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ABSTRACT

1+1-dimensional, non-linear and (2,2)-supersymmetric σ-models

are constructed in which the target space changes topology at dis-

tinguished regions of the parameter space. In particular, a σ-model

formulation is provided for the recently discovered topological tran-

sitions among many of the Calabi-Yau manifolds.

†Supported by the Robert A. Welch Foundation and the NSF Grant PHY8605978. On leave of
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1. Does Topology Fluctuate ?

Certain physical observables are very robust with respect to quantum corrections; loosely

speaking, they are called ‘topological’. A well-known example is the Witten index, (−)F ,

which equals the Euler characteristic of the configuration space [1] and often counts the

difference between the number of left- and right-handed massless fermions. This indeed

is a constant as long as the configuration space is not (de)singularized : in general, singu-

larities contribute to (−)F just as boundaries do (for the latter, see section 8 of Ref. [2]).

Whether such topology changing processes are actually encountered by quantum fluctua-

tions and how (−)F gets corrected is determined by the dynamics of the particular model.

For cases when the complete quantum field theory is not known, we find it worthwhile

to contemplate a ‘phenomenological’ description of topology fluctuation.

It was recently discovered that conifolds [3,4] interpolate between topologically dis-

tinct smooth Calabi-Yau manifolds, connecting their moduli spaces just as moduli spaces

of Riemann surfaces of different genera are connected into the universal moduli space

[5]. The paths in the Calabi-Yau moduli space which connect topologically distinct man-

ifolds are continuous and of finite length in the Weil-Petersson metric [6]. Whether the

corresponding paths in the space of (super)string vacuua are of finite length, or even

continuous, cannot be established as yet. A better understanding of nodal (and also

smooth) compactifications is desired.

Here we construct 1+1-dimensional, (2,2)-supersymmetric, non-linear σ-models the

target space of which undergoes the corresponding singularizations (sections 2 and 4).

Special care is taken in the analysis of the interfacing nodal σ-model (section 3) which

appears as a common limit of two topologically distinct σ-models. Beside providing a

σ-model interpretation for the topology change of Ref. [3,4], we derive the following :

(1) The (2,2)-supersymmetry of the constrained σ-model is inherited from the ambient

σ-model as long as the second order Taylor expansion of the constraint(s) does not vanish.

(2) At an isolated singular point in the target space, the σ-model couples to the (non-

divergent) ambient space curvature, so that the singularity appears innocuous.

While in this paper we concentrate on Calabi-Yau compactifications, it is not dif-

ficult to adapt our analysis to other situations. For example, the requirement of (su-

per)conformal invariance may be relaxed in part. It is crucial, however, that the target

spaces of our σ-models can be realized through systems of local constraint equations.

Also, for systems without supersymmetry, the Hamilton-Dirac treatment of the (second

class) constraints provides all the information which is here obtained by using supersym-

metry.

2. Constrained σ-Models

To begin with, consider a (2,2)-supersymmetric non-linear σ-model describing strings in
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a hypersurface in X̃, defined by means of a single constraint

M[ : C(x) = 0 . (1)

The corresponding action

S[ =
∫

Σ
d2σ d2ς d2ς K̊(X,X) +

[ ∫
Σ

d2σ d2ς ΛC(X) + h.c.
]

(2)

governs the dynamics of our σ-model. The

Xµ = Xµ + ς±ξ±
µ − ς+ς−Xµ (3)

are chiral (2,2)-superfields. Here Xµ are the usual σ-model maps that embed the world

sheet into the ambient space X̃, but are subject to the constraint so that the true target

space is M[ .

Λ = Λ + ς±λ± − ς+ς−L (4)

is a Lagrange chiral (2,2)-superfield.

The Kähler potential K̊(X,X) is chosen so that S[ is a superconformally invariant

(effective) action, i.e., K̊(X,X) corresponds to a fixed point of the renormalization flow.

To obtain this in practice, when X̃ is a product of (weighted) complex projective spaces,

we may start with the linear combination wAKA of Fubini-Study Kähler potentials;

quantum corrections will renormalize this to K̊ [7,8]. Recall now that the Fubini-Study

Kähler forms always span (at least a part of) the (1,1)-cohomology of the constrained

subspace [9]. Harmonic (1,1)-forms correspond to certain massless (moduli) fields in the

low-energy effective model, which in turn correspond to exactly marginal perturbations of

the superconformal world sheet model [10]. It follows that the coefficients wA accompany

these exactly marginal perturbations,

K̊(X,X) = wA K̊A(X,X) . (5)

After all, the effective action of each CPn model [11] contains the wAs in twisted chiral

superpotential terms, to which the usual non-renormalization theorems apply.

In an intrinsic formulation, K̊ would be a suitable Kähler potential on M[ and

the coordinate superfields Xµ would spanM[ and its tangent bundle. In the embedded

formulation, we need to constrain the bosonic component fields of Xµ from X̃ toM[ and

the fermionic component fields from TX(X̃) to TX(M[). To this end, we use a Lagrange

multiplier and constrain all modes of Xµ. A superpotential term (Λ → const.) would

constrain only the 0-modes and is reliable for the IR regime only [7].
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Path-integration over each component field of Λ and also over Xµ yields a delta-

functional, each one enforcing an algebraic field equation. These are :∫
D[Λ] ⇒ 0 = XµC,µ(X) − C,µν(X)ξ+

µξ−
ν , (6)

∫
D[λ±] ⇒ 0 = ξµ±C,µ(X) , (7)

∫
D[L] ⇒ 0 = C(X) , (8)

∫
D[Xµ] ⇒ 0 = ΛC,µ −

(
K,µν Xν −K,µν σ ξ+

νξ−
σ
)
. (9)

Eq. (8) restricts the Xµ from X̃ toM[ . The gradient C,µ represents the normal]1 to the

constrained hypersurface and does not vanish whereM[ is smooth. Eq. (7) restricts the

ξ±
µ to be orthogonal to C,µ, i.e., tangent to the constrained hypersurface, as should be

the case.

Using Eqs. (6) and (9), the four-fermion interaction term

Rµνρσ ξ+
µ ξ−

ρ ξ+
ν ξ−

σ (10)

appears, involving the induced Riemann tensor on the constrained subspace

Rµνρσ
def
= K,µνρσ − Γλµρ K,λκ Γκν σ − C,µ;ρ (C,λ G

λκ C ,κ)
−1 C ,ν;σ . (11)

Here Γλµρ
def
= Gλκ K,µρκ is the usual Cristoffel symbol, Gµν is the matrix-inverse of K,µν

and the extrinsic curvature is C,µ;ρ
def
= C,µρ − Γλµρ C,λ. The particular choices of K̊ and

C(X) determine the fixed point to which renormalization will drive the system.

3. Nodal σ-Models

We have so far assumed C(X) to be generic; now we wish to parametrize a suitable

singularization. To that end, we write

C(X) = S(X)P (X) − Q(X)R(X) + tαOα(X) . (12)

P,Q, S,R are generic polynomials of appropriate degree and the O[α form a complete set

of polynomials of homogeneity deg(C) which cannot however be factorized as SP −QR.

At a special region in the tα-space, such as tα = 0, we obtain the action

S] =
∫

Σ
d2σ d2ς d2ς K̊(X,X) +

[ ∫
Σ

d2σ d2ς Λ C](X) + h.c.
]
, (13)

]1Note : C,µ is independent of any connection on the constrained subspace, where C(x) = 0.
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with C](X) = C(X)|tα=0; the behaviour of S] differs markedly from that of S[. In

particular, now we have

C]
,µ = S P,µ + S,µ P −QR,µ −Q,µR , (14)

so both C] and C]
,µ vanish where S, P,Q,R = 0. For a generic choice of these four

polynomials, this is bound to happen at isolated points since X̃ is compact and complex

four-dimensional. These singular points are nodes [12] and S, P,Q,R can be used as local

coordinates on the C4-like neighbourhood in X̃, with S, P,Q,R = 0 at the origin.

Eq. (7) is vacuous at the nodes (C]
,µ = 0) and the fermions seem not to be restricted

from TX(X̃) to TX(M]). However, Eqs. (6) and (9) have also changed; Eq. (6) now is

C]
,µν(X) ξ+

µξ−
ν = 0 . (6])

Since the matrix of second derivatives C,µν does not vanish at nodes]2, the quadratic field

equation (6]) is non-empty and indeed restricts the fermions, at each node, to span the

conical tangent space—as they should. (In fact, the same is true for all modality ≤ 2

and also some higher modality singular polynomials [13], upon proper Morsification.)

The induced Riemann tensor (11) onM] is divergent at the nodes, since it contains

(C]
,µG

µνC ]
,ν)
−1 and C]

,µ vanishes. However, to obtain the expression (11), we have used

the field equation (9) which becomes∫
D[Xµ] : 0 =

(
K,µν Xν −K,µν σ ξ+

νξ−
σ
)

(9])

at the nodes and decouples from the other three field equations (6)–(8). Using this and

the complex conjugate to eliminate Xν and Xµ, we find that the four-fermion term couples

to the ambient space Riemann tensor

Rµνρσ
def
= K,µνρσ − Γλµρ Gλκ Γκν σ (15)

at the nodes. Unlike (11), this does not diverge, indicating that nodal singularities are

innocuous for the string, very much like the singular points of an orbifold [14]. (In fact,

the same is true for any isolated singularity which is the 0-locus of a system of local

algebraic equations.)

Unlike C (12) for tα 6= 0, C] may be written as a sum of squares through a holomorphic

change of variables, i.e., a node is an A1-singularity [13]. The Euler characteristic of

the conifold C] = 0 picks up a correction : χ]
E

= χ[
E

+ N where N is the number of

nodes. This suggests that singularities induce a correction to the Witten index also,

]2Note that C],µν is independent of any connection at the singular points of the constrained
subspace, since there C],µ and C] vanish.
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somewhat like the well known boundary corrections to the Atiyah-Patodi-Singer index

[2]. A Landau-Ginzburg type analysis is hampered because the constraint polynomial

is singular not only at the isolated point Xµ = 0 as required in Ref. [7] : following

their analysis, the superpotential C] is a quintic in C5, singular at a bouquet of C1-rays.

(The projectivization C5 → IP4 is caused by the kinetic term.) Adding a small multiple

of a smooth polynomial to resolve this degeneracy would also change the asymptotic

behaviour of the potential and would therefore say nothing about S].

Nevertheless, the Hamilton-Dirac quantization can be carried out, starting with the

second class constraint C](X) = 0. Commutation with the Hamiltonian yields secondary

constraints, of the form of Eq. (7) and (6), with ξ±
µ replaced by the canonical momenta.

Where both C](X) and C]
,µ(X) vanish, further constraints are obtained by iteration until

the Dirac brackets and thereby the quantum theory are well defined.

4. Resolved σ-Models

Finally, consider a seemingly unrelated non-linear σ-model action

Š =
∫

Σ
d2σ d2ς d2ς

(
K̊(X,X) + wyK̊y(Y ,Y )

)
(16)

+
[ ∫

Σ
d2σ d2ς Λ1

(
P (X) Y 1 +Q(X) Y 2

)
+ Λ2

(
R(X) Y 1 + S(X) Y 2

)
+ h.c.

] (17)

for strings in a Calabi-Yau manifold defined by

M̌ :
P (x) y1 +Q(x) y2 = 0 ,

R(x) y1 + S(x) y2 = 0 .
(18)

Here yi are homogeneous coordinates on IP1 and xµ are homogeneous coordinates on some

compact complex four-fold X̃. Xµ and Y i are homogeneous coordinate (2,2)-superfields

on the X̃ and IP1 factors of the embedding space, respectively, and K̊ and K̊y are suitably

chosen respective Kähler potentials.

S, P,Q,R are generic homogeneous polynomials with the degrees chosen so that the

target space of the σ-model is a smooth Calabi-Yau manifold. The (possibly incomplete

[9,15]) parameter space of this model is spanned by wy, the wAs in K̊(X,X) and by the

parameters in the polynomials S, P,Q,R.

In the limit wy → 0, all the components of the two Y superfields become non-

propagating and their equations of motion are algebraic. Therefore, Y may be integrated

out and we can rewrite the above constraint part of the action (17) as

S ′con. =
∫

Σ
d2σ d2ς

(
(Λ1Y 1)P (X) + (Λ1Y 2)Q(X)

+ (Λ2Y 1)R(X) + (Λ2Y 2)S(X)
)
.

(19)
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Because of the identity

(Λ1Y 1)(Λ2Y 2) ≡ (Λ1Y 2)(Λ2Y 1) , (20)

path-integration over the two Λ and the two Y superfields has the same effect as path-

integration over a single superfield Λ in

S]con.
def
=

∫
Σ

d2σ d2ς Λ
[
S(X)P (X)−Q(X)R(X)

]
. (21)

Therefore, at wy = 0, we might as well write

S] =
∫

Σ
d2σ d2ς d2ς K̊(X,X) +

[
S]con. + h.c.

]
(22)

in place of Š of Eqs. (16)–(17). The σ-model actions (22) and (13) are identical.

The Euler characteristic χ̌
E

of M̌ (18) receives a correction at wy = 0 : χ]
E

= χ̌
E
−N ,

in agreement with the fact that χ[
E

+ 2N = χ]
E

+ N = χ̌
E

[3,4]. An application of a

Landau-Ginzburg analysis is again problematic. To see this, suffice it here to consider

the example where P and Q are quartic while R and S are linear in IP4. Whatever the

scaling weights of Xs and Y s, the two polynomials

W1 = P (X) Y 1 +Q(X) Y 2 , W2 = R(X) Y 1 + S(X) Y 2 (23)

scale differently and only one will dominate the superpotential W1 +W2. This contradicts

the fact that the explicit choice of both W1 and W2 determines the complex structure

on M̌ and thus (in part) the fixed point to which the renormalization flow will take Š .

It is easy to see that this holds for all possible processes S[ → S] → Š among all odd

dimensional Calabi-Yau complete intersections in products of complex projective spaces.

The use of Lagrange multipliers is inevitable.

5. Chameleonic σ-Models

The two σ-model actions, one in Eqs. (16)–(17) and the other in Eq. (2), define consis-

tent families of compactifications. In both cases, the families are swept out by marginal

perturbations corresponding to (2,1)- and (1,1)-forms. For certain finite marginal per-

turbations (corresponding to wy → 0 in Š and ta → 0 in S[), the interfacing σ-model

action S] (22) is reached as a common limit. The doubting reader may care to check

that the same metric is indeed obtained for the nodal σ-model action S] in both limiting

procedures [16].

Since topological physical observables on one and the other ‘side’ of S] are different

[3,4], this connecting process describes a topology changing transition. It is however not

clear if the classical action S] defines a single 1+1-dimensional quantum field theory and
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so corresponds to a single vacuum]3. Starting from S], the renormalization flow might

bifurcate and lead to two distinct vacuua, one of which is the tα→0-limit of the vacuum

defined by S[ and another the wy→0-limit of the vacuum defined by Š . If there is no

bifurcation, the vacuua corresponding to S[ and Š do have a common limit. In an analogy

to the universal moduli space for Riemann surfaces Ref. [5], we should then construct the

‘universal Calabi-Yau moduli space’ by forming a union of all Calabi-Yau moduli spaces,

interfaced by the moduli spaces of nodal or worse singularizations.

The finiteness of the exact Zamolodchikov distance between S[ and Š is again an

important but separate issue, perturbatively addressed in Ref. [6,17]. In Ref. [19], it

is argued that the Zamolodchikov distance between topologically distinct models is in-

finite, opposing the expectation based on the finiteness of the Weil-Petersson distance

[6,4]. Recall that the Weil-Petersson distance between the sphere and any torus is in-

finite; according to Ref. [19], the same is true of the Zamolodchikov distance. Yet, the

moduli space of tori is compactified with the moduli space of a sphere (a point), in the

universal moduli space for Riemann surfaces. With Calabi-Yau spaces, at least the Weil-

Petersson distance has been proven to be finite; this ‘universal moduli space’ appears

better behaved.

At this stage, all the vacuua encountered in this σ-model on the connected moduli

space are degenerate because of the local N=1 supersymmetry in 3+1-dimensional space-

time and no ‘minimizing principle’ can possibly choose between them. Promoting the

parameters such as tα and wA into space-time dependent (moduli) fields of which tα and

wA are the vacuum expectation values, one constructs a spacetime σ-model]4 in which

the couplings are n-point functions computed from S[, S] or Š . For example, the 2-point

function is the Zamolodchikov metric and occurs in the kinetic terms for the moduli

fields. The minimization of the free energy in this spacetime σ-model should choose the

vacuum, possibly hovering about in the ‘universal Calabi-Yau moduli space’, but only

upon supersymmetry breaking.
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[8] S.J. Gates Jr. and T. Hübsch: Phys. Lett. 226 (1989)100; University of Texas report
UTTG-41-89.
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