(Fundamental) Physics of Elementary Particles

Introduction to the quark model,

differential \& Feynman's diagrammatic calculus

Tristan Hübsch

Departmient of Physics and Astronomy
Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

Fundamental Physics of Elementary Particles

PRロGRAM

- Introduction to the quark model
- History's Lessons
- Naive-pictoresque classification of hadrons
- Bound states in the quark-model

Relativistic Kinematics

- Conservation laws
- 4-dimensional notation \& tensor calculus
- Relativistic kinematics

Feynman diagrams

- Decay constant \& the process amplitude
- A toy-model

History's Lessons

MESINS AND THE μ-"MESロN"

- Yukawa (1934): a "meson" with $m \sim 150 \mathrm{MeV} / c^{2}$
- 1937: a particle w/m~100 MeV/c²
- 1946: the $100 \mathrm{MeV} / \mathrm{c}^{2}$-particle doesn't interact strongly
- 1947: $m_{\pi} \sim 150 \mathrm{MeV} / c^{2} \& m_{\mu} \sim 100 \mathrm{MeV} / c^{2}$
- 1947: $\mathrm{K}^{0} \rightarrow \pi^{+}+\pi^{-}$, '49: $\mathrm{K}^{+} \rightarrow \pi^{+}+\pi^{+}+\pi^{-}$,' $50: \Lambda^{0} \rightarrow p^{+}+\pi^{-}$

Strange particles: produced fast $\left(\sim 10^{-23} \mathrm{~s}\right) \&$ in pairs, but decay slowly ($\sim 10^{-10}-10^{-8} \mathrm{~s}$)

- Strangeness, preserved by strong interactions, but violated by weak interactions.
- And the μ-"meson"? Well ... it isn't a hadron! It's a (heavier) copy of the electron.

History's Lessons

THE μ-ロN AND NESTRINI

- 1947, C. Powell: the difference between π and μ :

$$
\begin{aligned}
& \pi^{-} \rightarrow \mu^{-}+ \bar{v}_{\mu} \\
& \searrow \\
& e^{-}+\bar{v}_{e}+v_{\mu} .
\end{aligned}
$$

1956, F. Reines \& C. Cowan (1st big "waiting" exp.):

$$
\bar{v}_{e}+p^{+} \rightarrow n^{0}+e^{+} .
$$

1959, R. Davis, Jr. \& D.S. Harmer:

$$
\bar{v}_{e}+n^{0} \rightarrow p^{+}+e^{-}
$$

- doesn't happen, confirming the lepton conservation number of Konopinski \& Mahmoud (1953).

History's Lessons

THE μ-ロN AND NEUTRINI

- Finally,

$$
\mu^{-} \xrightarrow{?} e^{-}+2 \gamma,
$$

- never happens either. This implies a separate conservation law for $\left(e^{-}, v_{e}\right)$ and for $\left(\mu^{-}, v_{\mu}\right)$! The μ-"doublet" seems utterly unnecessary

| Group | nuclear interactions | spin | number |
| ---: | ---: | :--- | ---: | ---: |
| Leptons | only weak | half-integral | conserved |
| Hadrons $\left\{\begin{array}{rlr}\text { Mesons } & \text { both strong and weak } & \text { integral } \\ \text { Baryons } & \text { both strong and weak } & \text { half-integral }\end{array}\right.$ | conserved | | |
| coned | | | |

[^0]
History＇s Lessons

GRロWING NபMBER ロF HADRロNS

－By 1960＇s，too many hadrons to be elementary
－S－matrix theory
－Initiated by Heisenberg，early 1930
－1960＇s（Geoffrey Chow，．．．）：bootstrap model
－We observe only asymptotic states，not the $\sim 10^{-23}$ s hadrons
－Hadrons consist of hadrons ．．．．．．all the way down．
Classification：
－using isospin（Heisenberg，1932／Wigner，1937）
－strangeness（Gell－Mann，1965；Nishijima \＆Nakano）
－subject to the GNN formula：

$$
Q=I_{3}+\frac{1}{2}(B+S)
$$

Quark Model

\therefore QUARKS \& MESロNS

- Bound $(q \bar{q})$ states with $u, d \& s$ quarks, of spin- 0 :

Quark Model

QUARKS \& MESロNS

- Bound $(q \bar{q})$ states of $u, d \& s$ quarks, of spin-0:

Quark Model

QUARKS \& MESロNS
bound P-states
(q-orb. momentum $=1$)

- Bound $(q \bar{q})$ states of $u, d \& s$ quarks, of spin-1:

Quark Model

QUARKS \& BARYロNS

- Bound (qqq) states of $u, d \& s$ quarks, of spin- $1 / 2$:
Baryon octet has only two states

$$
q=-1 \quad \grave{q}=0
$$

with $s=-1 \& q=0$.

Quark Model

QUARKS \& BARYINS

- Bound (qqq) states of $u, d \& s$ quarks, of spin-1/2:

> (ddu) (duu)
(dds) (dsu) (suu)
(ssd) (ssu)

Concrete 3-body wave-functions are quite complicated.

Quark Model

\therefore QUARKS \& BARYロNS

- Bound (qqq) states of $u, d \& s$ quarks, of spin- $3 / 2$:

http://en.wikipedia.org/wiki/Quark_model

$$
q=-1
$$

Quark Model

QUARKS \& BARYINS

- Bound (qqq) states of $u, d \& s$ quarks, of spin- $3 / 2$:

Concrete 3-body wave-functions are quite straightforward.

Quark Model

QUARKS \& BARYロNS

- Bound state wave-functions factorize
- $\Psi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \chi_{1}($ spin $) \chi_{2}$ (flavor) χ_{3} (color)
- Ground state: $\Psi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ spherically-symmetric, so also w.r.t. the $\mathrm{x}_{i} \leftrightarrow \mathrm{x}_{j}$ exchange for every i, j pair.
- The χ_{3} (color) factor is antisymmetric.
- \Rightarrow the χ_{1} (spin) χ_{2} (flavor) factor must be symmetric w.r.t. the $i \leftrightarrow j$ exchange, for every i, j pair.
If $\chi_{1}($ spin $)=$ totally symmetric,
- then χ_{2} (flavor) is totally symmetric \Rightarrow decuplet

Digression: Symmetrizing

- Denote
$|\uparrow\rangle:=\left|\frac{1}{2},+\frac{1}{2}\right\rangle, \quad|\downarrow\rangle:=\left|\frac{1}{2},-\frac{1}{2}\right\rangle, \quad|\uparrow \uparrow\rangle:=\left|\frac{1}{2},+\frac{1}{2}\right\rangle\left|\frac{1}{2},+\frac{1}{2}\right\rangle, \quad$ etc.
- Then we have that

$$
11 / 2, \pm 1 / 2\rangle \otimes|1 / 2, \pm 1 / 2\rangle=\left\{\begin{array}{lll}
\left\{\begin{array}{lll}
|1,+1\rangle & =|\uparrow \uparrow\rangle, & \\
|1,0\rangle & =\frac{1}{\sqrt{2}}[|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle], & \\
\begin{array}{ll}
|1,-1\rangle & =|\downarrow \downarrow\rangle,
\end{array} & \text { triplet }
\end{array}\right. \\
|0,0\rangle & =\frac{1}{\sqrt{2}}[|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle], & \text { singlet }
\end{array}\right.
$$

- where the "triplet" is symmetric, a "singlet" is antisymmetric w.r.t. exchanging any two factors.

Digression: Symmetrizing

- The spin factor, χ_{1} (spin), is

$$
\left|3 / 2, m_{s}\right\rangle=\left\{|\downarrow \downarrow \downarrow\rangle,|\uparrow \downarrow \downarrow\rangle_{(123)},|\uparrow \uparrow \downarrow\rangle_{(123)},|\uparrow \uparrow \uparrow\rangle\right\},
$$

- where

$$
|\uparrow \downarrow \downarrow\rangle_{(123)}:=\frac{1}{\sqrt{3}}[|\uparrow \downarrow \downarrow\rangle+|\downarrow \uparrow \downarrow\rangle+|\downarrow \downarrow \uparrow\rangle] .
$$

- All linear combinations of these are totally symmetric.

The flavor factor is

$$
\chi_{2}(\text { flavor })=\left\{|d d d\rangle,|u d d\rangle_{(123)},|u u d\rangle_{(123)},|u u u\rangle, \cdots,|s s s\rangle\right\}
$$

- \Rightarrow "decuplet", i.e., 10 basis states.

Digression: Symmetrizing

- If the $\chi_{1}($ spin $)$ factor is mixed, for example:
$\left.\left|\frac{1}{2},+\frac{1}{2}\right\rangle\right\rangle_{[12]}=\frac{1}{\sqrt{2}}(|\uparrow \downarrow \uparrow\rangle-|\downarrow \uparrow \uparrow \uparrow\rangle), \quad\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{[12]}=\frac{1}{\sqrt{2}}(|\uparrow \downarrow \downarrow\rangle-|\downarrow \uparrow \downarrow\rangle)$
- ...there exist two linearly independent states:

$$
\left\{|\uparrow \downarrow *\rangle_{[12},|\uparrow * \downarrow\rangle_{[13]}\right\}, \quad|* \uparrow \downarrow\rangle_{[23]}=|\uparrow * \downarrow\rangle_{[13]}-|\uparrow \downarrow *\rangle_{[12]} .
$$

The product $|\uparrow \downarrow *\rangle_{[12]}|u d \star\rangle_{[12]}$ is thus symmetry w.r.t. the $1 \leftrightarrow 2$ exchange, and
$\left.|\uparrow \downarrow *\rangle_{[12]}|u d \star\rangle_{[12]}+|\uparrow * \downarrow\rangle_{[13]} u \star d\right\rangle_{[13]}+|* \uparrow \downarrow\rangle_{[23]}|\star u d\rangle_{[23]}$

- is a totally symmetric state.

Digression: Symmetrizing

- In spin-flavor factors of the type
$|\uparrow \downarrow *\rangle_{[12]}|u d \star\rangle_{[12]}+|\uparrow * \downarrow\rangle_{[13]}|u * d\rangle_{[13]}+|* \uparrow \downarrow\rangle_{[23]}|* u d\rangle_{[23]}$
- "*" $= \pm 1 / 2$ i " \star " $=u, d, s$,
- so we have spin- $(\pm 1 / 2)$ baryons:
(ddu) (duu)
(dds) (dsu) (suu)
(ssd) (ssu)
- where the eight three-state wave-functions are all symmetrized according to the prescription above.

Relativistic Kinematics

RELATIVIStIC KINEMATICS

- Law: conservation of energy
- Law: conservation of momentum
- Law: conservation of angular mom. \& spin-statistics
- Discrete symmetries
- P (parity)
- T (time reversal)
- C (charge conjugation)

CPT theorem

- 4-dimensional tensor calculus

Tensors in Space-Time

Diff. CaLculus in Space-Time

- Derivative (general definition):
- $D_{x}[f(x) \cdot g(x)]=D_{x}[f(x)] \cdot g(x)+f(x) \cdot D_{x}[g(x)]$
- Space-time: $\mathbb{R}^{1,3}:=\left\{x^{\mu} \in(-\infty,+\infty), \mu=0,1,2,3\right\}$
- $\mathrm{x}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right), \eta_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$
- $\mathrm{x} \cdot \mathrm{y}=x^{0} y^{0}-\left(x^{1} y^{1}+x^{2} y^{2}+x^{3} y^{3}\right)=c^{2}\left(t_{1} t_{2}\right)-\boldsymbol{r}_{1} \cdot \boldsymbol{r}_{2}$

But - no one can force You to use my coordinates!
Your coordinates: $y^{\mu}=y^{\mu}\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$.
... we'll need differential calculus, to compare...

Tensors in Space-Time

Diff. Calculus in Space-Time

- Differential \& derivative:
$\mathrm{d} y^{\mu}=\sum_{v=0}^{3} \frac{\partial y^{\mu}}{\partial x^{v}} \mathrm{~d} x^{v}$
contra-variant
tensor type (1,0)

$$
\frac{\partial}{\partial y^{\mu}}=\sum_{v=0}^{3} \frac{\partial x^{\nu}}{\partial y^{\mu}} \frac{\partial}{\partial x^{v}}
$$

co-variant
tensor type $(0,1)$

General tensor density type ($p, q ; d$):

$$
\widetilde{T}_{\nu_{1} \cdots v_{p}}^{\mu_{1} \cdots \mu_{p}}=\left(\operatorname{det}\left[\frac{\partial y}{\partial x}\right]\right)^{d} \frac{\partial y^{\mu_{1}}}{\partial x^{\rho_{1}}} \cdots \frac{\partial y^{\mu_{p}}}{\partial x^{\rho_{p}}} \frac{\partial x^{\sigma_{1}}}{\partial y^{\nu_{1}}} \cdots \frac{\partial x^{\sigma_{q}}}{\partial y^{v_{q}}} T_{\sigma_{1} \cdots \sigma_{q}}^{\rho_{1} \cdots \rho_{p}}
$$

Tensors in Space-Time

Diff. Calculus in Space-Time

- "Index conservation"
- Repeated index, once up-once down, is summed; it's choice is not free, the result does not depend on it.
- Single index is free \& not summed; it's choice is free, the result does depend on it.
- The number/position of indices in summands must agree.
- E.g.: $A_{\mu} \eta^{\mu \nu}=A^{v}$ - "index raising"
- $A^{\mu} \eta_{\mu \nu}=A_{\nu}$ - "index lowering"
- $A_{\mu} \eta^{\mu \nu} A_{v}=|A .|^{2}=A_{0}^{2}-\left(A_{1}^{2}+A_{2}^{2}+A_{3}^{2}\right)$ $=$ square $\boldsymbol{\eta}$-norm of the 4 -vector $\left(A_{0}, A_{1}, A_{2}, A_{3}\right)$

Tensors in Space-Time

DIFF, CALCULபS IN SPACE-TIME

- Now, You try:
- Tensor type of $X_{\mu}{ }^{\nu}$ is $(1,1)$.
- What is the tensor type of $X_{\mu}{ }^{\nu} Y_{\nu}$, if Y_{ν} is of type $(0,1)$?
- What is $X_{\mu}{ }^{v} Z_{v \rho \sigma}$, if $Z_{v \rho \sigma}$ is of type $(0,3)$?
- Is $X_{\mu v} Y_{\nu \rho \sigma}$ a tensor? - Why?
- Is $X_{\mu v} Y^{v \rho \sigma}$ a tensor? - Why?
- Is $\varepsilon^{\mu \nu \rho \sigma} X_{\mu \nu} Y_{\rho \sigma}$ a tensor, if $\mathcal{E}^{\mu \nu \rho \sigma}$ is a $(4,0 ; 1)$-tensor density \& $X_{\mu \nu}$ i $Y_{\rho \sigma}(0,2)$-tensors? - Why?
- Is ($\left.\partial f / \partial x^{\mu}\right)$ a tensor? - Why?
- Is $\left(\partial A^{\mu} / \partial x^{\mu}\right)$ a tensor? - Why?

Tensors in Space-Time

DIFF, CALCULUS IN SPACETIME

- Let's check:

$$
\frac{\partial f}{\partial x^{\mu}} \rightarrow \frac{\partial f}{\partial y^{\mu}}=\frac{\partial x^{\nu}}{\partial y^{\mu}} \frac{\partial f}{\partial x^{\nu}}
$$

is a $(0,1)$-tensor. But,
$\frac{\partial A^{\mu}}{\partial x^{\mu}} \rightarrow \frac{\partial \widetilde{A}^{\mu}}{\partial y^{\mu}}=\frac{\partial}{\partial y^{\mu}} \widetilde{A}^{\mu}(y)=\frac{\partial x^{\nu}}{\partial y^{\mu}} \frac{\partial}{\partial x^{\nu}} \frac{\partial y^{\mu}}{\partial x^{\rho}} A^{\rho}(x)$

$$
=\frac{\partial x^{v}}{\partial y^{\mu}} \frac{\partial y^{\mu}}{\partial x^{\rho}} \frac{\partial}{\partial x^{v}} A^{\rho}(x)+\frac{\partial x^{v}}{\partial y^{\mu}} \frac{\partial^{2} y^{\mu}}{\partial x^{v} \partial x^{\rho}} A^{\rho}(x)
$$

$$
=\frac{\partial A^{v}}{\partial x^{v}}+\frac{\frac{\partial x^{\nu}}{\partial y^{\mu}} \frac{\partial^{2} y^{\mu}}{\partial x^{v} \partial x^{\rho}} A^{\rho}(x)}{{ }^{2}}
$$

Tensors in Space-Time

DIFF, CALCULபS IN SPACE-TIME

- If $x^{\mu} \rightarrow y^{\mu}=\Lambda^{\mu}{ }_{v} x^{\nu}$ is a linear transformation, and the $\Lambda^{\mu}{ }_{v}$ matrix is constant, then

$$
\frac{\partial x^{v}}{\partial y^{\mu}} \frac{\partial^{2} y^{\mu}}{\partial x^{\nu} \partial x^{\rho}}=\frac{\partial x^{v}}{\partial y^{\mu}} \frac{\partial}{\partial x^{v}} \frac{\partial y^{\mu}}{\partial x^{\rho}}=\frac{\partial x^{v}}{\partial y^{\mu}} \frac{\partial \Lambda^{\mu} \rho}{\partial x^{v}}=0
$$

For general transformations, $x^{\mu} \rightarrow y^{\mu}=\Lambda_{\nu}{ }_{v} x^{\nu}$, the matrix elements $\Lambda^{\mu}{ }_{v}$ are arbitrary functions of $x^{\nu}, \&$ the 2 nd, unfortunate summand does not vanish!

The "tensoriality" of an expression depends on the (non)linearity of the transformation $x^{\mu} \rightarrow y^{\mu}=y^{\mu}(x)$ that we allow.

Tensors in Space-Time

Diff. CaLculus in Space-Time

- If we define

$$
\frac{\mathrm{D} A^{v}}{\mathrm{D} x^{\mu}}:=\frac{\partial A^{v}}{\partial x^{\mu}}+\Gamma_{\mu \rho}^{v} A^{\rho} \quad \frac{\mathrm{D} A_{v}}{\mathrm{D} x^{\mu}}:=\frac{\partial A_{v}}{\partial x^{\mu}}-\Gamma_{\mu \nu}^{\rho} A_{\rho}
$$

- Derive how " Γ " must transform w.r.t. a nonlinear change $x^{\mu} \rightarrow y^{\mu}=y^{\mu}(x)$, so that these two D-derivative would be $(1,1) \&(0,2)$-tensors.
That's the covariant derivative, Γ the Christoffel symbol.
Linear changes $x^{\mu} \rightarrow y^{\mu}=\Lambda^{\mu}{ }_{v} x^{\nu}$ are Lorentz transform's; compare with electrodynamics. The matrices Λ_{ν}^{μ} form the $S O(1,3)$ group. - Huh?

Relativistic Kinematics

RELATIVISTIC KINEMATICS

- Useful:
- $\mathrm{p}=\left(-E / c, p_{x}, p_{y}, p_{z}\right)$
- p.p $=p_{\mu} \eta^{\mu v} p_{v}=p_{\mu} p^{\mu}=E^{2} / c^{2}-\boldsymbol{p}^{2}=m^{2} c^{2}=$ invariant
- $E=\gamma m c^{2}$ for a particle of mass $m, E=p c$ if $m=0$.
- In non-relativistic physics, mass $m=0$ particle is poppycock!
(That is, its momentum, kinetic \& gravitational potential energy would all have to vanish!)
- Well-known expansion for $v<\mathrm{c}$:

$$
E=\gamma m c^{2}=\frac{m c^{2}}{\sqrt{1-v^{2} / c^{2}}}=m c^{2}\left(1+\frac{1}{2} \frac{v^{2}}{c^{2}}+\frac{3}{8} \frac{v^{4}}{c^{4}}+\frac{5}{16} \frac{v^{6}}{c^{6}}+\cdots\right)
$$

Relativistic Kinematics

RELATIVISTIC KINEMATICS

- Two mass- m snowballs fuse at velocities $\pm 0.60 c$. What's the mass, M, of the fused snowball?
- Since $\boldsymbol{p}_{1}=-\boldsymbol{p}_{2}$, momentum conservation says: $\boldsymbol{p}_{M}=0$.
- Energy conservation says $E_{M}=E_{1}+E_{2}$, so $M=\left(E_{1}+E_{2}\right) / c^{2}$,
- $M=2\left(m c^{2} \gamma\right) / c^{2}=2 m /\left(1-(3 / 5)^{2}\right)^{1 / 2}=5 m / 2>2 m$.
- The "increase" $M-2 m=1 / 2 m$ stems from kinetic energy.

If a mass- M lump splits into two equal, mass- m parts, what's their parting speed?

- Energy conservation: $M=2 m \gamma$, so $v=c\left(1-(2 m / M)^{2}\right)^{1 / 2}$.
- It must be that $m<1 / 2 M$. Since $M_{\text {Deut. }}=1875.6 \mathrm{MeV} / c^{2}$, and $m_{p}+m_{n}=1877.9 \mathrm{MeV} / c^{2}$, we need 2.3 MeV -a for fission.

Relativistic Kinematics

RELATIVISTIC KINEMATICS

- A mass-M lump splits into two lumps, masses $m_{1} \& m_{2}$, compute the speeds $v_{1} \mathrm{i} v_{2}$.
- Momentum conservation says: $\boldsymbol{p}_{1}=-\boldsymbol{p}_{2}$, jer $\boldsymbol{p}_{M}=0$.
- Energy conservation says: $E_{1}+E_{2}=E_{M}$.
- Use that $E_{i}^{2}-\boldsymbol{p}_{i}^{2} \mathcal{c}^{2}=m_{i}^{2} c^{4}$ and $E_{M}=M c^{2}$, since $\boldsymbol{p}_{M}=0$.
- Solve for $|\boldsymbol{p}|=\left|\boldsymbol{p}_{1}\right|=-\left|\boldsymbol{p}_{2}\right|$ and obtain

$$
\boldsymbol{p}= \pm \frac{c \sqrt{M^{4}+\left(m_{1}^{2}-m_{2}^{2}\right)^{2}-2 M^{2}\left(m_{1}^{2}+m_{2}^{2}\right)}}{2 M}
$$

- If $m_{2} \approx 0$, then

$$
p= \pm \frac{c\left(M^{2}-m_{1}^{2}\right)}{2 M}
$$

Do the math.
Plus, compute the total energies, $E_{1} \& E_{2}$, in terms of $m_{1}, m_{2} \& M$ only.

Feynman Diagrams

SIME BASIC REMARKS

- In decays, $\mathrm{d} N=-\Gamma N \mathrm{~d} t$, so $N(t)=N(0) e^{-\Gamma t}$.
- Since particles decay in several ways, $\Gamma_{\text {tot }}=\Sigma_{i} \Gamma_{i}$.
- Average $\tau=1 / \Gamma_{\text {tot }}$, (branching ratio for $i^{\text {th }}$ mode $)=\Gamma_{i} / \Gamma_{\text {tot }}$.
- "Golden rule":

$$
\mathrm{d} \Gamma=|\mathcal{M}|^{2} \frac{S}{2 \hbar M}\left[\prod_{i=1}^{n} \frac{\mathrm{~d}^{3} p_{i}}{(2 \pi)^{3} 2 E_{i}}\right](2 \pi)^{4} \delta^{4}\left(\mathrm{p}_{M}-\sum_{j=1}^{n} \mathrm{p}_{j}\right)
$$

- \mathcal{M} is the matrix element for a mass- M particle $\rightarrow n$ particles
- p_{i} is the $i^{\text {th }}$ particle 4-momentum, $E_{i}=c\left(m_{i}^{2} c^{2}+\boldsymbol{p}_{i}^{2}\right)^{1 / 2}$ its energy;
- δ-function imposes 4-momentum conservation; this in the restsystem of the decaying particle, so $p_{M}=(M c, \mathbf{0})$;
- S is the product of statistical factors $1 / j$! for each j same particles.

Feynman Diagrams

SIME BASIC REMARKS

- When a particle decays into two, if the 4-moments of the decay result are unknown, integrate over them:

$$
\Gamma=\frac{S}{2 \hbar M} \frac{1}{(4 \pi)^{2}} \int \frac{\mathrm{~d}^{3} p_{1}}{\sqrt{m_{1}^{2} c^{2}+p_{1}^{2}}} \frac{\mathrm{~d}^{3} p_{2}}{\sqrt{m_{2}^{2} c^{2}+p_{2}^{2}}}|\mathcal{M}|^{2} \delta^{4}\left(p_{M}-p_{1}-p_{2}\right)
$$

where

$$
\begin{aligned}
\delta^{4}\left(p_{M}-p_{1}-p_{2}\right) & =\delta\left(M c-\frac{E_{1}}{c}-\frac{E_{2}}{c}\right) \delta^{3}\left(-\boldsymbol{p}_{1}-\boldsymbol{p}_{2}\right) \\
& =\delta\left(M c-\sqrt{m_{1}^{2} c^{2}+p_{1}^{2}}-\sqrt{m_{2}^{2} c^{2}+p_{2}^{2}}\right) \delta^{3}\left(\boldsymbol{p}_{1}+\boldsymbol{p}_{2}\right)
\end{aligned}
$$

- \boldsymbol{p}_{2}-integration, b / c of δ^{3}-funcion, becomes $\boldsymbol{p}_{2} \rightarrow-\boldsymbol{p}_{1}$ subst.
- Angular \boldsymbol{p}_{1}-integration yields 4π-if \mathcal{M} does not depend.
- Typically, you are left with $\left|\boldsymbol{p}_{1}\right|$-integration.

Feynman Diagrams

TロY-MロDEL FEYNMAN RULES

- Compute \mathcal{M} using Feynman rules
- Toy-model has three particles, of mass $m_{A}, m_{B} \& m_{C}$.
- Asume $m_{A}>m_{B}+m_{C}$, so that $\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}$ is the only possible decay:

Feynman Diagrams

TロY-MロDEL FEYNMAN RULES

- Contributions to that (simplest) process:

- where every "vertex" is of the $\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}$ type,
- except that the $m_{A}>m_{B}+m_{C}$ kinematic constraint may fail
- All diagrams have 3 vertices \& one closed loop; next are those with two loops \& 5 vertices...

Feynman Diagrams

TロY-MロDEL FEYNMAN RULES

- Even in the simplest case, the elastic collision can happen in $\underline{\boldsymbol{t w o}}$ distinct ways, as depicted by (virtual histories):

What's not forbidden, is allowed.

And the rest, when no one's watching.

Feynman Diagrams

TロY-MロDEL FEYNMAN RULES

1. Denote external 4-momenta p_{i}, internal q_{j}; set the direction by orienting the lines.
2. For each vertex, write $[-i g]$, where g is the parameter ("strength") of the interaction.
3. For each vertex, write $(2 \pi)^{4} \delta^{4}\left(\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}\right)$; (vertex-entering 4-momenta $=+\mathrm{k}_{i}$, vertex-leaving $=-\mathrm{k}_{i}$).
4. For each internal line insert a $\left[i /\left(\mathrm{q}_{j}^{2}-m_{j}^{2} c^{2}\right)\right]$ factor, where the 4 -momentum q_{j} is free, so $\mathrm{q}_{j}{ }^{2} \neq m_{j}{ }^{2} c^{2}$.
5. For each internal line insert $\mathrm{d}^{4} \mathrm{q}_{\mathrm{j}} /(2 \pi)^{4} \&$ integrate.
6. From the whole mess, cancell $(2 \pi)^{4} \delta^{4}\left(\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots-\mathrm{p}_{n}\right)$.
7. The result is $-i \mathcal{M}$.

Feynman Diagrams

TロY-MロDEL FEYNMAN RULES

- "Tree-level" value of $\Gamma_{\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}}$:
- As there are no int. lines, rules $4 \& 5$ are void.

Applying rules $1 \& 2$ we get the decorated diagram above, and rule 3 inserts the factor $(2 \pi)^{4} \delta^{4}\left(p_{A}-p_{B}-p_{C}\right)$, which then rule 6 throws out.
What remains is $\mathcal{M}=g$, in this, simplest, approximation.

Feynman Diagrams

TロY-MロDEL FEYNMAN RULES

- Now compute:

$$
\begin{aligned}
\Gamma & =\frac{S}{2 \hbar m_{A}} \int|\mathcal{M}|^{2}(2 \pi)^{4} \delta^{4}\left(\mathrm{p}_{A}-\mathrm{p}_{B}-\mathrm{p}_{C}\right) \frac{c \mathrm{~d}^{3} \vec{p}_{B}}{2(2 \pi)^{3} E_{B}\left(\vec{p}_{B}\right)} \frac{c \mathrm{~d}^{3} \vec{p}_{C}}{2(2 \pi)^{3} E_{C}\left(\vec{p}_{\mathrm{c}}\right)^{\prime}}, \\
& =\frac{S}{2(4 \pi)^{2} \hbar m_{A}} \int \mathrm{~d}^{3} \vec{p}_{B}|\mathcal{M}|^{2} \frac{\delta\left(m_{A} c-\sqrt{m_{B}^{2} c^{2}+\vec{p}_{B}^{2}}-\sqrt{m_{C}^{2} c^{2}+\left(-\vec{p}_{B}\right)^{2}}\right)}{\sqrt{m_{B}^{2} c^{2}+\vec{p}_{B}^{2}} \sqrt{m_{C}^{2} c^{2}+\left(-\vec{p}_{B}\right)^{2}}}, \\
& =\frac{S}{8 \pi \hbar m_{A}} \int_{0}^{\infty} \frac{\rho^{2} \mathrm{~d} \rho|\mathcal{M}|^{2}}{\sqrt{m_{B}^{2} c^{2}+\rho^{2}} \sqrt{m_{C}^{2} c^{2}+\rho^{2}}} \delta\left(m_{A} c-\sqrt{m_{B}^{2} c^{2}+\rho^{2}}-\sqrt{m_{C}^{2} c^{2}+\rho^{2}}\right) .
\end{aligned}
$$

Substitute

$$
\begin{aligned}
\mathcal{E}=c\left(\sqrt{m_{B}^{2} c^{2}+\rho^{2}}+\sqrt{m_{C}^{2} c^{2}+\rho^{2}}\right), \quad \frac{\mathrm{d} \mathcal{E}}{\mathcal{E}} & =\frac{\rho(\mathcal{E}) \mathrm{d} \rho}{\sqrt{m_{B}^{2} c^{2}+\rho^{2}} \sqrt{m_{C}^{2} c^{2}+\rho^{2}}} \\
\frac{\rho^{2} \mathrm{~d} \rho}{\sqrt{m_{B}^{2} c^{2}+\rho^{2}} \sqrt{m_{\mathcal{C}}^{2} \mathcal{C}^{2}+\rho^{2}}} & =\rho(\mathcal{E}) \frac{\mathrm{d} \mathcal{E}}{\mathcal{E}}
\end{aligned}
$$

Feynman Diagrams

TロY-MロDEL FEYNMAN RULES

- and obtain:

$$
\begin{aligned}
\Gamma & =\frac{S}{8 \pi \hbar m_{A}} \int_{\left(m_{B}+m_{C}\right) c^{2}}^{\infty} \frac{\mathrm{d} \mathcal{E}}{\mathcal{E}}|\mathcal{M}|^{2} \rho(\mathcal{E}) \delta\left(m_{A} c-\mathcal{E} / c\right), \\
& =\left\{\begin{array}{lll}
\frac{S \rho_{0}}{8 \pi \hbar m_{A}^{2} c}\left|\mathcal{M}\left(\rho_{0}\right)\right|^{2}, & \text { if } & m_{A}>m_{B}+m_{C} ; \\
0, & \text { if } & m_{A} \leqslant m_{B}+m_{C} .
\end{array}\right.
\end{aligned}
$$

where

$$
\rho_{0}=\left|\vec{p}_{B}\right|_{0}=\frac{c}{2 m_{A}} \sqrt{m_{A}^{4}+m_{B}^{4}+m_{C}^{4}-2 m_{A}^{2} m_{B}^{2}-2 m_{A}^{2} m_{C}^{2}-2 m_{B}^{2} m_{C}^{2}}
$$

$$
\mathcal{E}\left(\rho_{0}\right)=m_{A} c^{2}
$$

Feynman Diagrams

TロY-MロDEL FEYNMAN RULES
For the case when $\mathcal{M}=g$, we have

- $\Gamma=g^{2} \rho_{0} / 8 \pi \hbar m_{A}{ }^{2} c$.
- $\tau=1 / \Gamma=8 \pi \hbar m_{A}{ }^{2} c / g^{2} \rho_{0}$.

Exercises:

- Do the math.
- Check the units for the Γ and τ results.

Thanks!

Tristan Hubsch

Department of Physics and Astronomy Howard University, Washington DC

Prirodno-Matematički Fakultet Univerzitet u Novom Sadu
http://homepage.mac.com/thubsch/

[^0]: *Baryon number (albeit not under that name) conservation was already in 1938 proposed by Ernst Stückelberg, to explain the absence of the $p^{+} \rightarrow e^{+}+\pi^{0}$ proton decay.

