
Stringy de Sitter Brane-Worlds

Tristan Hübsch
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The possibility that our 3+1-dimensional world might be a cosmic defect
(brane-world) within a higher-dimensional spacetime1 has recently attracted
much interest, owing to the proof [7] that gravity may be localized on such
brane-worlds. Randall and Sundrum showed that such geometries may also
solve the hierarchy problem [8]. However, it remained unclear whether these
and other desirable properties can be achieved within the same model.

Herein, we describe a family of stringy toy model brane-worlds [1, 2, 3, 4,
5, 6], which generalize the concept of spacetime variable cosmic strings [9, 10]
and exhibits simultaneously:

1. exponential hierarchy of Plank mass scales,
2. localized gravity on the brane-world,
3. an induced de Sitter metric on the brane-world,
4. a phenomenologically acceptable value for the cosmological constant,
5. a dynamical mechanism for either trapping the bulk-roaming degrees of

freedom to the brane-world, or decoupling them from it,

and where the spacetime geometry is driven by the anisotropy of the axion-
dilaton moduli field. Furthermore, the axion-dilaton background configuration
possesses crucial stringy SL(2,Z) monodromy, and many of the features are
a direct and quantifiable consequence of supersymmetry breaking.
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2, 3, 4, 5, 6], and I am indebted to my co-authors, P. Berglund and -D. Minić, for

all they have taught me; the errors however are entirely mine. I also wish to thank

The US Department of Energy for their generous support under grant number DE-

FG02-94ER-40854.

1 For a fairly complete bibliography on the subject, see Refs. [1, 2, 3, 4, 5, 6].
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1 A Stringy Family of Toy Models

We begin with a higher-dimensional string [12, 13] or F-theory [11] com-
pactified on a Calabi-Yau (complex) n-fold, some moduli (φα) of which are
allowed to vary over (the ‘transversal’) part of the non-compact space. Fol-
lowing Refs. [9, 10], the effective action describing the coupling of the moduli
to gravity of the observable spacetime is derived by dimensionally reducing
the higher dimensional Einstein-Hilbert action. The relevant part of the low-
energy effective D-dimensional action of the moduli, φα, of the Calabi-Yau
n-fold coupled to gravity then reads:

S0 + Sb
eff =

1

2κ2

∫

dDx
√−g(R− Gαβ̄g

µν∂µφ
α∂νφ

β̄ + ...) + Sb
eff . (1)

Here µ, ν = 0, · · ·, D−1, 2κ2 = 16πGD
N , where GD

N is the D-dimensional New-
ton constant, and Gαβ̄ is the metric on Mφ, the space of moduli φα. Higher
derivative terms and all other fields in the theory are neglected. We also re-
strict the moduli to depend on the ‘transversal’ coordinates, xi, i=D−2, D−1,
and so have a vanishing ‘longitudinal’ gradient: ∂aφ=0, a=0, · · ·, D−3. Sb

eff is
a purely (D−1)-dimensional effective action describing the (our?) brane-world
implied by the explicit form of the solution described below. The moduli obey
the equation of motion:

gij
(

∇i∇jφ
α + Γα

βγ(φ, φ̄)∂iφ
β∂jφ

γ
)

= 0 , (2)

where Γα
βγ is the Christoffel connection on Mφ. Note that Sb

eff does not depend
on the moduli. The Einstein equations are:

Rµν − 1
22gµνR = Tµν(φ, φ̄) + T b

µν , (3)

Tµν = Gαβ̄

(

∂µφ
α∂νφ

β̄ − 1
22gµν g

ρσ∂ρφ
α∂σφ

β̄
)

, (4)

where T b
µν is a delta-function source, as shown below.

1.1 Matter

For our family of toy models, we choose: φα = τ := a+ie−Φ, representing the
axion-dilaton system of the D=10 Type IIB string theory, thought of as a
T 2-compactification of F-Theory, so Gτ τ̄ = [=m(τ)]−2 is the Teichmüller met-
ric [11]. Now, we assume that τ = τ(θ), where θ = arctan(xD−1

xD−2
) is the “polar”

angle in the transversal (xD−2, xD−1)-plane. With this, Eq. (2) becomes:

τ ′′ +
2

τ̄ − τ
= 0 , (5)

and is solved by:
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τI(θ) = a0 + i g−1
s eω(θ−θ0) , a0, gs, ω, θ0 = const , (6)

τII(θ) = a0 ± g−1
s

sinh[ω(θ − θ0)] + i

cosh[ω(θ − θ0)]
, (7)

which satisfies our requirement that its energy-momentum tensor be a con-
stant2, ∝ ω2. Both solutions are discontinuous across the branch-cut, (θ−θ0) =
±π, but the constants a0, gs, ω may be chosen so that τ(θ0+π) = M ·τ(θ0−π),
where M ∈ SL(2,Z). That is, both τI and τII exhibit (different) non-trivial
SL(2,Z) monodromy [1, 2].

The absence (in the limit of exact supersymmetry) of a potential for τ ,
and their nontrivial SL(2,A) monodromy enforces the conclusion:

The metric-moduli system (1), (6-7) can only stem from a string theory.

1.2 Minkowski Metric

With a phenomenologically interestingK3 compactification of the D=10 solu-
tion in the back of our minds (upon which the metric receives α′ corrections),
we however keep D unspecified for the sake of generality. The metric that
interpolates between the two solutions of Ref. [1, 2], with z = log(r/`), is:

ds2 = A(z)ηabdx
adxb + `2B(z)(dz2 + dθ2) , (8)

A(z) = Z
2

D−2 , Z(z) := 1 + a0|z| , (9)

B(z) = Z−D−3
D−2 e

ξ

a0
(β−Z2) , (10)

Here ξ, a0 and β are free parameters, ` ∼ O(M−1
D ) sets the transversal length

scale, and ηab is the Minkowski metric along the (D−2)-dimensional brane-
world. The dependence on |z| (in place of just z in Refs. [1, 2]) induces the

δ-function terms in Eq. (3) (with % := a0e
− ξ

a0
(β−1)[D−3

D−2 − 2 ξ
a0

])

−ηab `
−2

[

a0ξ sign2(z)Z
D−1
D−2 e

− ξ

a0
(β−Z2) − % δ(z)

]

= Tab + T b
ab , (11)

−a0ξ sign2(z) = Tzz + T b
zz , (12)

+a0ξ sign2(z) + 2a0 δ(z) = Tθθ + T b
θθ . (13)

Hereafter, we refer to the brane at z = 0 as the brane-world: there, sign2(z) = 0
and so Tµν = 0 also. On the other hand, the δ-function terms in the left-hand
side of the Einstein equations (3) are now non-zero and read:

T b
µν = `−2 diag

[

− %, %, . . . , %, 0, 2a0

]

δ(z) . (14)

Since τ depends on ω (which Eqs. (11–13) fix to ω2 ≡ 8a0ξ ≥ 0), we see that
% ≥ 0 and sign(T b

00) = −sign(a0) for |ξ| ≤ |ξc| := 1
2

D−3
D−2 |a0|. In particular,

2 Requiring that τ = τ (θ) and that its energy-momentum tensor be constant per-
mits solving for the metric as independent of θ by means of separation of variables.
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T b
00 ≥ 0 in the a0 ≤ 0 case, when z is restricted between the naked (null)

singularities at z = ±1/a0. When ξ = 0 this form of the stress tensor is
similar to that of spatial domain walls [14, 15], in which the surface energy
density, σ, is equal to the surface tension, −p, where p is the pressure along
the domain wall. In our case, however |T b

θθ| > T b
00. From this it follows that the

weak energy condition holds except for T b
θθ, i.e., T b

µνζ
µζν < 0 only for the null

vector ζµ = (1, 0, · · · , 0,
√

A/B) representing a vortex in the transversal (z, θ)-
plane. (For a related discussion of this feature of co-dimension two solutions
consult for example [16].) Still, we assume that it is possible to associate an
effective action for the source at z = 0,

Sb
eff =

∫

dD−2xdz dθ
√
−g δ(z)λLb , (15)

depending on all matter localized3 to this (our?) brane-world. Equating the
T b

µν calculated from (15) with the δ-function contribution of the Einstein
equations from Eq. (11–13), we obtain that

λ ∼ −a0`
−2e−

ξ

a0
(β−1) |ξ| � |ξc| . (16)

Note that the vacuum energy which couples to gravity is λLb = −λ. Analo-
gous results hold also in the a0 > 0 and ξ > ξc case. However, now T b

µνζ
µζν > 0

for all null vectors. We thus have two subfamilies of solutions:

1. a0, (|ξ|−|ξc|) < 0, where T b
µνζ

µζν < 0 only for ζµ = (1, 0, · · · , 0,
√

A/B),
the brane-world is encircled by naked singularities at z = ±1/a0;

2. a0, (|ξ|−|ξc|) > 0, where T b
µνζ

µζν > 0 for all null vectors, and the trans-
verse space is infinite, with temporal singularities at z = ±∞.

Incidentally, replacing ηab with any Ricci-flat metric (e.g., the Schwarzschild
geometry), leaves the above solutions unchanged.

1.3 de Sitter Metric

Now modify Eq. (8) into:

ds2 = Ã2(z) g̃ab dxadxb + `2B̃2(z) (dz2 + dθ2) , (17)

[g̃ab] = diag[−1, e2
√

Λx0

, · · ·, e2
√

Λx0

] , (18)

where Λ is the cosmological constant for the brane-world spacetime. (Note that
there is no cosmological constant in D-dimensional spacetime of the original
string or F-theory!)

The closed-form solutions (9–10) no longer apply. Instead, the purely lon-
gitudinal part of Eqs. (3) reduces to a single equation, giving:

3 Localization of matter is a generic feature in superstring theories [17].
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B̃2 = `−2Λ−1 h′′h−
D−4
D−2

(D − 2)
, h(z) := Ã(z)D−2 , (19)

which determines B̃(z) in terms of h(z) and so Ã(z). Upon this substitution,
the remaining components of Eqs. (3) produce the following single equation4:

1

2(D − 2)

h′2

h2
− h′′

2h
+
h′h′′′

2hh′′
+

1

8
ω2 = 0 . (20)

This implies that Λ>0, and that the Ansatz (17–18) does not permit a dou-
ble Wick rotation into an anti-de Sitter spacetime, and conversely that our
solution cannot be obtained from any anti-de Sitter solution of string theory.
To see this, note that Eq. (20) determines h(z), and hence Ã(z), to be inde-
pendent of Λ. But then, Λ→ −Λ in Eq. (19) would imply B̃(z)2 < 0, making
the entire plane transverse to the cosmic brane also time-like.

Furthermore, with h(z) = (1 − z/z0)
D−2, and so with

Ã0(z) = Z̃(z) := (1 − z/z0) , and B̃0(z) :=
1

`z0
√
Λ
, (21)

the metric (17) satisfies the Einstein equations (3) for ω2 = 0, i.e., when
τ = const. This solution describes the familiar Rindler space [18].

For ω 6= 0 (τ 6= const.), Eq. (20) has a perturbative solution5 by expanding
around the horizon, Z̃(z) = 0:

Ã(z) = Z̃(z)
(

1 − ω2z2
0(D − 3)

24(D− 1)(D − 2)
Z̃(z)2 +O(ω4)

)

, (22)

B̃(z) =
1

`z0
√
Λ

(

1 − ω2z2
0

8(D − 1)
Z̃(z)2 +O(ω4)

)

. (23)

Notice that, depending on Ã(z)2 and B̃(z)2, the metric (17) is well-defined
for all values of z, with merely a horizon [19, 20] at z = z0. It is easy to
check that for our solution (22–23) both the Ricci scalar and tensor vanish at
z = z0, as does the whole Riemann tensor. In fact, these tensors as well as the
RµνR

µν and RµνρσR
µνρσ curvature scalars all remain bounded for all finite

z. So, close to the horizon spacetime is asymptotically flat in agreement with
the behavior of Rindler space, see Eqs. (21)–(23) [18]. However, the horizon
does provide an effective cut-off of spacetime and, as usual in de Sitter space,
we will only consider the degrees of freedom inside this horizon.

In contrast, when Λ = 0, the solution (9–10) with a0<0 exhibits a naked
singularity, at z = ±a−1

0 (Z = 0), for the global cosmic brane and the region

4 It is straightforward to show that Rzz and Rθθ can be written as certain lin-
ear combinations of the left-hand side of the differential equation (20) and its
derivatives.

5 This solution is of the same form as that discussed by Gregory [19, 20] for the
U(1) vortex solution.
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|z| > |a−1
0 | (Z < 0) is unphysical: the metric becomes complex. In compar-

ing (9) with the de Sitter solution (22), the singularity is effectively removed
by introducing a non-zero longitudinal cosmological constant. Note that in
solving (20), h′′ 6= 0 was assumed. But Λ → 0 implies that h′′ → 0, which
gives rise to the solution of A(z) in Eq. (9), with Eq. (19) no longer valid.

While the naked singularity of the Minkowski solution (9–10) has been
removed by the non-zero Λ, away from the horizon this Minkowski solution is
still a good approximation to Eq. (23). To compare, we first obtain a power
series solution of Eqs. (23), expanding around the core, at z = 0. From this we
determine the lowest order terms6 in h(z) =

∑

n=0 hnz
n. Finally, we expand

Ã(z) and B̃(z), expressed as functions of h(z) and h′′(z) to lowest order in z,

Ã(z) = (1+z
h1

(D−2)
) , B̃(z) =

√

2h2

(D−2)Λ`2

[

1+z
(3h3

2h2
−h1(D−4)

2(D−2)

)]

.

(24)
Here, the coefficients hi for i > 2 are determined in terms of h0, h1, h2 by
Eq. (20), the overall rescaling of Ã(z) and B̃(z) is absorbed in a rescaling of
xa and `, respectively, and the numerical values of h1, h2 are determined by
comparison with the expansions (23). Comparing now Eq. (24) with Eq. (9–
10), expanded to first order in z, leads to

a0 ≈ 0.9
(D−2)

ρ0
, ξ ≈ 1

0.9

ω2ρ0

8(D − 2)
, and

ω2

2(D − 2)Λ`2
= 1 . (25)

The last of the identifications (25) implies:

Λ =
ω2

2(D − 2)`2
, (26)

thus expressing the cosmological constant in terms in the brane-world of the
transversal anisotropy of the axion-dilaton system! This gives a very non-
trivial relation between the stringy moduli, and hence string theory itself,
and a positive cosmological constant Λ. Since the dilaton is Φ = −ωθ it also
follows from Eq. (26) that we have a strongly coupled theory7.

Note also that Λ ∼ ω2/`2 implies that supersymmetry breaking and a
non-zero cosmological constant are related: In our family of toy models, su-
persymmetry is explicitly broken by ω2 6= 0. But since Λ ∼ ω2/`2, super-
symmetry breaking by ω2 6= 0 also induces a positive cosmological constant,

6 This requires an initial guess for the value of ω2ρ2

0 and that the higher order
corrections in the expansion of Ã(z) in terms of Z̃(z) fall off fast enough. Indeed,
we have computed the expansion of Ã(z) to O(Z̃12(z)), and determined ω2ρ2

0 and
the corresponding numerical values of the coefficients hi recursively.

7 Recall: with τ = a0+ig−1

s exp(ωθ), the SL(2,Z) monodromy sets gD
s ∼ O(1) in D

dimensions. However, in the D−2-dimensional brane-world, gD−2

s = gD

s

√
α′/V⊥,

and since the volume of the transverse space, V⊥, is large (27), gD−2

s � 1.
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which then can vanish only in the decompactifying limit, `→ ∞. In the limit
ω2 = 0 we recover supersymmetry and thus have a possible (supersymmetric)
F-theory [11] background.

The cosmological constant on the brane-world is thus induced by the su-
persymmetry breaking caused by the anisotropy of the axion-dilaton system.

2 Localization of Gravity and Planck Mass

Unlike in the original Randall-Sundrum models [7, 8] (and, to the best of
my knowledge, also any other brane-world model), for a suitable choice of
parameters, the above family of toy models exhibits both an exponentially
large hierarchy and localized gravity [4].

2.1 Exponential hierarchy

The large hierarchy between the (D−2)- and D-dimensional Planck scales is
the same as in Refs. [1, 2]:

MD−4
D−2 = MD−2

D

∫

M⊥

dv dθ ψ2
0(v) = MD−2

D

2π`2

|a0|
e

βξ

a0

(a0

ξ

) D−3
2(D−2)

ID
a0,ξ , (27)

ID
a0,ξ =







[

Γ
(

D−3
2(D−2)

)

− γ
(

D−3
2(D−2) ;

ξ
a0

)]

for a0 > 0,

γ
(

D−3
2(D−2) ;

ξ
a0

)

for a0 < 0.
(28)

where M⊥ denotes the hyperbolic transverse space [2]. Note that the large
hierarchy is controlled by the product of β and the ratio ξ

a0
> 0, where the

positivity of the latter is due to the presence of the non-trivial stringy moduli.
It is therefore possible to choose βξ

a0
, so as to have a large hierarchy between

MD and MD−2.
Following the discussion of Randall and Sundrum [8] we compute the cou-

pling of gravity to the fields on the brane. Writing, ḡµν := gµν |z=0 for the
metric on the brane-world, there is a non-trivial contribution from

√−g, i.e.,√−g|z=0 =
√−ḡ `2e(β−1)ξ/a0 . Hence, (15) becomes

Sb
eff ∼ −a0

∫

dD−2xdθ
√−ḡLb , (29)

where we have taken into account the tension for the brane-world according to
Eq. (16). Thus, unlike in Ref. [8], here the fields, masses, couplings and vev’s
in Lb retain their fundamental, D-dimensional value, O(MD). Also, using
Eq. (8), the kinetic terms of a typical field, Ψ , expand

|∂µΨ |2 = |∂‖Ψ |2 + `−2e−
ξ

a0
(β−1)|∂⊥Ψ | , (30)

so that the transverse excitations of Ψ are exponentially suppressed.
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2.2 Localization of gravity

To understand the localization of gravity, we look at small gravitational fluc-
tuations δηab = hab of the longitudinal part of the metric8. From the Einstein
equations, hab satisfies a wave equation of the form [21]:

2hab =
1√−g ∂µ(

√−ggµν∂νhab) = 0 . (31)

Following [22], we change coordinates:

dv = ` Z− (D−1)

2(D−2) e
ξ

2a0
(β−Z2) dz , (32)

ds2 = A(v)ηabdx
adxb +A(v)dv2 + B(v)`2dθ2 , (33)

and use the following Ansatz

hab = εabe
ip·xeinθ φ

ψ0
, (34)

dictated by the isometries of the metric and where

ψ0 :=

√

A−1
√−g =

√

A
D−3

2 B
1
2 = Z

D−3
4(D−2) e

ξ

4a0
(β−Z2) . (35)

With these variables [1, 2, 22], Eq. (31) becomes a Schrödinger-like equation:

−φ′′

+
(ψ

′′

0

ψ0
+
A

B
n2

)

φ = m2φ . (36)

For simplicity, set n = 0. Integrating Eq. (32) gives

v − v0 = sign(z)v∗
[

γ−1
0 γ

( D − 3

4(D − 2)
;
ξZ(z)2

2a0

)

− 1
]

,

v∗ =
`

2a0
e

βξ

2a0

(2a0

ξ

) D−3
4(D−2)

γ0 , γ0 = γ
( D − 3

4(D − 2)
;
ξ

2a0

)

. (37)

The change of variables z→v is single-valued, continuous and smooth across
z=0, and sign(z) = sign(v−v0). However, the appearance of the ‘incomplete
gamma function.’ γ(a;x) prevents an explicit inversion of v=v(z), and evalu-
ation of ψ′′

0/ψ0 in Eq. (36). Nevertheless, in the ξ → 0 limit:

ṽ − v0 = sign(z) ṽ∗
[

Z(z)
D−3

2(D−2) − 1
]

, ṽ∗ :=
2(D − 2)

D − 3

`

a0
, (38)

8 Owing to the dearth of solutions in closed form, the analogous discussion of the
de Sitter case (17–18), (22–23) is technically rather more involved, albeit just as
straightforward conceptually.
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which is easy to invert explicitly. Hereafter, we set v0=0, focus on small but
nonzero |ξ| and drop the tilde. (Equivalently, we could consider the case in
which a0, ξ > 0 and expand around v∞ = lim|z|→∞ v, where the result is
exactly the same as in the situation considered here [4].)

Eq. (36) can now be written as

−
[

d2

d2v
+

sign2(v)

4(|v∗| − |v|)2 +
1

|v∗|
δ(v)

]

φm = m2φm . (39)

Away from v=0, this becomes the Bessel equation, so

φm = am

√

|v∗| − |v| J0

(

m(|v∗|−|v|)
)

+bm
√

|v∗| − |v|Y0

(

m(|v∗|−|v|)
)

, (40)

which must satisfy the δ-function matching conditions at v=0:

[

2
dφm

dv
+

1

|v∗|
φm

]

v=0

= 0 . (41)

Evaluating Eq. (40) for small values of m,

φm ∼ am

√

|v∗| − |v| 1 + bm
√

|v∗| − |v| 2 log
(1

2
m(|v∗| − |v|)

)

, (42)

it is clear that Eq. (41) is satisfied only if bm = 0.
It remains to determine am such that the normalization integral of φm is

m-independent

〈φm|φm〉 = a2
m

∫ v∗

−v∗

dv (|v∗| − |v|)J2
0 (m(|v∗| − |v|)). (43)

This integral can in fact be computed exactly, and turns out to be dominated
by the plane wave approximation, i.e.,

J2
0 (m|v∗|) ∼

cos2(m|v∗| − π/4)

m|v∗|
, m|v∗| � 1 . (44)

and is “regularized” by |ξ| > 0 [4]. The zero-mode wave function can be
expressed in terms of v, and the normalization integral for ψ0 becomes:

〈ψ0|ψ0〉 = 2π

∫

dv |ψ0|2 =
2(D − 2)

D − 3

2π`2

|a0|
e

β|ξ|

|a0| . (45)

When we compare this expression with the exact result (28), the only discrep-
ancy occurs in the power of a0/ξ and the overallO(1) numerical factor. Similar
arguments apply for the φm when ξ 6= 0. For the normalization 〈φm|φm〉 we
get,

〈φm|φm〉ξ 6=0 = e
β|ξ|
|a0| 〈φm|φm〉ξ=0. (46)
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The plane wave approximation is valid for ξ 6= 0 because v∗ ∼ `/|a0| exp(β|ξ|
|a0| )

and hence when m is large, mv∗ � 1. Since large m’s are limited by `−1, we
can compute 〈φm|φm〉 by looking at large mv∗ for which the Bessel function,
J0, looks like a plane wave (44). This means that 〈φm|φm〉 ∼ a2

mm
−1v∗ and

we have to choose am ∼ √
m. Since v∗ ∼ `, then φm ∼

√
m`.

Thus, ψ0 6= limm→0 φm, i.e., the non-trivial stringy moduli guarantee lo-
calized gravity at z=0 through the existence of the isolated zero mode.

With these, the Newton potential takes the following form [1, 2, 4]:

U(r) =
1

MD−2
D

M1M2

r

(

1 +
`3

r3
+ · · ·

)

, (47)

where the correction term does not depend on a0, β or ξ, and is very small.
For example, MD ∼ TeV , since ` ∼ (MD)−1. The Newton potential has only
been checked down to re ∼ 1 mm ∼ 10−12GeV −1, so that `/r < `/re ∼ 10−15.

3 Dynamical Decoupling From, or Trapping Of

Bulk-Roaming Modes

In addition to the degrees of freedom discussed above, typical higher-dimensional
models also include degrees of freedom of various spatial extendedness (many
of which describable as D-brane probes) and Yang-Mills gauge fields. For the
latter, we assume that a variation of the argument shown above for gravity will
similarly localize the Coulomb forces, and it remains to discuss bulk-roaming
D-brane probes.

In any brane-world cosmological model, ‘matter’ degrees of freedom that
are not localized to the brane-world through a ‘topological’ mechanism [17], in-
evitably are permitted to roam the higher-dimensional bulk of the spacetime.
Since the brane-world is embedded in the bulk spacetime, this bulk-roaming
matter will pass through the brane-world. Unless its interactions with all of
the brane-world matter and all localized gauge fields (including gravity) are
for some reason negligibly small, this will violate brane-world conservation
laws. Surprisingly, our family of toy models includes an automatic dynamical
mechanism for ‘stabilization’ in this respect.

Refs. [2, 3] have analyzed the dynamics of D-brane probes in the vicinity
of the naked singularities using the appropriate Born-Infeld action [23, 24, 25,
26, 27]:

SBI = 2π(2π
√
α′)−(p+1)

∫

dp+1x
[

Cp+1 − e−Φ
√

− detGs
ab

]

, (48)

where Gs
ab is the metric on the brane-probe (of p-dimensional spatial extent)

induced from the background string frame metric by embedding the brane co-
ordinates along the spacetime ones. Cp+1 is the potential whose field strength
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is dual to F := da, where a is the axion. The induced string frame metric on
the brane-probe is (v is now the speed of the brane-probe!)

[Gs
ab] = eΦ/2g−1/2

s diag[ (e2Bv2−e2A) , e2A, · · · , e2A

︸ ︷︷ ︸

p

] , (49)

whereby the action (48) may be formally identified with that of a relativistic
particle, in which the rôle of ‘mass’ and ‘speed of light’ are played by rather
complicated functions of the dilaton, Φ, and the metric warp factors A,B.

Unlike the supersymmetric case [27] where the effective potential (the neg-
ative of the Lagrangian evaluated at v=0) vanishes, in our case Veff turns out
to be a linear function of Z(|z|) [2, 3]: another consequence of supersymme-
try breaking. In the two subfamilies of toy models described in Sec. 1.2, this
potential has the form depicted in Fig. 1.

z

z=-1/a0z=1/a0 a0<0 z=0

brane-world

Ebp   t<tc

Ebp   t>tc

Ebp   t=tc

z+z- z

a0>0 z=0

brane-world

Ebp   t<tc

Ebp   t=tc

Ebp   t~tc

Fig. 1. The two scenarios of Sec. 1.2: On the left, naked singularities encircle the
brane-world and the effective potential for the brane-probes falls off linearly. Thus, as
a brane-probe looses its energy through gravischtrahlung, the region of the transver-
sal plane with the brane-world becomes inaccessible to it: it dynamically decouples

from the brane-world. On the right, the transversal plane extends to z = ±∞, and
the effective potential for the brane-probe rises linearly. Now, as a brane-probe looses
its energy, it becomes confined to a diminishing extent of the transversal plane, and
eventually becomes dynamically trapped to the brane-world.

Thus, owing to supersymmetry breaking caused by the anisotropy of the
axion-dilaton system, brane-probes either decouple (when a0 < 0) from the
brane-world, or become trapped (when a0 > 0) in it.

In the first case, all bulk-roaming modes eventually decouple from the
brane-world at z = 0. In the second, all modes eventually become trapped,
i.e., localized to the brane-world. In fact, it is amusing to realize that the
latter process of localization would, from the point of view of a brane-world
observer, seem as creation of matter from nothing—indeed, conceivably, of all
of the brane-world matter.
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References
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