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* “It doesn’t matter what it’s called, 
…if it has substance.” 

S.-T. Yau





Compactification Experimentalist



Pre-Historic Prelude 
            (Where are We Coming From?)



Classical Constructions — a Summary

Pre-Historic Prelude
Complete Intersections 

Ex.    
     

Algebraic (constraint) equations 
…in a well-understood “ambient” ( )

(x−x1)2+(y−y1)2+(z−z1)2 = R 2
1(x−x2)2+(y−y2)2+(z−z2)2 = R 2
2

A
 , toric spaces, … 

Tian-Yau:  
Also:  

A = ∏i ℙ
ni, ℙni⃗w
{Fano}c∖{CY}c = {CY}nc

{%*Xc
} = {CY}nc

For hypersurfaces:   
“Functions”:   
Differentials:   
Homogeneity:   

 ’th cohomology on  -tensors

X={p(x)=0} ⊂ A
[ f(x)]X =[ f(x) ≃ f(x) +λ⋅p(x)]A
[dx]X =[dx ≃ dx + λ̃⋅dp(x)]A
ℂℙn =U(n+1)/[U(n)×U(1)]

i ℂℙn → U(n+1)
6

Just like gauge 
transformations

…with    tensorsU(n+1)

}
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…with    tensorsU(n+1)

}

D, BV, BFV constraints 
in the nLSM  GLSM⇝

Also: 
( ) alg. hypersurfaces 
→ nLSM w/constraints 
→ GLSM w/superpotentials 
→ topological A/B/½-twists 
→ derived categories, etc. 
→ a lot happened since…  
… yet more to be done… 
→ “superspacify” (!GGRS)

∩



E.g: 

Zero-set of  ,  ,  &  ,    

Generic  smooth;    ⇒ 

p(x, y)=0 deg[p]=(1
m) q(x, y)=0 deg[q]=( 4

2−m)
{p=0}∩{q=0} degℙn[p]+degℙn[q]=n+1 Rμν =0

Sequentially:   
Chern:  . 

Wall: ,  ,  so   . 
  … the same “ ” 
So,    &  :   4 diffeomorphism types

Xm
q=0 (Fm

p=0 ℙ4×ℙ1)
c = (1+J1)5(1+J2)2

(1+J1+mJ2)(1+4J1+(2−m)J2) =1+[6J 2
1 +(8−3m)J1J2]−[20J 3

1 −(32+15mJ 2
1 J2)]

κ111 =2+3m κ112 =4 (aJ1 + bJ2)3 = [2a+3(4b+ma)]a2

p1[aJ1+bJ2]= −88a−12(4b+ma) 4b+ma
Fm ≈ℝ Fm (mod 4) Xm ≈ℝ Xm (mod 4)

…but,    →   ?!m=0, 1, 2,⋯ 3 deg[q]=( 4
−1)
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Pre-Historic Prelude
Classical Constructions

  dim. space of Kähler classesb2 =2=h1,1

  dim. space of complex structures1
2 (b3−1)=86=h2,1

"

q(x, y)∼ q0(x)
y0

+ q1(x)
y1

  the Euler #−168=χ =2(h1,1−h2,1)

-vol. Yukawa∞

[arXiv:1606.07420]



Why Haven’t We Thought of This Before?

   holomorphic sections?!deg[q]=( 4
−1)

Not everywhere on  — (simple poles)ℙ4×ℙ1

but yes on   — in fact, 105 of ’em! F(4)
3 ⊂ℙ4×ℙ1

How?  On  ,   ← equivalence class!F(4)
3 q(x, y)≃q(x, y) +λ⋅p(x, y)

Hirzebruch, 1951⇒  p=x0y 3
0 +x1y 3

1
So,   where  q0 =q(x, y) + λ c(x)

(y0y1)2 p(x, y) λ→−1=== c(x)(−2 x1y1
y02 ) y0 ≠0

&    where    q1 =q(x, y) + λ c(x)
(y0y1)2 p(x, y) λ→1=== c(x)(2 x0y0

y12 ) y1 ≠0

&   q1(x, y)−q0(x, y) = 2 c(x)
(y0y1)2 p(x, y)

Just as the Wu-Yang monopole avoids the “Dirac string”…
… → D, BV, BFV etc. treatment of constraints (in the nLSM →  GLSM)

8

Meromorphic Minuet 
[AAGGL:1507.03235 + BH:1606.07420]
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,  on  =0 F3 :={p(x, y)=0}

for m=3

[+ GvG:1708.00517]

&     q=c(x)( x0y0
y12 − x1y1

y02 ) deg[c]=(3
0)



9

Meromorphic Minuet 
…in well-tempered counterpoint

For 
 

The central (  ) member of the family is a Hirzebruch scroll  :ϵ=0 Fm

Directrix:  ,    & ;S :={4(x, y)=0} [S] = [H1]−m[H2] [S]n = −(n−1)m
where     degree 4(x, y) :=( x0

y1m
− x1

y0m ) + λ
(y0y1)m

[x0y m
0 +x1y m

1 ] ( 1−m)
& ,  h0(K*)=3 (2n−1

n )+δϵ,0ϑm
3 (2n−2

2 )(m−3) h0(T )=n2+2+δϵ,0ϑm
1 (n−1)(m−1)

& ,    h1(K*)= δϵ,0ϑm
3 (2n−2

2 )(m−3) h1(T )= δϵ,0ϑm
1 (n−1)(m−1)

All these “exceptionals” reduce (decompose) for ( ) deformations 
resulting in discrete deformations   

ϵα ≠0
F(n)

m → F(n)
(m1,m2,⋯) & ⋯ & ≈ℝ F(n)

[m (mod n)]

These ’s are distinct toric varieties…  w/   F(n)
(m1,m2,⋯) {4r, r ⩽mi}

0

[AAGGL:1507.03235 + BH:1606.07420] 
+ more

qi(abcd) := f i(jkl)
(abc �pd)(jkl)

q(x, y) := *f i(j15j2m*3)
(abc pd)(i jm*15j2m*3)

xa 5 xd

gj15jm*2)(y)
�
x0 y0m + x1 y1m≠́≠≠≠≠≠Ø≠≠≠≠≠≠̈

:= âp(x,y)

= *
…
↵

✏↵ �p↵(x, y)
�
= F (n)

m;✏ À
⌧Pn 1
P1 m

�

1
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Meromorphic Minuet 
…in well-tempered counterpoint
On  :    ⇒  F(n)

m x0y m
0 +x1y m

1 =0 x0 = −x1(y1/y0)m

&   (Xi, i=2,⋯, n+2)=(x2,⋯, xn; y0, y1)
 bi-degree →  toric -action:ℙ4×ℙ1 (ℂ×)2

Add Lagrange multiplier,   X0 f(X)
Need  ,  with  deg[ f(X)]= ( 4

2−m) deg[X1X m
5,6]= (1

0) =deg[X2,3,4]

  f(X)=X 4
1 X2+3m

5,6 ⊕ X 3
1 X2,3,4X2+2m

5,6 ⋯ ⊕ X1X2,3,4X2
5,6 ⊕ X2,3,4X2−m

5,6
 ,  m>2

X1 X2 X3 X4 X5 X6
1 1 1 1 0 0 ←ℙ4

−m 0 0 0 1 1 ←ℙ1

X0
−4

m−2

   &    x1 →X1 =4
[AAGGL:1507.03235 + BH:1606.07420] 

+ more
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2,3,4X2+km
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Tyurin 
degenerate


Pn 1 n�1 1
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�
=
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Pn 1 1 n�1
P1 m �m 2

�
'�!

Pn�2 n�1
P1 2

�
(0.1)

1

itself a 
codimension-2 

Calabi-Yau

[AAGGL:1507.03235 + BH:1606.07420] 
+ more



Laurent-Toric Fugue 
(a  not-so-new  Toric Geometry)

A Generalized Construction of 
Calabi-Yau Mirror Models 

arXiv:1611.10300 
+ lots more…

BH
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Meromorphic Minuet 
…in well-tempered counterpoint
On  :    ⇒   

&    

 bi-degree →  toric -action: 

Add Lagrange multiplier,    
Need  ,  with   

   
 ,  
 :  

F(n)
m x0y m

0 +x1y m
1 =0 x0 = −x1(y1/y0)m

(Xi, i=2,⋯, n+2)=(x2,⋯, xn; y0, y1)
ℙ4×ℙ1 (ℂ×)2

X0 f(X)
[ f(X)]= ( 4

2−m) deg[X1X m
5,6]= (1

0) =deg[X2,3,4]

f(X)=X 4
1 X2+3m

5,6 ⊕ X 3
1 X2,3,4X2+2m

5,6 ⋯ ⊕ X1X2,3,4X2
5,6 ⊕ X2,3,4X2−m

5,6
m>2
{f(X)=0}♯ = {X1 =0} ∩ {⊕k X k

1 X 2
2,3,4X2+km

5,6 =0} Rμν =0

BH

arXiv:1611.10300

X1 X2 X3 X4 X5 X6
1 1 1 1 0 0 ←ℙ4

−m 0 0 0 1 1 ←ℙ1

X0
−4

m−2

{f(X)=0} = {X1 =0} ∪ {⊕k X k
1 X 2

2,3,4X2+km
5,6 =0}

Embrace the Laurent terms
“Intrinsic limit” (L’Hôpital-“repaired”) 
→ smooth (pre?)complex spaces “removable” 

singularity

SQFT/GLSM as an expansion 
about “classical” background

   &    x1 →X1 =4



#⁉%
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Meromorphic Minuet 
…in well-tempered counterpoint

  
 , Laurent terms & “intrinsic limit”

f(X)=X 4
1 X2+3m

5,6 ⊕ X 3
1 X2,3,4X2+2m

5,6 ⋯ ⊕ X1X2,3,4X2
5,6 ⊕ X2,3,4X2−m

5,6
m>2

BH

arXiv:1611.10300 

  +much more

Virtual varieties [Francesco Severi], i.e., Weil divisors 
E.g.,      

Denominator contributions subtract from those of the numerator 

ℙ2
(3:1:1)[5] x35+x45+ x22

x4
= 0 ≈ x35x4 + x46 + x22

x4
=0

Change variables [David Cox]:    
  in   

Generalized to all    ✅ — not a fluke 
A  desingularized  finite quotient  of a  branched multiple cover 
…and a variety of “general type”  (   or even   )

(x2, x3, x4) ↦ (z3 z2, z12, z2)
x35+x45+ x22

x4
↦ z110+z25+z32 ℙ2

(1:2:5)[10]
F(n)

m [c1]

c1 <0 c1 ≷0
'

…there’s  of those, just as of VEX polytopes!∞
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Concave!!

BH
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 X 2
1 X 0

2 (X3⊕X4)2+1m

Transpolar: functions on which space?
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more detailed and laborious than the use of the cone-shift vectors (
e:vShe:vSh
3.15). Indeed, given

the position of the vertices of the trans-polar polytope and the placement and orientation

of the so-translated dual cones — which then form the (inner/outer for positive/negative)

opening cones of PO; as per Claim
C:vShC:vSh
3.2, this seems to su�ce to completely reconstruct P

O.

For illustration, we show however the direct results of Construction
C:tPC:tP
3.1 for F3 in Figure

f:F3cstf:F3cst
28.

Note that polar to each vertex ⌫⇢ 2 �
? by itself is not a facet ✓ ⇢ (�?)O, but the (n�1)-plane
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⌫3

⌫4

(⌫1)�

(⌫2)� (⌫3)�

(⌫4)�

)

�1�2

�3

�4

(�1)� (�2)�

(�3)�

(�4)�

Figure 28. A direct application of Construction
C:tPC:tP
3.1 to �

?
F3
; (�?

F3
)O is plotted at half its size f:F3cst
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K3 in , one of two “cornerstone” mirror pairs: 
 
 
 
 
 
 
 
 
 
 

F(3)
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The Hilbert space & interactions restricted by the symmetries
Analysis: classical, semi-classical, quantum corrections…
…in spite of the manifest singularity in the (super)potential
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and two of {y1, · · · , y6} need to be set to 1, corresponding vertices removed from �
?
F3

and

�
?
FO

3
, respectively, and so blow-down F3 and F

O

3
respectively so as to obtain:
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which corresponds to removing the non-convex vertex ⌫5 from �
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. In turn,
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(1:1:2:2)
[6]. (4.48c) e:nomK3L3

correspond to eliminating a di↵erent half of the “extension” vertices from �F3 .

The monomials in the polynomials (
e:nomK3e:nomK3
4.46) themselves correspond to vertices of the poly-

topes �F3 = �
?
FO

3
and �FO

3
= �

?
F3
. Corresponding then to the limits (

e:nomK3Le:nomK3L
4.48), we can omit the

corresponding terms, obtaining two pairs of minimal mirror polynomials:e:nK3Min1

min1W (F3) = a1 x
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4.48a)-(

e:nomK3L2e:nomK3L2
4.48b), i.e., to �

?
F3

r ⌫5 and �F3 r {µ4, µ6}. Straightforward com-

putation shows that the generic polynomials (
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4.49) are transversal, and the polynomials in

each pair are the transpose of each other:
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8
, 0). Then,
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Analogously, the maximal phase symmetry of (
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To swap the geometric and quantum symmetry, we should consider
�
(
e:nK3-1e:nK3-1
4.51) , (

e:nK3-2e:nK3-2
4.52)/Z3

�
for

a mirror pair, using the indicated Z3-action.

We note that the ratio of the sizes of the geometric and the quantum symmetry groups

equals the ratio of the degrees of the polytopes:

|G|

|Q|
=

3·24

8
= 9 =

d(�F3)

d(�?
F3
)
=

54

6
. (4.53) e:RelRat

Indeed, the same holds also for (�Fm ,�
?
Fm

), where the ratio of the quantum and geometric

symmetries in (
e:mirrorF3e:mirrorF3
3.48) is 2, and equals the ratio of degrees of the Newton and the spanning

polytopes (
e:F3:4,8e:F3:4,8
3.48d). Both in the 2-dimensional and in the 3-dimensional computation, it was

crucial for this equality that the Newton polytope contains negative-degree parts.

On the other hand, dropping µ3, µ6 2 �F3 , the paire:nK3Min2
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(3:5:8:8)[24], (4.49b)

corresponds to (4.48a)-(4.48b), i.e., to �?
F3

r ⌫5 and �F3 r {µ4, µ6}. Straightforward com-

putation shows that the generic polynomials (4.49) are transversal, and the polynomials in

each pair are the transpose of each other:
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Following the prescription of Ref. [16], the maximal phase symmetry of (4.49a) is Z3⇥Z8⇥Z24,

generated by g1 := (Z3:
1
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1
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1
24 ,

1
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3
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1
8 ,
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Analogously, the maximal phase symmetry of (4.49b) is Z3 ⇥ Z8 ⇥ Z24, generated by gO1 :=
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1
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2
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2
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5
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1
3) generates the “quantum symmetry,” the discrete subgroup of the P3
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tivization, leaving a Z3 ⇥ Z8 geometric symmetry generated for example as:
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(4.52)

To swap the geometric and quantum symmetry, we should consider
�
(4.51) , (4.52)/Z3

�
for

a mirror pair, using the indicated Z3-action.

We note that the ratio of the sizes of the geometric and the quantum symmetry groups

equals the ratio of the degrees of the polytopes:

|G|

|Q|
=

3·24

8
= 9 =

d(�F3)

d(�?
F3
)
=

54

6
. (4.53)

Indeed, the same holds also for (�Fm ,�
?
Fm

), where the ratio of the quantum and geometric

symmetries in (3.48) is 2, and equals the ratio of degrees of the Newton and the spanning

polytopes (3.48d). Both in the 2-dimensional and in the 3-dimensional computation, it was

crucial for this equality that the Newton polytope contains negative-degree parts.

On the other hand, dropping µ3, µ6 2 �F3 , the pair
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m ) = a1 x1

3
x4

2m+2 + a2 x1
3
x5

2m+2 + a3
x2

3

x4
m�2 + a4

x2
3

x5
m�2 + a5

x3
3

x4
m�2 + a6

x3
3

x5
m�2

g(y;�?
F

(3)
m ) = b1 y1

3
y2

3

| {z }
⌫1

+ b2 y3
3
y4

3 + b3 y5
3
y6

3 + b4
y 2m+2
1

(y3 y5)m�2 + b5
y 2m+2
2

(y4 y6)m�2

E=

2

6666664

3 0 0 2m+2 0
3 0 0 0 2m+2
0 3 0 2�m 0
0 3 0 0 2�m

0 0 3 2�m 0
0 0 3 0 2�m

3

7777775

�?

F
(3)
3
>�⌃F

(3)
3

⌫1

⌫2⌫3

⌫4

⌫5

Conv(�?
F (3)3 ) �F

(3)
3

µ1

µ2

µ3

µ4

µ6

µ5

th
e

st
an

da
rd

,i
nc

om
pl

et
e

pa
rt

of
�

F
(3

)
3

the “extension,”
included in �F

(3)
3

R
ed

3
,5 [�

F
(3

)
3

]

R
ed

4
,5 [�

F
(3

)
3

]

36



17

—Proof-of-Concept—& Non-Convex Mirrors
Not just Hirzebruch -folds, either:n

Buckets of 2-dimensional polygons, invented to test  ▿ : Δ⋆ 1−1⟷ Δ

Laurent-Toric Fugue
BH

arXiv:1611.10300 

  +much more



17

—Proof-of-Concept—& Non-Convex Mirrors
Not just Hirzebruch -folds, either:n

Buckets of 2-dimensional polygons, invented to test  ▿ : Δ⋆ 1−1⟷ Δ

Laurent-Toric Fugue
BH

arXiv:1611.10300 

  +much more



(�?
E
2

)
˝ predictably has a fractional point:

(G.8) e:UOSNP

The cone over the deg = 2 facet ‹( ✓
<
) may be subdivided by introducing the N-lattice vector ⌫

<
= (*1, 0, 0),

and replacing the deg =2 facet ✓
<

by the convex “tent”

✓
<
ô [(0, 1, 0), (0, 0, 1), (*1, 0, 0)] ‰ [(0, 1, 0), (*1, 0, 0), (*2,*1,*1)] ‰ [(*1, 0, 0), (0, 0, 1), (*2,*1,*1)], (G.9)

whereupon the polar of the so-“repaired” spanning polytope (�?
öE
2

)
˝
= (�?

öE
2

)
÷
= �öE

2

becomes the M-integral
truncation of (�?

E
2

)
˝:

(G.10) e:UONSPc

These two convex polytopes each other’s standard (
e:pStde:pStd
3.14)-polar and they are both reflexive polytopes. This

is analogous to the case of the Hirzebruch 3-fold F (2)

1
, for which both the spanning polytope and the Newton

polytope are reflexive and each other’s polar.

G.6 Reduced Re-Triangulation Transitions

Three dimensions affords some possibilities not existing in two dimensions. One of those involves sub-
divisions distinct triangulations. Consider for example a 3-dimensional polytope including the vertices
{(*1,*1, 0), (*1, 0, 0), (0,*1, 0), (0, 0, 1)}. This rectangle may be subdivided in at least two distinct ways, as
depicted in Figure

f:rTf:rT
55. The subdivision on the left-hand side of Figure

f:rTf:rT
55 provides for two facets,

[(0, 0, 1), (*1,*1, 0), (0,*1, 0)] and [(0, 0, 1), (*1, 0, 0), (*1,*1, 0)], (G.11)
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Figure 54: The spanning polytopes (left-hand side) with a deg = 2, 3, 4 facet (shaded red), subdivided at ⌫r =
(*1, 0, 0), which produces a convex, flat and concave “tent,” respectively; the Newton polytopes are pictured on
the right-hand side: the deg = 2 case is clipped, the deg = 4 case extended by the (⌫r)˝-facet.
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convex

(*1,*1, 0)

(0,*1, 0)

(*1, 0, 0)

(0, 0, 1)

re-triangulation,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ô diffe
ren

ce

non-co
nvex

Figure 55: Introduction of non-convexity by re-triangulation and removal of one (here) or more (in general)
simplices that are not adjacent to the lattice origin. In the present example, this does not change the vertex set
of the polytope; by contrast, the construction (

e:re3sube:re3sub
4.7) does introduce a new, non-convex vertex. f:rT

while the one on the right-hand side defines the facets

[(0, 0, 1), (*1, 0, 0), (0,*1, 0)] and [(*1, 0, 0), (*1,*1, 0), (*1, 0, 0)]. (G.12)

The former is manifestly convex, while the latter is not. Although the vertices remain the same, the
difference between the two subdivisions is seen (Figure

f:rTf:rT
55, right) to be the simplex

[(0, 0, 1), (*1,*1, 0), (0,*1, 0), (*1, 0, 0)], (G.13)

which is not adjacent to the internal lattice point (0, 0, 0), and does not belong to the star-triangulation of
the polytope using the right-hand side subdivision.

Owing to this, and unlike in two dimensions, a 3- or higher-dimensional polytope (more precisely, its
vertex-set) may have different star-triangulations, some of which fully convex, others not.

In addition, we have also seen two slightly different kinds of non-convexity (and without self-crossing
faces) in 3-dimensional polytopes:

1. “Regular” saddle-points, such as ⌫
1

in �?
F (2)

3

; see (
e:3FmTVe:3FmTV
4.1). The trans-polar of such a non-convex vertex is

a regular (not self-crossing) facet, such as ⇥
1
œ �F (2)

3

.

2. “Irregular” saddle-points, such as ⌫
2

and ⌫
3

in �?
F (2)

3

; see (
e:3FmTVe:3FmTV
4.1). The trans-polar of such a non-convex

vertex is a flip-folded (self-crossing) facet, such as ⇥
2
,⇥

3
œ �F (2)

3

.

In combination with flip-folded (self-crossing) faces such as ⇥
2
,⇥

3
œ �F (2)

3

on the right in Figure
f:3F3f:3F3
19, a

complete enumeration of all forms of non-convexity is less straightforward in general than the case-by-
case remarks made herein, but also well beyond the scope of this proof-of-concept note.
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= (*1,*1,*1)
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⌫
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⌫
4
= (*2,*1,*1)

⌫
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⌫
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⌫
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*⌫
1

*⌫
2

⌫
4
= (*1,*2,*1)

Figure 51: The spanning polytope of the double fibration (
e:3FmP1ke:3FmP1k
G.2), displayed with (m, k) = (1, 1), (2, 1), (1, 2); the

upper half remains unchanged, ⌫
1
= (1, 0, 0), ⌫

2
= (0, 1, 0) and ⌫

3
= (0, 0, 1). The P1

fiber is spanned by {±⌫
2
}, and

is fibered over {⌫
1
, ⌫

3
,*⌫

1
, ⌫

4
} spanning the base-Fm. f:P1m’Fm

In fact, the same is true of the s-skewed versions of this toric variety:

�?
Fm,k;s

⌫
0

⌫
1

⌫
5

⌫
2

*⌫
2

⌫
3

⌫
4

fiber-1 0 1 *1 0 0 0 *m
fiber-2 0 0 *s 1 *1 0 *k

base 0 0 0 0 0 1 *1

�
1

2(k*s)*ms *k+ms *k 0 0 s s
�
2

*2 0 0 1 1 0 0

�
3

*2*s 1 1 s 0 0 0

x
0

x
1

x
2

x
3

x
4

x
5

x
6

(G.3) e:3FmsP1k

The above candidate Mori vectors were found using Mathematica’s command NullSpace. Their combina-
tions

õ�
1
=

1

s
�

�
1
+ as(ms*k)�

2
+ (ms*k)�

3
) = (0,*m, 0,ms*k, 1, 1) and

õ�
2
=

1

s
�

�
1
* ks�

2
+ k�

3
) = (m, 0, 0,*k, 1, 1)

(G.4)

seem like interesting choices, but I’m still not clear what the (positivity, integrality) defining condition
(complementing nullity) of the Mori vectors ought to be. This triple sequence of polytopes exhibits

⌫
1
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2

(*⌫
2
)

⌫
3

⌫
4

⌫
5

⌫
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⌫
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(*⌫
2
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⌫
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⌫
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⌫
1

⌫
2

(*⌫
2
)

⌫
3

⌫
4

⌫
5

Figure 52: The spanning polytope of the skewed double fibration (
e:3FmsP1ke:3FmsP1k
G.3), displayed for k = 3, s = 3 and

m = 0, 5 , 3: most of the polytope remains unchanged, ⌫
1
= (1, 0, 0), ⌫

2
= (0, 1, 0) and ⌫

3
= (0, 0, 1). The P1

fiber,
spanned by {±⌫

2
}, is fibered over the (k; s)-skewed base-Fm, with the spanning polytope {⌫

1
, ⌫

3
, ⌫

5
, ⌫

4
}, where

⌫
4 := (*m,*k,*1) and ⌫

5 := (*1,*s, 0). f:3FmsP1k

several different types of non-convexity. Even while keeping s = 3 and k = 3 fixed,
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—Proof-of-Concept—& Non-Convex Mirrors
Not just Hirzebruch -folds, either:n

Buckets of 2-dimensional polygons, invented to test  ▿ : Δ⋆ 1−1⟷ Δ
And, plenty of 3-dimensional polyhedra:
Re-triangulation & VEXing:
Multiply infinite sequences of twisted polytopes:
And multi-fans (spanned by multi-topes):

winding number (multiplicity, Duistermaat-Heckman fn.) = 2 
[A. Hattori+M. Masuda” Theory of Multi-Fans, Osaka J. Math. 40 (2003)1–68]
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The (super)potential:

The possible vevs

concluding comments, while computational details are collected in the appendices. While

this proof-of-concept paper illustrates the various toric geometry techniques by focusing on

Hirzebruch n-folds [5] and their Calabi-Yau hypersurfaces, more general examples and further

details may be found in the companion paper [23].

2 The gauged linear sigma model

Recent work [1, 5] has shown that there are significant merits to constructing Calabi-Yau

algebraic varieties at least some of the defining equations of which contain Laurent monomials,

and that standard methods of algebraic geometry and cohomological algebra can be adapted

to compute the requisite classical data. For applications in string theory and its M- and

F-theory extensions, it is desirable to find a world-sheet field theory model with such target

spaces.

For well over two decades now, the standard vehicle to this end is Witten’s gauged linear

sigma model (GLSM) [8, 24, 25], where fermionic integration leaves a potential for the scalar

fields of the general form:

U(xi,�a) =
X

i

��Fi

��2 + 1

2e2

X

a

Da
2 +

1

2

X

a,b

�̄a �b

X

i

Q
a
iQ

b
i |xi|2, (2.1a)

Da = �e
2
�X

i

Q
a
i |xi|2 � ra

�
. (2.1b)

Here �a is the scalar field from the a
th gauge twisted-chiral superfield, xi and Fi are respec-

tively the scalar and auxiliary component fields from the i
th “matter” chiral superfield Xi,

Q
a
i is the charge of the i

th chiral superfield with respect to the a
th

U(1) gauge interaction,

and the ra are the contributions from the Fayet-Iliopoulos terms. In supersymmetric theories

and especially when acting on chiral superfields, gauge groups are typically complexified and

the GLSM naturally has U(1,C) ' C⇤ actions — which are the “torus actions” in the toric

geometry of the space of ground-states in the GLSM.

2.1 Laurent superpotentials

For illustration, consider the GLSM models with the superpotential3

W (X) := X0 · f(X), (2.2a)

f(X) :=
2X

j=1

✓ nX

i=2

�
aij X

n
i

�
X

2�m
n+j + aj X

n
1X

(n�1)m+2
n+j

◆
, (2.2b)

where m,n > 1 are integers and X0 is the chiral superfield that in some ways serves as a

Lagrange multiplier; we focus on n = 2, 3, 4, but generalizations are straightforward. Such

superpotentials are strictly invariant with respect to the U1(1)⇥U2(1) gauge symmetry with

3This is not the most generic superpotential but the natural generalization of Fermat-like potentials for the

current class of models we are considering; see below.

– 2 –

concluding comments, while computational details are collected in the appendices. While

this proof-of-concept paper illustrates the various toric geometry techniques by focusing on

Hirzebruch n-folds [5] and their Calabi-Yau hypersurfaces, more general examples and further

details may be found in the companion paper [23].

2 The gauged linear sigma model

Recent work [1, 5] has shown that there are significant merits to constructing Calabi-Yau

algebraic varieties at least some of the defining equations of which contain Laurent monomials,

and that standard methods of algebraic geometry and cohomological algebra can be adapted

to compute the requisite classical data. For applications in string theory and its M- and

F-theory extensions, it is desirable to find a world-sheet field theory model with such target

spaces.

For well over two decades now, the standard vehicle to this end is Witten’s gauged linear

sigma model (GLSM) [8, 24, 25], where fermionic integration leaves a potential for the scalar

fields of the general form:

U(xi,�a) =
X

i

��Fi

��2 + 1

2e2

X

a

Da
2 +

1

2

X

a,b

�̄a �b

X

i

Q
a
iQ

b
i |xi|2, (2.1a)

Da = �e
2
�X

i

Q
a
i |xi|2 � ra

�
. (2.1b)

Here �a is the scalar field from the a
th gauge twisted-chiral superfield, xi and Fi are respec-

tively the scalar and auxiliary component fields from the i
th “matter” chiral superfield Xi,

Q
a
i is the charge of the i

th chiral superfield with respect to the a
th

U(1) gauge interaction,

and the ra are the contributions from the Fayet-Iliopoulos terms. In supersymmetric theories

and especially when acting on chiral superfields, gauge groups are typically complexified and

the GLSM naturally has U(1,C) ' C⇤ actions — which are the “torus actions” in the toric

geometry of the space of ground-states in the GLSM.

2.1 Laurent superpotentials

For illustration, consider the GLSM models with the superpotential3

W (X) := X0 · f(X), (2.2a)

f(X) :=
2X

j=1

✓ nX

i=2

�
aij X

n
i

�
X

2�m
n+j + aj X

n
1X

(n�1)m+2
n+j

◆
, (2.2b)

where m,n > 1 are integers and X0 is the chiral superfield that in some ways serves as a

Lagrange multiplier; we focus on n = 2, 3, 4, but generalizations are straightforward. Such

superpotentials are strictly invariant with respect to the U1(1)⇥U2(1) gauge symmetry with

3This is not the most generic superpotential but the natural generalization of Fermat-like potentials for the

current class of models we are considering; see below.

– 2 –

— PLEASE, DO NOT CIRCULATE —

0
!
= Da :=

e2

2

⇣ n+2X

i=0

Qa
i |xi|2 � ra

⌘
; (1.5d)

0
!
=

��|Q(x)|�i
��2 := 2

X

a,b

�̄a

✓ n+2X

i=0

Qa
iQ

b
i |xi|2

◆
�b. (1.5e)

The subsystem (1.5a)–(1.5c) defines the base-locus of the superpotential function (1.3), while

the constraint (1.5d) is known as the “moment map.” The last constraint (1.5e) restricts the

hxi to be “Qa
i -orthogonal” to the h�i, serves as an hxi-dependent mass term for the �a’s and

a h�i-dependent mass term for the X’s, as well as an X-� interaction term.

1.1 A Laurent GLSM

In particular, we focus on the m,n > 0 sequence of superpotentials considered in Ref. [6],

which we rewrite as follows:

W (X) := X0 · f(X), (1.6a)

f(X) :=
2X
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n+j

�
Xn

1 +
nX

i=2

aij X
n
i

◆
X 2�m
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which is U(1)⇥U(1)-gauge invariant with the charges

X0 X1 X2 · · · Xn Xn+1 Xn+2

Q1 �n 1 1 · · · 1 0 0

Q2 m�2 �m 0 · · · 0 1 1

(1.7)

Upon restricting to the lowest (scalar) component fields Xi| = xi, this format makes it clear

that f(x) is an (xn+1, xn+2) 2 C2-family of Fermat n-tics in (x1, · · · , xn) 2 Cn, where the

di↵ering and xnm
n+j-dependent i = 1 term “m-twists” this fibration over the base (xn+1, xn+2) 2

C2. If (x1, · · · , xn) and (xn+1, xn+2) are separately projectivized, f(x) = 0 defines an m-

twisted fibration of Pn�1[n] over P1, which indeed describes a “geometric” phases of the GLSM

with the superpotential (1.6). The particular case with m = 2 and n = 4 is the “Example 2”

in Ref. [7], which is then generalized by the GLSM sequence with the superpotentials (1.6).

The vanishing of (1.1) is equivalent to the system of constraints (1.5), which for the

superpotential (1.6) becomes:
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(ii )

(iii )
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(iv )

|x0| |x1| |x2| · · · |xn| |xn+1| |xn+2|

i 0 0 0 · · · 0 ⇤ ⇤
I 0 ⇤ ⇤ · · · ⇤ ⇤ ⇤
ii 0 0 ⇤ · · · ⇤ 0 0
II 0 see (2.9) ⇤ · · · ⇤ ⇤ ⇤
iii 0

p
r1 0 · · · 0 0 0

III
q

mr1+r2
(n�1)m+2

q
(m�2)r1+nr2
(n�1)m+2 0 · · · 0 0 0

iv
p
�r1/n 0 0 · · · 0 0 0

IV
p
�r1/n 0 0 · · · 0 ⇤ ⇤

Figure 1. The phase diagram of the GLSM with the Calabi-Yau n-fold ⇢ F (n)
m “geometric” phase;

the “⇤” entries are generally nonzero and are outside the Stanley-Reisner ideal.

Thus, there are four di↵erent phases, as depicted in Figure 1. We now analyze them in

turn, using that a ground state solution must also satisfy the F -term constraints (2.5).

Phase I: r1, r2 > 0. The F -term constraints are solved by having x0 = 0 and f(x) = 0.

From the D-term analysis above, the excluded region in the field-space

II = {x1 = . . . = xn = 0} [ {xn+1 = xn+2 = 0} (2.7)

is exactly the Stanley-Reisner (or irrelevant [18]) ideal for the Hirzebruch n-fold F (n)
m (m-

twisted Pn�1-bundle over P1). Since the xn+j cannot both vanish (2.5e) implies that �2 = 0.

Eq. (2.5e) then simplifies and implies that �1 = 0 since the xi, i = 1, . . . , n cannot all be zero.

Thus, f(x) = 0 defines a Calabi-Yau (n�1)-fold hypersurface in F (n)
m .

Direct computation shows that the polynomial f(x) is transversal for generic choices of

aij , aj , so that its n+2 gradient components @f
@xi

,
@f

@xn+j
vanish simultaneously with f(x) itself

only within the excluded region (2.7), see Appendix A for more details.

Phase II: �mr1 < r2 < 0. The F -term constraints are still solved by having x0 = 0 and

f(x) = 0. From the D-term analysis above, the excluded region in the field-space

III = {x1 = 0} [ {x2 = . . . = xn+2 = 0} (2.8)

is the Stanley-Reisner ideal for the weighted projective space Pn
(m:···:m:1:1) in terms of the

coordinates (x2, . . . , xn+2. With x1 6= 0, (2.5e) implies that �1 = m�2, and since the remaining

xi cannot all vanish simultaneously, it follows that �1 = �2 = 0. Thus, f(x) = 0 defines (the

MPCP-desingularization of) the Calabi-Yau (n�1)-fold hypersurface Pn
(m:···:m:1:1)[(n�1)m+2].

Indeed, Eqs. (2.6a) and (2.6b) imply that (recall that r2 < 0)

|x1| =

sP
j |xn+j |2 � r2

m
=

vuutr1 �
nX

i=2

|xi|2 > 0 (2.9)
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Near , classical analysis of 
Kähler (metric) phase-space fails  
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the instanton resummation gives:
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‡ For m> 2, this requires a well-specified limit; see Ref. [2].

Figure 1: The GLSM phase diagram (shown for n=2 andm=3) with the Calabi-Yau n-fold⇢ F (n)
m “geometric”

phase; the “⇤” entries do not all vanish and are outside the Stanley-Reisner ideal of each listed phase [2].

The second equality holds owing to the gauge anomaly cancellations,
P

iQ
a
i = 0, for a = 1, 2. For the

sequence of models (1.2) with charges (1.3), this produces:
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. (2.3b)

As noted in Ref. [9], the right-hand side of (2.2) is degree-0 homogeneous in �b, again because of the

anomaly-cancellations, so that the right-hand sides in the relations (2.2) depend only on the ratio:

W (F (n)

m ) :
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>>><

>>>:
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This is a parametric representation of the discriminant, and so also of the “fully corrected phase diagram”

in the sense of Ref. [9]. Owing to the degree-0 homogeneity of the expressions (2.3),

1. the parametrization ⇢ :=�2/�1 loses the explicit factor � n�1

1
in (2.3a) indicating the (1, 0)-directed

asymptote (this explains why Ref. [9] includes it “by hand”), but retains the explicit factor �2
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The subsystem (1.5a)–(1.5c) defines the base-locus of the superpotential function (1.3), while

the constraint (1.5d) is known as the “moment map.” The last constraint (1.5e) restricts the
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1.1 A Laurent GLSM
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Now compare with the complex structure of the B3H2K-mirror
Restricted to the “cornerstone” defining polynomials 
 
 
 
 
 

In particular,

Jacobian/chiral ring, specifying the complex structure moduli space of the mirror-GLSM, OF (n)

m [c1]. This

will then be compared with the Kähler structure moduli space of the original GLSM (1.2), F (n)

m [c1], which

was discussed in Section 2.

To be precise, we rely on the standard non-renormalization theorems and expect the superpoten-

tial (3.2) to not acquire any additional terms, and so restrict the deformations of the superpotential —and

therefore the complex structure of the target space— to only vary the parameters
�
b0, · · · , bn+2

 
. These

form-preserving deformations (modulo the Jacobian ideal of (3.2b) as usual) then define a subring of the

full Jacobian/chiral ring, but this will su�ce for our present purposes; see Appendix A.3.2. For notational

ease, we start with the simplest n=2 case and denote:

�0 := y1 · · · y4, �1 := y 2

1 y 2

2 , �2 := y 2

3 y 2

4 , �3 :=
ym+2

1

ym�2

3

, �4 :=
ym+2

2

ym�2

4

, (3.8)

so that

g(y) =
n+2X

i=0

bi �i(y) = b0 �0 + b1 �1 + b2 �2 + b3 �3 + b4 �4, (3.9)

is the 5-parameter family of defining functions (3.6) considered. In Appendix A.3.2, we prove that the

correct set of relations for defining the e↵ective variations of the superpotential (3.2) is provided by the

a�ne Jacobian ideal [43, 44]

AJ(g) = Span
⇣
y1
�
@1g(y)

�
, · · · , y2n

�
@2ng(y)

�⌘
, (3.10a)

the n = 2 case of which is given by:

(3.8)

= Span
�
b0 �0 + 2b1 �1 + (2+m)b3 �3, b0 �0 + 2b1 �1 + (2+m)b4 �4,

b0 �0 + 2b2 �2 + (2�m)b3 �3, b0 �0 + 2b2 �2 + (2�m)b4 �4

�
. (3.10b)

We conjecture that the a�ne Jacobian ideal plays the same role for all cornerstone defining polynomials

modeled on the vertices of any trans-polar pair of VEX polytopes, in the manner of (3.5)–(3.6).

Parametric form: In addition to the linear relations (3.10b), the association (3.7) insures that the five

(rational) monomials (3.8) also satisfy two algebraic identities:
Are za the

flat or the

algebraic

coordi-

nates? 1 =
n+2Y

i=0

�
�i(y)

�Qa
i : 1 = ��2

0
�1 �2 and 1 = �m�2

0
��m
1

�3 �4, (3.11)

in evident correlation with the Mori charge-vectors Q1 and Q2 (1.3). The corresponding algebraic combi-

nations of the bi’s then define the “flat coordinates” in the complex structure moduli space:

za :=
n+2Y

i=0

(bi)
Qa

i :

(
z1 := b�2

0
b1 b2

(3.11)

= (b0 �0)�2 (b1 �1) (b2 �2),

z2 := bm�2

0
b�m
1

b3 b4
(3.11)

= (b0 �0)m�2 (b1 �1)�m (b3 �3) (b4 �4),
(3.12)

which must be taken modulo the a�ne Jacobian ideal (3.10b). To explore this locus, we use the vanishing

relations (3.10b) in AJ(g) to express some of the �i’s in terms of others. For example, this allows expressing

�2 ! �
mb0 �0 + (m�2) b1 �1

(m+2) b2
, �3 ! �

b0 �0 + 2b1 �1

(m+2) b3
, �4 ! �

b0 �0 + 2b1 �1

(m+2) b4
. (3.13)

The fact that the four vanishing relations (3.10a) are solved by three substitutions shows that the four

generators of the Jacobian ideal AJ(g) are in fact redundant by one.
one = the

max. # of

droppable

(extension)

vertices.
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relations (3.10b) in AJ(g) to express some of the �i’s in terms of others. For example, this allows expressing

�2 ! �
mb0 �0 + (m�2) b1 �1

(m+2) b2
, �3 ! �

b0 �0 + 2b1 �1

(m+2) b3
, �4 ! �

b0 �0 + 2b1 �1

(m+2) b4
. (3.13)

The fact that the four vanishing relations (3.10a) are solved by three substitutions shows that the four

generators of the Jacobian ideal AJ(g) are in fact redundant by one.
one = the

max. # of

droppable

(extension)

vertices.

15

z1 = �� [(m�2)� +m]

m+2
, z2 =

(2�+1)2

(m+ 2)2 �m
, � :=


b1 �1

b0 �0

.
AJ(g)

�
,
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transpose
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etc
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2
0
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The Discriminant —Proof-of-Concept—

So:

In fact, also:
…restricted to no (MPCP) blow-ups & “cornerstone” polynomial

Then,

Same methods:

e2⇡i e⌧↵ =
2nY

I=0

✓ 2X

�=1

eQ�
I e��

◆ eQ↵
I

z̃a :=

 2nY

I=0

�
aI 'I(x)

� eQ↵
I

.
AJ

�
f(x)

��
,
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1

To explore this locus, we solve the vanishing of AJ(f) by expressing some of the 'i’s in terms of

others. Among other choices, this allows expressing

'0 ! �
2(a3 '3 + a4 '4)

a0
, '1 !

ma3 '3 + 2a4 '4

(m+2) a1
, '2 !

2a3 '3 +ma4 '4

a2(m+ 2)
. (4.12)

Denoting again by AJ(I···K)(f) the reduction modulo the Jacobian ideal of f(x) by means of eliminating

'I(x), · · · ,'K(x), we compare the so-obtained representatives with those in (4.2a):

I

�P
�
eQ�

I e��
�

(aI 'I)/AJ(210)(f)

0 �2(m+2)(e�1 + e�2) �2
�
(a3 '3) + (a4 '4)

�

1 m e�1 + 2 e�2 m (a3 '3)+2 (a4 '4)

m+2

2 2 e�1 +m e�2 2 (a3 '3)+m (a4 '4)

m+2

3 (m+2) e�1 (a3 '3)

4 (m+2) e�2 (a4 '4)

(4.13a)

This consequence of the choice (4.12) is thus shown to exhibit a perfect match of the respective generators

e�1 7! (a3 '3)/(m+2) and e�2 7! (a4 '4)/(m+2), (4.13b)

up to an overall rescaling by (m+2) of the homogeneous variables ('1,'2), which cancels owing to the

degree-0 homogeneity of (4.11) guaranteed by
P

I
eQ↵

I = 0. This manifest mirror map identification of the

generators �X

b

eQ�
I e��

� ⇡
 ��!

mm
(aI 'I)/

AJ(f), I = 0, · · · , 2n, (4.13c)

then precisely identifies the discriminant (4.3) with

z̃1(�) =
(m+ 2 �)m (2 +m �)2

4m+2 (m+2)m+2 (1 + �)2(m+2)
,

z̃2(�) =
�m+2 (m+ 2 �)2 (m � + 2)m

4m+2 (m+2)m+2 (1 + �)2(m+2)
,

� =


(a4 '4)

(a3 '3)

.
J(210)(f)

�
. (4.14)

This verifies the n=2 case of the “other half” (1.1b) of the mirror map.

4.2 The n = 3 Case

We follow the analysis in Sections 2 and 3, which established the isomorphism between (2.2) and (3.21)

for n=2, 3, 4:

e2⇡i ⌧̂a =
n+2Y

i=0

✓ 2X

b=1

Qb
i �b

◆Qa
i

⇡ za :=

 n+2Y

i=0

�
bi �i(y)

�Qa
i

.
AJ

�
g(y)

��
, (4.15)

as well as the n=2 case of the isomorphism

e2⇡i e⌧↵ =
2nY

I=0

✓ 2X

�=1

eQ�
I e��

◆ eQ↵
I

⇡ z̃↵:=

 2nY

I=0

�
aI 'I(x)

�Q↵
I

.
AJ

�
f(x)

��
, (4.16)

established in the first part of this section. The established isomorphism between the algebraic gener-

ators (3.24b), its n=3, 4 analogues, and (4.13c) will then clearly imply the isomorphisms between the

respective discriminants.
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e2⇡i e⌧↵ =
2nY

I=0

✓ 2X

�=1

eQ�
I e��

◆ eQ↵
I

z̃a =
2nY

I=0

�
aI 'I(x)

� eQ↵
I

.
AJ
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✅

Mirror Motets
BH

s(x, y) = 'i(jkl) pa(il)
xa

yjyk
+ 'i(jkl) pa(ir)

xa yr

yjykyl
+ 'i(jkl) pa(rs)

xa yrys

yiyjykyl
, for ✏ 6=0, (0.1)

2 2

M(OF (n)
m [c1]) � P1 ⇡ ���������! P1 ⇢ W(F (n)

m [c1])
(0.2)

"
b0

b1

#
=

"
�n m�2

0 �m

#"
�1

�2

#
(0.3)

M(OF (n)
m [c1])

mm⇡ W(F (n)
m [c1])

1

s(x, y) = 'i(jkl) pa(il)
xa

yjyk
+ 'i(jkl) pa(ir)

xa yr

yjykyl
+ 'i(jkl) pa(rs)

xa yrys

yiyjykyl
, for ✏ 6=0, (0.1)

2 2

M(OF (n)
m [c1]) � P1 ⇡ ���������! P1 ⇢ W(F (n)

m [c1])
(0.2)

"
b0

b1

#
=

"
�n m�2

0 �m

#"
�1

�2

#
(0.3)

M(OF (n)
m [c1])

mm⇡ W(F (n)
m [c1])

W(OF (n)
m [c1])

mm⇡ M(F (n)
m [c1])

1

s(x, y) = 'i(jkl) pa(il)
xa

yjyk
+ 'i(jkl) pa(ir)

xa yr

yjykyl
+ 'i(jkl) pa(rs)

xa yrys

yiyjykyl
, for ✏ 6=0, (0.1)

2 2

M(OF (n)
m [c1]) � P1 ⇡ ���������! P1 ⇢ W(F (n)

m [c1])
(0.2)

"
b0

b1

#
=

"
�n m�2

0 �m

#"
�1

�2

#
(0.3)

M(OF (n)
m [c1])

mm⇡ W(F (n)
m [c1])

W(OF (n)
m [c1])

mm⇡ M(F (n)
m [c1])

dimW(OF (n)
m [c1]) = n = dimM(F (n)

m [c1])

1

*

n=4

— easy: 2-dimensional
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✏a`-space

F (n)
�!m1

, e.g., F (n)

(4,1,··· )

F (n)
�!m2

, e.g., F (n)

(3,2,··· )F (n)
�!m3F (n)

�!m4

F (n)
�!m5

, e.g., F (n)

(2,2,1,··· )

F (n)
�!m6

, e.g., F (n)

(3,1,1,··· )

e.g., F (n)

5

F (n)
m

F (n)

[m (mod n)]

(least negative, most generic)


Pn 1
P1

m

�
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A deformation family picture

 

   [~Segre]

F (3)(2,2,1) ≈
ℝ F (3)(1,1,0)
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