(Fundamental) Particle Physics

Fundamental particles and interactions (inventory & classification, elementarity) Tristan Hübsch

> Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

Tuesday, November 1, 11

Dimensional Analysis *Caution !!!*

Hydrogen atom

$$[E_H] = \frac{ML^2}{T^2} = [(m_e)^x][(Ze^2)^y][\hbar^z] = M^x \left(\frac{ML^3}{T^2}\right)^y \left(\frac{ML^2}{T}\right)^z$$

$$\begin{cases} x + y + z = 1, \\ 3y + 2z = 2, \\ 2y + z = 2, \end{cases} \Rightarrow \begin{cases} x = 1, \\ y = 2, \\ z = -2, \end{cases}$$

$$E_H \propto \frac{m_e (Ze^2)^2}{(4\pi\epsilon_0)^2\hbar^2},$$

But, that clearly is not all of it!

Dimensional Analysis *Caution !!!*

• The true formula *must* depend on *c*:

$$E_n = -2\alpha^2 (m_e c^2) \frac{Z^2}{(2n)^2}, \qquad \alpha := \frac{e^2}{(4\pi\epsilon_0)\hbar c} \approx \frac{1}{137.036}.$$

dimension-less parameter and function
$$E_n \propto f(\alpha; n) (m_e c^2),$$

Characteristic energy

Tuesday, November 1, 11

Fundamental Distance

• De Broigli wave-length: $\lambda_{s} = \frac{2\pi\hbar}{p_{s}} = \frac{2\pi\hbar}{\sqrt{2m_{s}E_{s}}}, \quad i.e., \quad = \frac{2\pi\hbar c}{E_{s}}, \quad \frac{1}{p_{s}}, \quad$ relativsitic non-relativsitic • Event horizon: escape velocity $r_s = rac{2 G_N m_{m+s}}{c^2}, \qquad \Longleftrightarrow \qquad v_1 = \sqrt{rac{2 G_N m_{m+s}}{r_s}} = c,$ $r_S \sim \lambda_s \quad \Rightarrow \quad \frac{2 G_N (m_m c^2 + E_s)}{c^4} \sim \frac{2 \pi \hbar c}{E_s}$ Willy-nilly, things are $E_s \sim \sqrt{\pi} m_P c^2$, unobservable within rs 4

Tuesday, November 1, 11

Fundamental Distance

Name	Exp	ression	SI Equivalent	Part.Phys.	Equivalent
Length	ℓ_P	$=\sqrt{\frac{\hbar G_N}{c^3}}$	$1.61625 \times 10^{-35} \mathrm{m}$	L	
Mass	m_P	$=\sqrt{\frac{\hbar c}{G_N}}$	$2.17644 \times 10^{-8}\mathrm{kg}$	1.22086×	$10^{19} \text{GeV}/c^2$
Time	t_P	$=\sqrt{\frac{\hbar G_N}{c^5}}$	$5.39124 \times 10^{-44}\mathrm{s}$		
El. Charge*	q_P	$=\sqrt{4\pi\epsilon_0\hbar c}$	$1.87555 \times 10^{-18}\mathrm{C}$	$e/\sqrt{\alpha_e} \approx$	11.706 2 <i>e</i>
Temperature	T_P	$=\frac{1}{k_B}m_Pc^2$	$1.41679\! imes\!10^{32}\mathrm{K}$		

 $\alpha_e \approx 1/137.035999679$ for low-energy scattering, but grows a little to about 1/126 near ~ 100 GeV energies.

Quantity	Particle Physics	SI Equivalent
Energy	x MeV	$= x \times 1.602 18 \times 10^{-13} \mathrm{J}$
Mass	$x \mathrm{MeV}/c^2$	$= x \times 1.78266 \times 10^{-30} \mathrm{kg}$
Length	<i>xħc/</i> MeV	$= x \times 1.97327 \times 10^{-13} \mathrm{m}$
Time	<i>x</i> ħ/MeV	$= x \times 6.58212 \times 10^{-22} \mathrm{s}$

Production

- Cosmic rays: the spectrum includes *very* high-energy particles, but is completely uncontrollable
- Radioactive materials: α , β and γ -particles, neutrons ... irradiated (by, say, synchrotron radiation) materials ...
- Particle accelerators (& targets), beam-to-beam colliders accelerate by means of electric and magnetic fields

Linked by

coincidence triggers

Detection

- Geiger, scintillation and Cherenkov counters
- Cloud,- bubble,- spark,- proportional chambers

6

photographic emulsion

... a socio-political digression

Experimental Predispositions

- In 1909 a table-top experiment discovered the nucleus Had a certain gentleman of means
- not had the penchant for prodding cut-off frog legs with wires... One could "play around" and ...
- ... be surprised.
- In the latter half of the 20th century...
- ...a G\$-worth hole in the ground was filled back (more\$) • CERN is a multi-national/political/budget/... facility • The US DoE (funds e.g. Fermilab) has –18.9% budget... ...you may need to learn Mandarin.

... a socio-political digression

• Experimental Predispositions

- Nowadays, high-energy/elementary particle experiments
- are carefully orchestrated multi-national/political/budget endeavors, planned and executed on 5–15+-year scales
- willy-nilly test *known* theory, and are limited thereby
- No more "unbridled"/accidental experimenting...
- While theory develops (*tempus fugit*) by leaps and bounds
- Need an experimental paradigm radically different from
 - smashing experiments (à la Rutherford)
 - waiting experiments (proton decay)

Elementarity

... the modern version of Democritus' idea

Fundamental interactions

- Electromagnetic interaction (Maxwel equations)
- Strong nuclear interaction
 - ~1930: *something* like that *must* exist
 - after 1970–'80: QCD
- Weak nuclear interaction
 - before 1970–'80: Fermi's β -decay and ...
 - after 1970–'80: weak (now electro-weak) interaction
- Gravitation

• Are all gauge (German: *eichen*) interactions

Elementarity

... the fusion of particles and their interactions

- Nuclei and electrons interact *via* Coulomb's field
- Coulomb's field adapts to nuclear and electron motion at the speed of light
 - Nuclei and electrons are *imagined* as particles
 - Electromagnetic field as a continuum

• And *changes* in the electromagnetic field?

- Field quantization = quantization of *changes* in the field
- The field itself is continuous, in which changes are:
 - particles, if localized in position space
 - waves, if localized in momentum space

Elementarity

... the fusion of particles and their interactions

- Coulomb's field is a (background) continuum
- Quanta of the change in Coulomb's field are particles
- Background continuum of Coulomb's field may be viewed as a (Bose-)condensate of photons

• Besides:

- In the EoM of the field, *p*⁺- and *e*⁻-currents = "source"
- In the EoM of p^+ and e^- , the field provides nonlinearity

$$\partial_{\mu} F^{\mu\nu} = \frac{q_{\Psi}}{4\pi\epsilon_0} \overline{\Psi} \gamma^{\nu} \Psi,$$

4-current

$$\left[i\hbar c\,\boldsymbol{\gamma}^{\mu}\partial_{\mu}-mc^{2}\mathbf{1}\right]\Psi=\boldsymbol{q}_{\Psi}A_{\mu}\boldsymbol{\gamma}^{\mu}\Psi$$

... a telegraphic review

- J.J. Thomson (1897): cathode rays thru crossed EM field so there is no deflection.
 - ⇒ both speed and the charge/mass ratio
 - \Rightarrow "constituents" of cathode rays, e^- , have a *teeeeeeeensy* mass
 - \Rightarrow atom consists of electrons inside a positive lump
- E. Rutherford (*JJT's student*,1909, H. Geiger & E. Marsden): α-rays on gold foil; the atom's positive charge is concentrated in a nucleus ~10,000 × smaller than the atom. Named the proton and created the planetary model.
- \Rightarrow N. Bohr (*ER's postdoc*, 1913): *ad hoc* quantum model:
 - Angular momentum H-atoma = (integer) $\times \hbar$.

Why? B/c that's what "works."

... a telegraphic review

- J. Chadwick (*ER & HG's student*,1928–32): experimental detection of the neutron and named it.
- \leq 1932: only e^{-} , p^{+} and n^{0} .

• Photon:

- M. Planck (1900): quantum *emission* of radiation
- A. Einstein (1905): EM radiation quanta = photons
- A.H. Compton (1923): $\Delta \lambda = \lambda_C (1 \cos \theta), \lambda_C = h/mc$
- G. Lewis (1926): name "photon"
- Coulomb's field = "sea" of photons (condensate, *i.e.* a *collective* of photons behaving as one)

... a telegraphic review

Nothing here is

instantenous,

nor omnipresent!

- Until 1924 (de Broiglie) 1926 (Schrödinger),
 - the photon *particle* implied that EM radiation is not a *wave*
 - classical interaction: each charged particle has a field, which *instantaneously* creates a force on the other particle
 - interaction *mediated* by photons:
 - one particle emits a photon
 - the photon travels
 - the other particle absorbs the photon
- 1932, W. Heisenberg: *isospin* (& E. Wigner, 1937)

• 1934, H. Yukawa: strong interaction mediators

... a telegraphic review

• 1934, H. Yukawa: strong interaction has ~10⁻¹⁵ m range

$$V(r) = -g^2 \frac{e^{-r/r_y}}{r}$$

$$m_\pi \sim \frac{\hbar}{r_y c}, \quad \text{so that} \quad m_\pi \sim 150\text{--}200 \,\text{MeV}/c^2,$$

• 1937 (C.D. Andersen & S.H. Neddermeyer, *East* J.C. Street and E.C. Stevenson, *West*): *mesons*

• 1946, Italy: these do not interact strongly, ~106 MeV/ c^2

• 1947, R. Marshak & H. Bethe proposed, C. Powell (w/C.M.G. Lattes, H. Muirhead and G.P. Ochialini) $\mu (\sim 106 \text{ MeV}/c^2) \& \pi (\sim 135 \& 140 \text{ MeV}/c^2)$

... a telegraphic review

Anti-particles

• Dirac equation: 1st order in space & time

- Solutions with both E > 0 and E < 0.
- States with $E < E_D$ are filled (Pauli's principle!) = "sea"
- "hole" in the sea = antiparticle
 - A hole in the e^- sea $\neq p^+$ (E. Wigner: $e^+ \sim e^-$)
 - Stückleberg-Feynman: $e^+ = (e^-, backwards in time)$
- 1931 (C. Anderson): *e*⁺ is experimentally verified.
- Same theory (Dirac equation) then implies an antiparticle for <u>every</u> spin-¹/₂ fermion.

... a telegraphic review

Compare !!

Crossing symmetry

- If the $A + B \rightarrow C + D$ reaction exists, so do
- $A \rightarrow \overline{B} + C + D$,
- $A + \overline{C} \rightarrow \overline{B} + D$,
- $\overline{C} + \overline{D} \rightarrow \overline{A} + \overline{B}$, etc.
- For example:

• $\gamma + e^- \rightarrow \gamma + e^- \implies \gamma + e^+ \rightarrow \gamma + e^+$

Principle of detailed balance (~ reversing time)

• $A + B \rightarrow C + D \implies C + D \rightarrow A + B$

• These principles permit new processes *dinamically*, even if they are *kinematically* forbidden.

... a telegraphic review

conservation laws!

Neutrini

- β -decay: $A \rightarrow B + e^{-}$.
- $E_e = (m_A^2 m_B^2 + m_e^2) c^2/(2m_A)$
- In experiments, this is $max(E_e)$, and E_e varies.
 - N. Bohr: maybe energy conservation fails?
 - W. Pauli: No, but there is a third, invisible particle
 - the "neutron" name was taken by Chadwick Lesson: trust
 - so E. Fermi named it: "neutrino"
- $\pi^- \rightarrow \mu^- + \overline{\nu}_{\mu}, \ \mu^- \rightarrow \nu_{\mu} + e^- + \nu_e$. In Powel's photographs,
 - μ^- veers 90° from π^- ; & e^- 90° from $\mu^{-,-}$
 - E_{μ} is fixed in the 1st decay, E_e varies in the 2nd one.

... a telegraphic review

- Cowan & Raines (1950's) sought inverse β -decay, $\overline{\nu}_e + p^+ \rightarrow n^0 + e^+$ in a giant water tank.
- Very small effect, so they developed the methodology to identify the resulting positron.
- Davis & Harmer: is neutrino = anti-neutrino?
 - No: $v_e + n^0 \rightarrow p^+ + e^-$ happens, $\overline{v}_e + n^0 \rightarrow p^+ + e^-$ doesn't.
- 1953 (Konopinski i Mahmoud): preserved <u>lepton number</u>.
- By 1962:
 - leptons (don't interact strongly)
 - hadrons (do interact strongly).

... a telegraphic review

- Strange particles
 - $K^{\pm}, K^0, \overline{K}^0$ (494 i 498 MeV/c²)
- Butler, 1947: $K^0 \rightarrow \pi^- + \pi^+$.
- Powel, 1949: $K^+ \to \pi^- + \pi^+ + \pi^+$.
- Anderson, 1950: $\Lambda^0 \rightarrow p^+ + \pi^-$.
- Why does $p^+ \rightarrow e^+ + \overline{\nu}_e$ not happen?
 - Preserved *barion* number (Stückelberg 1938.);
 - <u>Strangenes</u> number (Gell-Mann, 1965.):
 - preserved in creation (strong int.),
 - violated in decays (weak int.).

... a telegraphic review

Eightfold way

- A puzzle of particles of like masses, plotted by charges:
 - electric
 - strange
- Prediction: Ω barion (Gell-Mann, early 1960's)
 - 1964: experimental confirmation Prediction betting avg.
 by ~1963: puzzle is very arbitrary (~7/26)
 Final form, using SU(3) symmetry & quarks
 For example, no (sss) bound state within the p⁺ octet, but yes in the *decuplet*

ELEM	ENTA	RY PA	RTIC	LES
------	------	-------	------	-----

								IL OTA
	CONTEXT	MASS	CHARGE	SPIN	STRENGTH	RANGE	OBSERVED?	SPARTICLE
30SONS (forces)								
SRAVITON	gravity	0	0	2	10-38	infinite	no	gravitino
PHOTON	electromagnetism	0	0	1	10-2	infinite	yes	photino
SLUON	strong force	0	0	1	1	10-13	indirectly	gluino
WEAK GAUGE BOSONS								
W+	weak force	80.000	1	1	10-13	10-16	yes	W+ wino
W-	weak force	80.000	-1	1	10-13	10-16	yes	W- wino
Z0	weak force	91,000	0	1	10-13	10-16	yes	zino
HIGGS BOSON	weak force	>78,000	0	0	[?]	[?]	no	Higgsino
'ERMIONS (matter)								
LEPTONS, FAMILY 1:								
LECTRON	radioactive decay	0.51	-1	1/2	n/a	n/a	yes	selectron
LECTRON NEUTRINO	atomic structure	0?	0	1/2	n/a	n/a	yes	electron sneutrino
OHODVO COMILVA.								
ID	atomic nuclei	5	2/2	1/2	ola	n/s	indirectly	up causek
20 MIN	atomic nuclei	ő	-1/3	1/2	n/ a p/ a	n/a n/a	indirectly	down squark
Jomn	atonne nuclei		170		17.4	ny a	maneeting	down squark
LEPTONS, FAMILY 2:								
100N		106	-1	1/2	n/a	n/a	yes	muon slepton
1UON NEUTRINO		~0	0	1/2	n/a	n/a	yes	muon sneutrino
OUODKC FOMUND								
цоппка, спастии Чарм		1 400	010	415	ala	al.	indinactlu	abayes aguagle
		1,400	-1/2	174		117 a	indirectly	charin syuark
		17.0	-17.5	172	ाए ब	117 a	marrectry	strange squark
LEPTONS, FAMILY 3:								
AU		1,784	-1	1/2	n/a	n/a	yes	tau slepton
AU NEUTRINO		>35	0	1/2	n/a	n/a	yes	tau sneutrino
NUARKS FAMILY 7.								
TOP	Test and the second	174 000	2/2	1/2	n/2	nta	indirectlu	too squark
зоттом		4 400	-1/3	1/2	n/s n/s	n/a n/a	indirectlu	hottom squark
		1,100	17.9	174	/ 1	/ 1	1 / / 1	porton squark

http://www.pbs.org/wgbh/nova/elegant/part-flash.html

N	ame / Energ	<i>8Y</i>	Spin	Q	I ₃ (W)
ν _e < 3 eV	ν _μ < 0.19 MeV	ν _τ < 18.2 MeV	±1⁄2	0	+1/2
е .511 MeV	µ 106 MeV	τ 1.78 GeV	±½	-1	_1⁄2
<mark>и,и</mark> ,и 1.5–4.5 MeV	C,C,C 1.0–1.4 GeV	t,t,t .17–.18 TeV	±1⁄2	+2/3	+1/2
d , d , d 5.0–8.5 MeV	S,S,S .08–.15 GeV	b,b,b 4.0–4.5 GeV	±1⁄2	_1/3	_1/2

Plus interaction mediators: photon, W^{\pm} , Z^{0} , gluon & graviton.

& Higgs particle.

<u>Why 3 ?!</u>

Tuesday, November 1, 11

http://ebiquity.umbc.edu/blogger/wp-content/uploads/2008/07/socparticles1.png

5-particle.htm /F1//universe-review.ca http:/

Tuesday, November 1, 11

Students—such as you have, originally "by hand", measured and computed trajectories, curvatures, charges, masses, ...

Nowadays, mostly done by computers... ©

... no longer an opportunity for a nice summer job... \odot

Thanks for staying awake!

Tristan Hubsch

Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matematički Fakultet Univerzitet u Novom Sadu

http://homepage.mac.com/thubsch/