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ABSTRACT

1+1-dimensional, non-linear and (2,2)-supersymmetric o-models
are constructed in which the target space changes topology at dis-
tinguished regions of the parameter space. In particular, a o-model
formulation is provided for the recently discovered topological tran-
sitions among many of the Calabi-Yau manifolds.
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1. DoEes ToroLOGY FLUCTUATE 7

Certain physical observables are very robust with respect to quantum corrections; loosely
speaking, they are called ‘topological’. A well-known example is the Witten index, (—)%,
which equals the Euler characteristic of the configuration space [1] and often counts the
difference between the number of left- and right-handed massless fermions. This indeed
is a constant as long as the configuration space is not (de)singularized : in general, singu-
larities contribute to (—)* just as boundaries do (for the latter, see section 8 of Ref. [2]).
Whether such topology changing processes are actually encountered by quantum fluctua-
tions and how (—)¥ gets corrected is determined by the dynamics of the particular model.
For cases when the complete quantum field theory is not known, we find it worthwhile
to contemplate a ‘phenomenological’ description of topology fluctuation.

It was recently discovered that conifolds [3,4] interpolate between topologically dis-
tinct smooth Calabi-Yau manifolds, connecting their moduli spaces just as moduli spaces
of Riemann surfaces of different genera are connected into the wuniversal moduli space
[5]. The paths in the Calabi-Yau moduli space which connect topologically distinct man-
ifolds are continuous and of finite length in the Weil-Petersson metric [6]. Whether the
corresponding paths in the space of (super)string vacuua are of finite length, or even
continuous, cannot be established as yet. A better understanding of nodal (and also
smooth) compactifications is desired.

Here we construct 141-dimensional, (2,2)-supersymmetric, non-linear o-models the
target space of which undergoes the corresponding singularizations (sections 2 and 4).
Special care is taken in the analysis of the interfacing nodal o-model (section 3) which
appears as a common limit of two topologically distinct o-models. Beside providing a
o-model interpretation for the topology change of Ref. [3,4], we derive the following :
(1) The (2,2)-supersymmetry of the constrained o-model is inherited from the ambient
o-model as long as the second order Taylor expansion of the constraint(s) does not vanish.
(2) At an isolated singular point in the target space, the o-model couples to the (non-
divergent) ambient space curvature, so that the singularity appears innocuous.

While in this paper we concentrate on Calabi-Yau compactifications, it is not dif-
ficult to adapt our analysis to other situations. For example, the requirement of (su-
per)conformal invariance may be relaxed in part. It is crucial, however, that the target
spaces of our o-models can be realized through systems of local constraint equations.
Also, for systems without supersymmetry, the Hamilton-Dirac treatment of the (second
class) constraints provides all the information which is here obtained by using supersym-
metry.

2. CONSTRAINED o-MODELS

To begin with, consider a (2,2)-supersymmetric non-linear o-model describing strings in
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a hypersurface in X, defined by means of a single constraint
M C(z)=0. (1)
The corresponding action
" = /Ed% %KX, X) + | /Ed% & AC(X) + hee. | 2)
governs the dynamics of our o-model. The
XF = XM 4 gFer — teXxH (3)

are chiral (2,2)-superfields. Here X* are the usual o-model maps that embed the world
sheet into the ambient space X, but are subject to the constraint so that the true target
space is M" .

A=A+ ¢Ehe — ¢f¢L (4)

is a Lagrange chiral (2,2)-superfield.

The Kahler potential K(X , X) is chosen so that S is a superconformally invariant
(effective) action, i.e., K(X , X ) corresponds to a fixed point of the renormalization flow.
To obtain this in practice, when X is a product of (weighted) complex projective spaces,
we may start with the linear combination wAK, of Fubini-Study Kahler potentials;
quantum corrections will renormalize this to K [7,8]. Recall now that the Fubini-Study
Kéhler forms always span (at least a part of) the (1,1)-cohomology of the constrained
subspace [9]. Harmonic (1,1)-forms correspond to certain massless (moduli) fields in the
low-energy effective model, which in turn correspond to exactly marginal perturbations of
the superconformal world sheet model [10]. It follows that the coefficients w* accompany

these exactly marginal perturbations,
K(X,X) = v'Ku(X,X). (5)

After all, the effective action of each CP™ model [11] contains the w*s in twisted chiral
superpotential terms, to which the usual non-renormalization theorems apply.

In an intrinsic formulation, K would be a suitable Kihler potential on M’ and
the coordinate superfields X* would span M° and its tangent bundle. In the embedded
formulation, we need to constrain the bosonic component fields of X* from X to M’ and
the fermionic component fields from T'x (&) to Tx(M?”). To this end, we use a Lagrange
multiplier and constrain all modes of X*. A superpotential term (A — const.) would
constrain only the 0-modes and is reliable for the IR regime only [7].
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Path-integration over each component field of A and also over X" yields a delta-
functional, each one enforcing an algebraic field equation. These are :

[DIAL = 0=XCu(X) = CulX)ere (6)
[P = 0=giCux), (™)
/D[L] = 0=0(X), 8)
/ DX = 0=AC, — (KX ~ K,y &767). 9)

Eq. (8) restricts the X* from & to M” . The gradient C,, represents the normal® to the
constrained hypersurface and does not vanish where M’ is smooth. Eq. (7) restricts the
&4* to be orthogonal to C
the case.

s 1.e., tangent to the constrained hypersurface, as should be

Using Eqgs. (6) and (9), the four-fermion interaction term
Rypyr E41 €7 E7ET (10)
appears, involving the induced Riemann tensor on the constrained subspace
Ryvps = K iz — F;/)p K x& FEE — Cluyp (O G évﬁ)_l C’»?;E : (11)

Here I}, & GrF K .= is the usual Cristoffel symbol, G*” is the matrix-inverse of K 5
and the extrinsic curvature is C ., o Cup — '), Cx. The particular choices of K and
C(X) determine the fixed point to which renormalization will drive the system.

3. NoDAL o-MODELS

We have so far assumed C(X) to be generic; now we wish to parametrize a suitable
singularization. To that end, we write

C(X) = S(X)P(X) — Q(X)R(X) + t°O(X) . (12)

P, Q, S, R are generic polynomials of appropriate degree and the O’ form a complete set
of polynomials of homogeneity deg(C') which cannot however be factorized as SP — QR.

At a special region in the t“-space, such as t* = 0, we obtain the action

st = [[@od S KX.X) + [ [ o d ACHX) 4 he].  (13)

“Note : C, is independent of any connection on the constrained subspace, where C'(z) = 0.
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with C*(X) = C(X)|—o; the behaviour of S* differs markedly from that of S°. In
particular, now we have

Ct = SP,+5,P-QR,-Q.R, (14)

so both C* and Cfi# vanish where S, P,Q), R = 0. For a generic choice of these four
polynomials, this is bound to happen at isolated points since X is compact and complex

four-dimensional. These singular points are nodes [12] and S, P, @, R can be used as local
coordinates on the C%-like neighbourhood in X, with S, P,Q, R = 0 at the origin.

Eq. (7) is vacuous at the nodes (C*, = 0) and the fermions seem not to be restricted
from Tx (&) to Tx(M?*). However, Egs. (6) and (9) have also changed; Eq. (6) now is

O,ﬁ,u,l/(X) €+,LL§_I/ =0. (61:1)

Since the matrix of second derivatives C,,,, does not vanish at nodes®, the quadratic field
equation (6) is non-empty and indeed restricts the fermions, at each node, to span the
conical tangent space—as they should. (In fact, the same is true for all modality < 2
and also some higher modality singular polynomials [13], upon proper Morsification.)

The induced Riemann tensor (11) on M* is divergent at the nodes, since it contains
(CLGHC {j;)*l and C%, vanishes. However, to obtain the expression (11), we have used
the field equation (9) which becomes

/ DX 0= (Ko X — K s £,767) (9%)

at the nodes and decouples from the other three field equations (6)—(8). Using this and
the complex conjugate to eliminate X” and X*, we find that the four-fermion term couples
to the ambient space Riemann tensor

def K
Ruppe = K ywps — F;);p Gr 57 (15)

at the nodes. Unlike (11), this does not diverge, indicating that nodal singularities are
innocuous for the string, very much like the singular points of an orbifold [14]. (In fact,
the same is true for any isolated singularity which is the 0-locus of a system of local
algebraic equations.)

Unlike C (12) for t* # 0, C* may be written as a sum of squares through a holomorphic
change of variables, i.e., a node is an A;-singularity [13]. The Euler characteristic of
the conifold C* = 0 picks up a correction : Xl = XE; + N where N is the number of
nodes. This suggests that singularities induce a correction to the Witten index also,

2Note that Cﬁw is independent of any connection at the singular points of the constrained

subspace, since there C'fi/L and C* vanish.
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somewhat like the well known boundary corrections to the Atiyah-Patodi-Singer index
[2]. A Landau-Ginzburg type analysis is hampered because the constraint polynomial
is singular not only at the isolated point X* = 0 as required in Ref. [7] : following
their analysis, the superpotential C* is a quintic in C°, singular at a bouquet of C'-rays.
(The projectivization C° — IP* is caused by the kinetic term.) Adding a small multiple
of a smooth polynomial to resolve this degeneracy would also change the asymptotic
behaviour of the potential and would therefore say nothing about S*.

Nevertheless, the Hamilton-Dirac quantization can be carried out, starting with the
second class constraint C*(X) = 0. Commutation with the Hamiltonian yields secondary
constraints, of the form of Eq. (7) and (6), with &4/ replaced by the canonical momenta.
Where both C*(X) and C*% (X)) vanish, further constraints are obtained by iteration until
the Dirac brackets and thereby the quantum theory are well defined.

4. RESOLVED o-MODELS

Finally, consider a seemingly unrelated non-linear o-model action

§ = /d%d% & (K(X,X) + w'K,(Y,Y)) (16)
Y
+ d?o % AH(P(X)Y'+Q(X)Y?
| [ doa AN (PX) Y +Q(X) Y?) -
+ A’(RX)Y'+S(X)Y?) + he |
for strings in a Calabi-Yau manifold defined by
1 2

Rx)y* +S(x)y* = 0.

Here y* are homogeneous coordinates on IP! and z# are homogeneous coordinates on some
compact complex four-fold . X* and Y are homogeneous coordinate (2,2)-superfields
on the X and IP! factors of the embedding space, respectively, and K and IO{y are suitably
chosen respective Kéhler potentials.

S, P,Q, R are generic homogeneous polynomials with the degrees chosen so that the
target space of the o-model is a smooth Calabi-Yau manifold. The (possibly incomplete
[9,15]) parameter space of this model is spanned by w?, the w*s in K(X7 X) and by the
parameters in the polynomials S, P, Q), R.

In the limit w¥ — 0, all the components of the two Y superfields become non-
propagating and their equations of motion are algebraic. Therefore, Y may be integrated
out and we can rewrite the above constraint part of the action (17) as

S = /Edzang (A'Y)P(X) + (A'Y?)Q(X)

con. (19)
+ (A’Y)R(X) + (A’Y?)S(X)) .
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Because of the identity

(A'YH(A’Y?) = (A'Y?)(A’YY), (20)
path-integration over the two A and the two Y superfields has the same effect as path-
integration over a single superfield A in

Sﬁ

con.

def / Qo d% A[ S(X)P(X) - QX)R(X)] . (21)
>
Therefore, at w¥ = 0, we might as well write
St = / o d% i K(X, X) +[ 8, + he. | (22)
b

in place of S of Eqs. (16)—(17). The o-model actions (22) and (13) are identical.

The Euler characteristic x,, of M (18) receives a correction at w? = 0 : X%E =X, — N,
in agreement with the fact that X; +2N = x, + N = ¥, [3.4]. An application of a
Landau-Ginzburg analysis is again problematic. To see this, suffice it here to consider
the example where P and ) are quartic while R and S are linear in IP*. Whatever the
scaling weights of X's and Y's, the two polynomials

W, = PIX)Y'+Q(X)Y?, W, = RX)Y'+S(X)Y? (23)

scale differently and only one will dominate the superpotential W +W,. This contradicts
the fact that the explicit choice of both W; and W, determines the complex structure
on M and thus (in part) the fixed point to which the renormalization flow will take S.
It is easy to see that this holds for all possible processes S° — S* — S among all odd
dimensional Calabi-Yau complete intersections in products of complex projective spaces.
The use of Lagrange multipliers is inevitable.

5. CHAMELEONIC o-MODELS

The two o-model actions, one in Eqgs. (16)—(17) and the other in Eq. (2), define consis-
tent families of compactifications. In both cases, the families are swept out by marginal
perturbations corresponding to (2,1)- and (1,1)-forms. For certain finite marginal per-
turbations (corresponding to w¥ — 0 in S and t* — 0 in S”), the interfacing o-model
action S* (22) is reached as a common limit. The doubting reader may care to check
that the same metric is indeed obtained for the nodal o-model action S* in both limiting
procedures [16].

Since topological physical observables on one and the other ‘side’ of S* are different
[3,4], this connecting process describes a topology changing transition. It is however not
clear if the classical action S* defines a single 1+1-dimensional quantum field theory and
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so corresponds to a single vacuum®. Starting from S, the renormalization flow might
bifurcate and lead to two distinct vacuua, one of which is the t*—0-limit of the vacuum
defined by S° and another the w?—0-limit of the vacuum defined by S. If there is no
bifurcation, the vacuua corresponding to S* and S do have a common limit. In an analogy
to the universal moduli space for Riemann surfaces Ref. [5], we should then construct the
‘universal Calabi-Yau moduli space’ by forming a union of all Calabi-Yau moduli spaces,
interfaced by the moduli spaces of nodal or worse singularizations.

The finiteness of the ezact Zamolodchikov distance between S” and S is again an
important but separate issue, perturbatively addressed in Ref. [6,17]. In Ref. [19], it
is argued that the Zamolodchikov distance between topologically distinct models is in-
finite, opposing the expectation based on the finiteness of the Weil-Petersson distance
[6,4]. Recall that the Weil-Petersson distance between the sphere and any torus is in-
finite; according to Ref. [19], the same is true of the Zamolodchikov distance. Yet, the
moduli space of tori is compactified with the moduli space of a sphere (a point), in the
universal moduli space for Riemann surfaces. With Calabi-Yau spaces, at least the Weil-
Petersson distance has been proven to be finite; this ‘universal moduli space’ appears
better behaved.

At this stage, all the vacuua encountered in this o-model on the connected moduli
space are degenerate because of the local N=1 supersymmetry in 3+1-dimensional space-
time and no ‘minimizing principle’ can possibly choose between them. Promoting the
parameters such as t* and w* into space-time dependent (moduli) fields of which ¢* and
w? are the vacuum expectation values, one constructs a spacetime o-model* in which
the couplings are n-point functions computed from S°, S* or S. For example, the 2-point
function is the Zamolodchikov metric and occurs in the kinetic terms for the moduli
fields. The minimization of the free energy in this spacetime o-model should choose the
vacuum, possibly hovering about in the ‘universal Calabi-Yau moduli space’, but only

upon supersymmetry breaking.
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of this spacetime o-model produces stringy cosmic strings [18].
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