
det
↵�y

�x

�⇥d �yµ1

�x⌃1
· · · �yµp

�x⌃p

�x⌥1

�y⌅1
· · · �x⌥q

�y⌅q
T ⌃1···⌃p

⌥1···⌥q (3.2)

� f
�xµ ⇥

� f
�yµ =

�x⌅

�yµ

� f
�x⌅ (3.3)

�Aµ

�xµ ⇥
� ⌦Aµ

�yµ =
�

�yµ
⌦Aµ(y) =

�x⌅

�yµ

�

�x⌅

�yµ

�x⌃ A⌃(x) (3.4)

=
�x⌅

�yµ

�yµ

�x⌃

�

�x⌅ A⌃(x) +
�x⌅

�yµ

�2yµ

�x⌅�x⌃ A⌃(x) (3.5)

=
�A⌅

�x⌅ +
�x⌅

�yµ

�2yµ

�x⌅�x⌃ A⌃(x) (3.6)

�x⌅

�yµ

�2yµ

�x⌅�x⌃ =
�x⌅

�yµ

�

�x⌅

�yµ

�x⌃ =
�x⌅

�yµ

�⇥µ
⌃

�x⌅ = 0 (3.7)

DA⌅

Dxµ :=
�A⌅

�xµ + �⌅
µ⌃ A⌃ DA⌅

Dxµ :=
�A⌅

�xµ � �⌃
µ⌅ A⌃ (3.8)
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Relativistic Kinematics

Useful:
p = (–E/c , px , py , pz)
p·p = pμ ημνpν = pμ pμ = E2/c2 – p2 = m2c2 = invariant
E = γmc2 for a particle of mass m, E = pc  if m = 0.

In non-relativistic physics, mass m = 0 particle is poppycock!

Well-known expansion for v < c:

27

Relativistic kinematics

2 Fundamentalna fizika i elementarne čestice

2.1 Koncept elementarnosti i argument redukcije

µ = m⇧ h̄� c⇥ G⇤
N, ⇤ L�1 = [µ] = (M)

�M L2

T

⇥�� L
T

⇥⇥� L3

T2 M

⇥⇤
(2.1)

1 + � � ⇤ = 0,
2� + ⇥ + 3⇤ = �1,

� + ⇥ + 2⇤ = 0,

⌅
 �

 ⌃
⇤

⇤
⌥

⇧

� = �1,
⇥ = 1,
⇤ = 0,

(2.2)

tako da
µ =

m⇧ c
h̄

(2.3)

[��1 h̄� c⇥] = L�1
�M L2

T

⇥�� L
T

⇥⇥ !=
M L2

T2 (2.4)

� = 1,
�1 + 2� + ⇥ = 2,

� + ⇥ = 2,

⌅
 �

 ⌃
⇤

⇤
⌥

⇧

� = �1,
⇥ = 1,
⇤ = 0,

(2.5)

2.2 Elementarne čestice: otkrivanje i predispozicija

2.3 Inventar fundamentalnih sastojaka Sveta

3 Fizika u prostor-vremenu

3.1 Lorencove transformacije i tenzori

dyµ =
3

⇤
⌅=0

�yµ

�x⌅ dx⌅ �

�yµ =
3

⇤
⌅=0

�x⌅

�yµ

�

�x⌅ (3.1)

⌦T µ1···µp
⌅1···⌅p =

�
det
↵�y

�x

�⇥d �yµ1

�x⌃1
· · · �yµp

�x⌃p

�x⌥1

�y⌅1
· · · �x⌥q

�y⌅q
T ⌃1···⌃p

⌥1···⌥q (3.2)

� f
�xµ ⇥

� f
�yµ =

�x⌅

�yµ

� f
�x⌅ (3.3)

�Aµ

�xµ ⇥ � ⌦Aµ

�yµ =
�

�yµ
⌦Aµ(y) =

�x⌅

�yµ

�

�x⌅

�yµ

�x⌃ A⌃(x) (3.4)

=
�x⌅

�yµ

�yµ

�x⌃

�

�x⌅ A⌃(x) +
�x⌅

�yµ

�2yµ

�x⌅�x⌃ A⌃(x) (3.5)

=
�A⌅

�x⌅ +
�x⌅

�yµ

�2yµ

�x⌅�x⌃ A⌃(x) (3.6)

�x⌅

�yµ

�2yµ

�x⌅�x⌃ =
�x⌅

�yµ

�

�x⌅

�yµ

�x⌃ =
�x⌅

�yµ

�⇥µ
⌃

�x⌅ = 0 (3.7)

DA⌅

Dxµ :=
�A⌅

�xµ + �⌅
µ⌃ A⌃ DA⌅

Dxµ :=
�A⌅

�xµ � �⌃
µ⌅ A⌃ (3.8)

E = ⇤ m c2 =
m c2

⌅
1� v2/c2

= m c2
�

1 +
1
2

v2

c2 +
3
8

v4

c4 +
5
16

v6

c6 + · · ·
⇥

(3.9)
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Relativistic Kinematics

Two mass-m snowballs fuse at velocities ±0.60 c. What’s 
the mass, M, of the fused snowball?

Since p1=–p2, momentum conservation says: pM=0.
Energy conservation says EM=E1+E2, so M = (E1+E2)/c2,
M = 2(mc2γ)/c2 = 2m/(1–(³⁄₅)2)1/2 = 5m/2  >  2m.

(e “increase” M–2m = ½m stems from kinetic energy.

If a mass-M lump splits into two equal, mass-m parts, 
what’s their parting speed?

Energy conservation: M = 2mγ , so v = c(1–(2m/M)2)1/2.
It must be that m < ½M. Since MDeut.= 1875.6 MeV/c2, and
mp+mn = 1877.9 MeV/c2, we need 2.3 MeV-a for !ssion.

28
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Relativistic Kinematics

A mass-M lump splits into two lumps, masses m1 & m2, 
compute the speeds v1 i v2.

Momentum conservation says: p1 = –p2, jer pM = 0.
Energy conservation says: E1 + E2 = EM.
Use that Ei2 – pi2c2 = mi2c4 and EM = Mc2, since pM = 0.
Solve for |p| = |p1| = –|p2| and obtain

If m2 ≈ 0, then

29

Relativistic kinematics

E = � m c2 =
m c2

⇥
1� v2/c2

= m c2
�

1 +
1
2

v2

c2 +
3
8

v4

c4 +
5
16

v6

c6 + · · ·
⇥

(3.9)

p = ±
c
⇤

M4 + (m 2
1 �m 2

2 )2 � 2M2(m 2
1 + m 2

2 ))

2M
(3.10)

p = ±
c(M2 �m 2

1 )
2M

(3.11)

3.2 Relativistička kinematika: ograničenja i posledice

3.3 Fejnmanovi dijagrami i proračuni

4 Gejdž simetrije: elektrodinamika

4.1 Faza talasne funkcije u kvantnoj mehanici

4.2 Elektromagnetno polje i elektromagnetni kvanti

4.3 Vodonikov atom, pozitronijum i kvarkonijum

4.4 Dirakove jednačine i rešenja,

5 Gejdž simetrije: hromodinamika i nekomutativne groupe

5.1 Sudari, staristika i osmostruki put

5.2 SU(3) grupa

5.3 Infracrveno ropstvo

5.4 Asimptotska sloboda

13

Do the math.
Plus, compute the 

total energies,
E1 & E2, in terms of

m1, m2 & M only.

3.2 Relativistička kinematika: ograničenja i posledice

E = ⇥ m c2 =
m c2

⇤
1� v2/c2

= m c2
⌅

1 +
1
2

v2

c2 +
3
8

v4

c4 +
5
16

v6

c6 + · · ·
⇧

(3.9)

p = ±
c
�

M4 + (m 2
1 �m 2

2 )2 � 2M2(m 2
1 + m 2

2 )

2M
(3.10)

p = ±
c(M2 �m 2

1 )
2M

(3.11)

3.3 Fejnmanovi dijagrami i proračuni

d� = |M|2 S
2h̄M

⌦ n

⇤
i=1

⌅ c d3pi
(2⇤)32Ei

⇧↵
(2⇤)4 �4�pM �

n

⌅
j=1

pj
⇥

(3.12)

� =
S

2h̄M
1

(4⇤)2

 d3p1⇤
m 2

1 c2+p 2
1

d3p2⇤
m 2

2 c2+p 2
2

|M|2 �4�pM � p1 � p2
⇥

(3.13)

�4�pM � p1 � p2
⇥

= �
�

Mc� E1
c �

E2
c
⇥

�3�� p1 � p2
⇥

(3.14)
= �

�
Mc�⇤m 2

1 c2+p 2
1 �
⇤

m 2
2 c2+p 2

2

⇥
�3�p1 + p2

⇥
(3.15)

� =
S

2h̄mA

1
(4⇤)2

 d3pB⇤
m 2

B c2+p 2
B

d3pC⇤
m 2

C c2+p 2
C

|M|2 �4�pA � pB � pC
⇥
, (3.16)

=
S

2h̄mA

1
(4⇤)2

 
d3pB

�
�
mAc�⇤m 2

B c2�p 2
B �
⇤

m 2
C c2�p 2

B

⇥
⇤

m 2
B c2+p 2

B

⇤
m 2

C c2+p 2
B

|M|2, (3.17)

=
S

2h̄mA

1
(4⇤)2 4⇤

 
⌅2d⌅

�
�
mAc�⇤m 2

B c2�⌅ 2�
⇤

m 2
C c2�⌅ 2

⇥
⇤

m 2
B c2+⌅ 2

⇤
m 2

C c2+⌅ 2
|M|2 (3.18)

E := c
�⇤

m 2
B c2�⌅ 2�

⇤
m 2

C c2�⌅ 2
⇥
, dE =

E ⌅⇤
m 2

B c2�⌅ 2�
⇤

m 2
C c2�⌅ 2

d⌅ (3.19)

� =
S

8⇤h̄M

 ⇥

(mB+mC)c2

dE
E

⌅ |M|2 �
�

Mc� E
c
⇥
, (3.20)

=

⌃
�

⌥

S|M0|2 ⌅0
8⇤h̄M2c ako M ⇥ mB + mC

0 ako M < mB + mC

(3.21)

⌅0 :=
c

2M

�
M4 + m 2

B + m 2
C � 2M2m 2

B � 2M2m 2
C � 2m 2

B m 2
C = |pA| (3.22)

M0 := M
⇤⇤
(
⇤

m 2
B c2�⌅ 2�

⇤
m 2

C c2�⌅ 2)=Mc (3.23)
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Feynman Diagrams

In decays,   dN = –Γ N dt,   so   N(t) = N(0)e–Γt.
Since particles decay in several ways, Γtot = Σi Γi.
Average τ = 1/Γtot , (branching ratio for ith mode) = Γi/Γtot.
“Golden rule”:

M is the matrix element for a mass-M particle → n particles
pi is the ith particle 4-momentum, Ei = c(mi2c2+ pi2)½ its energy;
δ-function imposes 4-momentum conservation; this in the rest-
system of the decaying particle, so pM=(Mc,0);
S is the product of statistical factors 1/j! for each j same particles.

30

Some basic remarks

2

⇥ ⇧ ei⌅⇥ , Aµ ⇧ Aµ + i e�i⌅⌃µei⌅ = Aµ � ⌃µ⌅ .

|⇥⌦ ⇧ ei⌅aTa |⇥⌦ , (0.0.3)

Aµ ⇧ Aµ + i e�i⌅aTa ⌃µei⌅aTa , (0.0.4)
�

Ta , Tb ] = i fab
c Tc , Ta  a , ei⌅aTa  G .

⇤
(8, 1, 0) (3, 2, 0)
(3⇥, 1, 0) (1, 3, 0)

⌅
⇤ (1, 1, 0)

µ
⌃�

⌃µ
=

2�2

3⇧
, � �(µ) =

�1
C1 +

2
3⇧ ln(µ)

.

|3/2, ms⌦ =
↵
|⌥⌥⌥⌦, |⌃⌥⌥⌦(123), |⌃⌃⌥⌦(123), |⌃⌃⌃⌦

�
,

|⌃⌥⌥⌦(123) := 1↵
3

�
|⌃⌥⌥⌦+ |⌥⌃⌥⌦+ |⌥⌥⌃⌦

⇥
.

⇥2(ukus) =
↵
|ddd⌦, |udd⌦(123), |uud⌦(123), |uuu⌦, · · · , |sss⌦

�

|⌃⌦ := | 1
2 ,+ 1

2⌦, |⌥⌦ := | 1
2 ,� 1

2⌦, |⌃⌃⌦ := | 1
2 ,+ 1

2⌦|
1
2 ,+ 1

2⌦, itd.

|1/2,±1/2⌦⌅|1/2,±1/2⌦ =

⇧
������⌥

������⌃

|1,+1⌦ = |⌃⌃⌦,
⇧
��⌥

��⌃
|1, 0⌦ = 1↵

2

�
|⌃⌥⌦|⌥⌃⌦+ |⌥⌃⌦|⌃⌥⌦

⇥
,

|1,�1⌦ = |⌥⌥⌦,

|0, 0⌦ = 1↵
2

�
|⌃⌥⌦|⌥⌃⌦ � |⌥⌃⌦|⌃⌥⌦

⇥
,

(0.0.5)

|1/2, ms⌦[12] =
↵
|⌃⌥⌃⌦[12], |⌃⌥⌥⌦[12]

�
,

|⌃⌥⇥⌦[12] := 1↵
2

�
|⌃⌥⇥⌦ � |⌥⌃⇥⌦

⇥
.

↵
|⌃⌥⇥⌦[12], |⌃⇥⌥⌦[13]

�
,

|⇥⌃⌥⌦[23] = |⌃⇥⌥⌦[13] � |⌃⌥⇥⌦[12].

|⌃⌥⇥⌦[12]|ud�⌦[12] + |⌃⇥⌥⌦[13]|u�d⌦[13] + |⇥⌃⌥⌦[23]|�ud⌦[23]

d� = |M|2 S
2h̄M

 n

⇤
i=1

d3pi
(2⇧)32Ei

⌦
(2⇧)4 ⇤4(pM �

n

⌅
j=1

pj)
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Feynman Diagrams

When a particle decays into two, if the 4-moments of 
the decay result are unknown, integrate over them:

where

p2-integration, b/c of δ3-funcion, becomes p2 → –p1 subst.
Angular p1-integration yields 4π—if M does not depend.
Typically, you are le1 with |p1|-integration.

31
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3.2 Relativistička kinematika: ograničenja i posledice

E = ⇥ m c2 =
m c2

⇥
1� v2/c2

= m c2
⇤

1 +
1
2

v2

c2 +
3
8

v4

c4 +
5
16

v6

c6 + · · ·
⌅

(3.9)

p = ±
c
�

M4 + (m 2
1 �m 2

2 )2 � 2M2(m 2
1 + m 2
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Feynman Diagrams

Compute M using Feynman rules

Toy-model has three particles, of mass mA, mB & mC.
Asume mA > mB + mC , so that A → B + C is the only 
possible decay:
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Feynman Diagrams

Contributions to that (simplest) process:

where every “vertex” is of the A → B + C type,
except that the mA > mB + mC kinematic constraint may fail
All diagrams have 3 vertices & one closed loop; next are 
those with two loops & 5 vertices…

33

Toy-model Feynman rules

A

A
B

B

C

C

A

A

B

B

C

C

A

A

AB C

A

B

BB

C

C
C

Tuesday, November 1, 11



Feynman Diagrams

Even in the simplest case, the elastic collision can 
happen in two distinct ways, as depicted by
(virtual histories):
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Feynman Diagrams

1. Denote external 4-momenta pi, internal qj ;
set the direction by orienting the lines.

2. For each vertex, write [–i g], where  g  is the parameter 
(“strength”) of the interaction.

3. For each vertex, write (2π)4 δ4(k1+k2+k3);
(vertex-entering 4-momenta = +ki , vertex-leaving = –ki).

4. For each internal line insert a [i/(qj2–mj2c2)] factor,
where the 4-momentum qj is ,ee, so qj2 ≠ mj2c2.

5. For each internal line insert d4qj/(2π)4 & integrate.
6. From the whole mess, cancell (2π)4 δ4(p1+p2+…–pn).
7. $e result is  –i M.
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Feynman Diagrams

“Tree-level” value of ΓA→B+C:

As there are no int. lines,
rules 4 & 5 are void.
Applying rules 1 & 2 we get the decorated diagram 
above, and rule 3 inserts the factor (2π)4 δ4(pA–pB–pC),
which then rule 6 throws out.
What remains is M = g, in this, simplest, approximation.
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Feynman Diagrams

Now compute:

Substitute
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If, furthermore, mB = 0 = mC but the products are still two distinct particles (e.g., a neutrino

and a photon, or two different neutrinos and where m ⇡ 0 is a pretty good approximation for

neutrinos), we have:

G =
1

16p h̄mA

��M(1
2 mAc)

��2. (0.10)

1

G =
S

2h̄mA

Z
|M|2 (2p)4d4�

pA � pB � pC

� c d3~pB

2(2p)3EB(~pB)
c d3~pC

2(2p)3EC(~pC)
, (0.1)

=
S

2(4p)2 h̄mA

Z
d3~pB |M|2

d
⇣

mAc �
q

m2
Bc2 + ~p2

B �
q

m2
Cc2 + (�~pB)2

⌘

q
m2

Bc2 + ~p2
B

q
m2

Cc2 + (�~pB)2
, (0.2)

=
S

8p h̄mA

Z •

0

r2dr |M|2q
m2

Bc2 + r2
q

m2
Cc2 + r2

d
⇣

mAc �
q

m2
Bc2 + r2 �

q
m2

Cc2 + r2
⌘

. (0.3)

To simplify the integral, introduce

E = c
⇣q

m2
Bc2 + r2 +

q
m2

Cc2 + r2
⌘

,
dE
E =

r(E)drq
m2

Bc2 + r2
q

m2
Cc2 + r2

(0.4)

so

r2drq
m2

Bc2 + r2
q

m2
Cc2 + r2

= r(E)dE
E , (0.5)

G =
S

8p h̄mA

Z •

(mB+mC)c2

dE
E |M|2 r(E) d(mAc � E/c), (0.6)

=

( S r0

8p h̄m2
Ac

|M(r0)|2, if mA > mB + mC;

0, if mA 6 mB + mC,
(0.7)

where r0 = |~pB|0 solves the relation (0.4) with E = mAc2
:

r0 = |~pB|0 =
c

2mA

q
m4

A
+ m4

B + m4
C � 2m2

A
m2

B � 2m2
A

m2
C � 2m2

B m2
C (0.8)

and satisfies the linear momentum conservation law. It is useful to list a few simplifications:

when the two products have the same mass but are not the same particle, S = 1 and:

G =

p
1 � (2m/mA)

2

16p h̄mA

���M
� c

2

p
m2

A � (2m)2�
���
2
. (0.9)

If, furthermore, mB = 0 = mC but the products are still two distinct particles (e.g., a neutrino

and a photon, or two different neutrinos and where m ⇡ 0 is a pretty good approximation for

neutrinos), we have:

G =
1

16p h̄mA

��M(1
2 mAc)

��2. (0.10)

r2drq
m2

Bc2 + r2
q

m2
Cc2 + r2

= r(E)dE
E ,

Z
Tuesday, November 1, 11



Feynman Diagrams

and obtain:

where
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For the case when M = g, we have

Γ = g2ρ0/8πħmA2c .
τ = 1/Γ = 8πħmA2c/g2ρ0 .

Exercises:
Do the math.
Check the units for the Γ and τ results.
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